A Non-Hydrostatic Model to Simulate Atmospheric Flows in the Presence of Orography

Caroline Gatti-Bono

Lawrence Berkeley National Laboratory

Outline of Presentation

- Introduction
- Mathematical Formulation
- Numerical Algorithm
- Results
- Conclusion

Introduction

Mathematical Formulation

Numerical Algorithm

Results

Conclusion

Motivation of the Research

Review of Previous Models

4.05	Advection only	Shallow water equations	Compressible or hydrostatic models
No AMR		Qualitative model: • wave equation	 time step restricted by sound/gravity waves terrain following coordinates hydrostatic BVP is not well-posed
AMR	 mass conservation equation only no orography 		Current research: • time step restricted by advection only • EB formulation • well-posed BVP for AMR

AMR = Adaptive Mesh Refinement

Time steps

Typical cell: $\Delta x = 1.5$ km - $\Delta z = 200$ m

Time step limitation	Wave speed, c	$\Delta t = \frac{\{\Delta x, \Delta z\}}{C}$
Vertical acoustic waves	343 m/s	~0.6 s
Horizontal gravity waves	200 m/s	~7.5s
Horizontal advection	20 m/s	~75 s

Research Objective

 Develop a well-posed boundary value problem for gravitationally stratified flows to use in an AMR framework

- Applications
 - Atmospheric modeling
 - Astrophysics

Algorithmic Requirements

<u>Use advective time step</u>

- => Implicit treatment of acoustic and gravity waves
- Adaptive Mesh Refinement (AMR)
- => Well-posed boundary-value formulation of the equations
- Orography
- => Cut-cell methods for irregular boundaries

Introduction

Mathematical Formulation

Numerical Algorithm

Results

Conclusion

Euler Equations for a Compressible Fluid

Mass conservation

Momentum

Pressure

$$\frac{\partial \rho}{\partial t} + div(\rho \vec{u}) = 0$$

$$\frac{\partial \vec{u}}{\partial t} + \vec{u}.grad(\vec{u}) + \frac{1}{\rho}grad(\rho) + g\vec{k} = \vec{0}$$

$$\frac{\partial \rho}{\partial t} + \vec{u}.grad(\rho) + \rho c^2 div(\vec{u}) = 0$$

Separating Out the Acoustic Waves: Hodge Decomposition

+

total velocity

U

incompressible vortical motions

U_d

compressible motions

 \boldsymbol{u}_p

 $div(\boldsymbol{u}_d)=0$

 $u_p = \text{grad}(\varphi)$

Separating Out the Acoustic Waves: Projection Method

Incompressible flow => semi-implicit formulation Acoustic waves => implicit formulation

Separating Out the Acoustic Waves: Projection Method

- Incompressible equations
 - Poisson-like equation for the pressure
 - Explicit treatment of advection
- Acoustic equations
 - Backward-Euler
 - Implicit treatment => Helmholtz equation for the acoutic pressure

=> Well-posed boundary problems for AMR

Isolate incompressible flow and gravity terms

$$\frac{\partial u_d}{\partial x} + \frac{\partial w_d}{\partial z} = 0$$

$$L_z \frac{\partial \pi_H}{\partial t} + \frac{\partial u_d}{\partial x} = f_\rho$$

$$\frac{\partial u_d}{\partial t} + \frac{1}{\rho_0} \frac{\partial \pi_H}{\partial x} = f_u$$

$$\frac{\partial \pi_H}{\partial z} = -\tilde{\rho}g$$

 $\rho_o(z)$: background stratification

 $L_z = \frac{\partial}{\partial z} \frac{1}{g \frac{d\rho_o}{dz}} \frac{\partial}{\partial z}$: second order self-adjoint operator

- This set of equations is equivalent to the set of incompressible equations in (u_d, ρ)

Decomposition on eigenvectors

$$\begin{pmatrix} U_{d} \\ \pi_{H} \end{pmatrix} = \sum_{k} \begin{pmatrix} u_{d}^{k}(x, t) \\ \pi_{H}^{k}(x, t) \end{pmatrix} r^{k}(z)$$

• $\begin{pmatrix} u_d^k \\ \pi_H^k \end{pmatrix}$ satisfy the wave equation in x with wave speed λ_k = eigenvalues of $L_z^{-1/2}$

Eigenvalues of $L_{z}^{-1/2}$ = speed of gravity waves Eigenvalue

Mode number

Introduction

Mathematical Formulation

Numerical Algorithm

Results

Conclusion

Overview of the Algorithm

 $\frac{\partial \vec{V}}{\partial t} + \vec{A} \left(\vec{V}, \frac{\partial \vec{V}}{\partial x}, \frac{\partial \vec{V}}{\partial z} \right) = \vec{0}$

- Implicit treatment of acoustic waves using splitting
- Semi-implicit (explicit for advection) for incompressible advection
- Splitting of fast horizontal gravity waves from dynamics
- Use embedded boundaries for orography

Cartesian Grid Embedded Boundary methods

- PDEs written in conservation form $\frac{\partial U}{\partial t} + \nabla .F(U) = 0 \qquad \nabla .\vec{F} \approx \frac{1}{V} \int_{V} \nabla .\vec{F} dV = \frac{1}{V} \oint_{S} \vec{F} .\vec{n} dS$
- Away from boundaries: standard finite-difference discretization

Cartesian Grid Embedded Boundary methods

Advantages of underlying rectangular grid

- Grid generation is tractable (T. Deschamps' talk)
- Well-understood
- Straightforward coupling to structured AMR

Large aspect ratio (1/10) introduces new issues

• Line solver for multigrid method

Introduction

Mathematical Formulation

Numerical Algorithm

Results

Conclusion

Results for a 2-Layered Atmosphere

N: Brunt-Väisälä frequency

• $N_{U} > N_{I}$: stable

• $N_1 > N_0$: instable

 $\begin{pmatrix}
\Delta x = 1406.25m \\
\Delta z = 200m \\
\Delta t = 5s
\end{pmatrix}$

 $u_0 = 20 \text{m/s}$

Introduction

Mathematical Formulation

Numerical Algorithm

Results

Conclusion

Status and Summary

- Formulation of well-posed initial-boundary problem
 - ✓ Stiff acoustic waves
 - □ Still working on implicit treatment of gravity waves
 - How does 2D implicit gravity waves couple with 3D AMR slow dynamics?
- EB treatment of orography
 ✓Good results on mountain lee-waves
- AMR

Not yet, but substantial progress on well-posed boundary-value problem

Future Work

- Split the gravity waves
- Go to 3D
- Use an AMR framework
- Parallelize the code

First-Aid Kit

Separating Out the Acoustic Waves: Hodge Decomposition

Definitions of Projections

 $\vec{u}_d = P_o(\vec{u})$ $\vec{u}_p = O_o(\vec{u})$ $\begin{aligned} O_{\rho} &= \frac{1}{\rho} \operatorname{grad}(L_{\rho})^{-1} \operatorname{div} \\ P_{\rho} &= I - O_{\rho} \end{aligned}$ $Q_o = grad(L_o)^{-1} div$ $P_o = I - Q_o$ $L_{\rho} = div \left(\frac{1}{\rho} grad\right)$ $L_{o} = div (grad)$

Definitions of Other Terms

$$A_{d}u = \vec{u}.grad(\vec{u}) - grad\left(\frac{|u_{p} + u_{h}|^{2}}{2}\right)$$
$$\frac{1}{\rho}grad(\pi) = -Q_{\rho}(A_{d}u)$$

 $\delta = p - p_o(z) - \pi$

 $\frac{\partial \pi_{H}}{\partial z} = -\tilde{\rho}g$ $L_{z}\frac{\partial \pi_{H}}{\partial t} + \frac{\partial U_{d}}{\partial x} = f_{\rho}$ Project on fast eigenmodes $\lambda_{k} \frac{\partial \hat{\pi}_{H}^{k}}{\partial t} + \frac{\partial \hat{u}_{d}^{k}}{\partial x} = \hat{f}_{\rho}$ $\frac{\partial \hat{u}_{d}^{k}}{\partial t} + \frac{\partial \hat{\pi}_{H}^{k}}{\partial x} = \hat{f}_{U}$ $\downarrow \text{recompose}$ $\frac{\partial u_d}{\partial t} + \frac{1}{\rho_o} \frac{\partial \pi_H}{\partial x} = f_u$ Wave equation Back to original $\pi_{H}^{Fast} = \sum_{k=1}^{K} \pi_{H}^{k} r_{k}$ variables u_d^{Fast} , π_H^{Fast} $\hat{u}_d^{Fast} = \sum_{l=1}^{K} \hat{u}_d^k r_k$

Outline of Algorithm

Recall: unknows are $u_{d'}$, $u_{p'}$, ρ , π , δ

Find the eigenvalues and eigenvectors of L_z

- 1. Advance u_d to half time step and to face centers
- 2. Advance ρ to half time step and to face centers
- 3. Partially advance u_d using only the advective terms
- 4. Solve for π_{H}^{Fast} , U_{d}^{Fast}
- 5. Project out instable (fast) modes
- 6. Solve for auxiliary pressure π
- 7. Advance acoustic pressure δ implicitly
- 8. Advance curl-free velocity u_p
- 9. Update ρ
- 10. Add missing terms in update for \boldsymbol{u}_d

· . · · ·