A Non-Hydrostatic Model to Simulate Atmospheric Flows in the Presence of Orography

Caroline Gatti-Bono
Lawrence Berkeley National Laboratory

Outline of Presentation

- Introduction
- Mathematical Formulation
- Numerical Algorithm
- Results
- Conclusion

I ntroduction

Mathematical Formulation

Numerical Algorithm

Results

Conclusion

Motivation of the Research

Review of Previous Models

	Advection only	Shallow water equations	Compressible or hydrostatic models
No AMR		Qualitative model: - wave equation	• time step restricted by sound/gravity waves • terrain following coordinates • hydrostatic BVP is not well-posed
AMR	•mass conservation equation only • no orography	Current research: • time step restricted by advection only - EB formulation • well-posed BVP for AMR	

AMR = Adaptive Mesh Refinement

Time steps

Typical cell: $\Delta x=1.5 \mathrm{~km}-\Delta \mathrm{z}=200 \mathrm{~m}$

Time step limitation	Wave speed, c	$\Delta t=\frac{\{\Delta x, \Delta z\}}{c}$
Vertical acoustic waves	$343 \mathrm{~m} / \mathrm{s}$	$\sim 0.6 \mathrm{~s}$
Horizontal gravity waves	$200 \mathrm{~m} / \mathrm{s}$	$\sim 7.5 \mathrm{~s}$
Horizontal advection	$20 \mathrm{~m} / \mathrm{s}$	$\sim 75 \mathrm{~s}$

Research Objective

- Develop a well-posed boundary value problem for gravitationally stratified flows to use in an AMR framework
- Applications
- Atmospheric modeling
- Astrophysics

Algorithmic Requirements

- Use advective time step
=> Implicit treatment of acoustic and gravity waves
- Adaptive Mesh Refinement (AMR)
=> Well-posed boundary-value formulation of the equations
- Orography
=> Cut-cell methods for irregular boundaries

I ntroduction

Mathematical Formulation

Numerical Algorithm

Results

Conclusion

Euler Equations for a Compressible Fluid

Mass conservation	$\frac{\partial \rho}{\partial t}+\operatorname{div}(\rho \vec{u})=0$
Momentum	$\frac{\partial \vec{u}}{\partial t}+\vec{u} \cdot \operatorname{grad}(\vec{u})+\frac{1}{\rho} \operatorname{grad}(p)+g \vec{k}=\overrightarrow{0}$
Pressure	$\frac{\partial p}{\partial t}+\vec{u} \cdot \operatorname{grad}(p)+\rho c^{2} \operatorname{div}(\vec{u})=0$

Separating Out the Acoustic Waves: Hodge Decomposition

\mathbf{u}	\mathbf{u}_{d}	\mathbf{u}_{p}
total velocity	incompressible vortical motions	compressible $\operatorname{div}\left(\mathbf{u}_{\mathrm{d}}\right)=0$
	$\mathbf{u}_{\mathrm{p}}=\operatorname{grad}(\varphi)$	

Separating Out the Acoustic Waves: Projection Method

Income-

 pressible flow and advective transport

Incompressible flow => semi-implicit formulation Acoustic waves $=>$ implicit formulation

Separating Out the Acoustic Waves: Projection Method

- Incompressible equations
- Poisson-like equation for the pressure
- Explicit treatment of advection
- Acoustic equations
- Backward-Euler
- Implicit treatment => Helmholtz equation for the acoutic pressure
=> Well-posed boundary problems for AMR

Separating Out Fast Gravity Waves

- Isolate incompressible flow and gravity terms

$$
\begin{aligned}
& \frac{\partial u_{d}}{\partial x}+\frac{\partial w_{d}}{\partial z}=0 \\
& \mathrm{~L}_{\mathrm{z}} \frac{\partial \pi_{\mathrm{H}}}{\partial \mathrm{t}}+\frac{\partial \mathrm{u}_{\mathrm{d}}}{\partial \mathrm{x}}=\mathrm{f}_{\rho} \\
& \frac{\partial \mathrm{u}_{\mathrm{d}}}{\partial \mathrm{t}}+\frac{1}{\rho_{\mathrm{o}}} \frac{\partial \pi_{\mathrm{H}}}{\partial \mathrm{x}}=\mathrm{f}_{\mathrm{u}} \\
& \frac{\partial \pi_{\mathrm{H}}}{\partial \mathrm{z}}=-\widetilde{\rho} \mathrm{g}
\end{aligned}
$$

$$
\begin{aligned}
& \rho_{0}(z): \text { background } \\
& \text { stratification } \\
& L_{z}=\frac{\partial}{\partial z} \frac{1}{g \frac{d}{d} \rho_{0}} \frac{\partial}{d z}: \text { second order } \\
& \text { self-adjoint operator }
\end{aligned}
$$

- This set of equations is equivalent to the set of incompressible equations in (u_{d}, ρ)

Separating Out Fast Gravity Waves

- Decomposition on eigenvectors

$$
\binom{u_{d}}{\pi_{\mathrm{H}}}=\sum_{\mathrm{k}}\binom{\mathrm{u}_{\mathrm{d}}^{\mathrm{k}}(\mathrm{x}, \mathrm{t})}{\pi_{\mathrm{H}}^{\mathrm{k}}(\mathrm{x}, \mathrm{t})} \mathrm{r}^{\mathrm{k}}(\mathrm{z})
$$

- $\left(u_{d}^{k}\right)$ satisfy the wave equation in x with wave speed $\lambda_{k}=$ eigenvalues of $L_{z}^{-1 / 2}$

Separating Out Fast Gravity Waves

Eigenvalues of $\mathrm{L}_{\mathrm{z}}{ }^{-1 / 2}=$ speed of gravity waves

Introduction

Mathematical Formulation

Numerical Algorithm

Results

Conclusion

Overview of the Algorithm

$$
\frac{\partial \vec{V}}{\partial t}+\vec{A}\left(\vec{V}, \frac{\partial \vec{V}}{\partial x}, \frac{\partial \vec{V}}{\partial z}\right)=\overrightarrow{0}
$$

- Implicit treatment of acoustic waves using splitting
- Semi-implicit (explicit for advection) for incompressible advection
- Splitting of fast horizontal gravity waves from dynamics
- Use embedded boundaries for orography

Cartesian Grid Embedded Boundary methods

- PDEs written in conservation form

$$
\frac{\partial U}{\partial \mathrm{t}}+\nabla \cdot \mathrm{F}(\mathrm{u})=0 \quad \nabla \cdot \overrightarrow{\mathrm{~F}} \approx \frac{1}{\mathrm{~V}} \int_{\mathrm{V}} \nabla \cdot \overrightarrow{\mathrm{~F}} \mathrm{dV}=\frac{1}{\mathrm{~V}} \oint_{\mathrm{S}} \overrightarrow{\mathrm{~F}} \cdot \overrightarrow{\mathrm{n}} \mathrm{dS}
$$

- Away from boundaries: standard finite-difference discretization

Cartesian Grid Embedded Boundary methods

Advantages of underlying rectangular grid

- Grid generation is tractable (T. Deschamps' talk)
- Well-understood
- Straightforward coupling to structured AMR

Large aspect ratio (1/10) introduces new issues

- Line solver for multigrid method

Introduction

Mathematical Formulation

Numerical Algorithm

Results

Conclusion

Results for a 2-Layered Atmosphere

$$
\begin{aligned}
& \Delta x=1406.25 m \\
& \Delta z=200 \mathrm{~m} \\
& \Delta t=5 \mathrm{~s}
\end{aligned}
$$

$u_{0}=20 \mathrm{~m} / \mathrm{s} \quad$| $\Delta x=1406.25 \mathrm{~m}$ |
| :--- |
| $\Delta z=200 \mathrm{~m}$ |
| $\Delta t=5 \mathrm{~s}$ |

N : Brunt-Väisälä frequency

- $\mathrm{N}_{\mathrm{U}}>\mathrm{N}_{\mathrm{L}}$: stable
- $\mathrm{N}_{\mathrm{L}}>\mathrm{N}_{\mathrm{U}}$: instable
N_{U}
N_{L}
$\hat{\imath} \mathrm{h}=600 \mathrm{~m}$
$\mathrm{L}=180 \mathrm{~km}$

$1 / 4$ wavelength

$1 / 2$ wavelength

Introduction

Mathematical Formulation

Numerical Algorithm

Results

Conclusion

Status and Summary

- Formulation of well-posed initial-boundary problem
\checkmark Stiff acoustic waves
Still working on implicit treatment of gravity waves
How does 2D implicit gravity waves couple with 3D AMR slow dynamics?
- EB treatment of orography
\checkmark Good results on mountain lee-waves
- AMR
\square Not yet, but substantial progress on well-posed boundary-value problem

Future Work

- Split the gravity waves
- Go to 3D
- Use an AMR framework
- Parallelize the code

First-Aid Kit

Separating Out the Acoustic Waves: Hodge Decomposition

total velocity incompressible
compressible

Definitions of Projections

$$
\begin{aligned}
& \overrightarrow{\mathrm{u}}_{\mathrm{d}}=\mathrm{P}_{\mathrm{o}}(\overrightarrow{\mathrm{u}}) \\
& \overrightarrow{\mathrm{u}}_{\mathrm{p}}=\mathrm{Q}_{\mathrm{o}}(\overrightarrow{\mathrm{u}}) \\
& \mathrm{Q}_{\rho}=\frac{1}{\rho} \operatorname{grad}\left(\mathrm{~L}_{\rho}\right)^{-1} \operatorname{div} \\
& \mathrm{P}_{\rho}=I-\mathrm{Q}_{\rho} \\
& \mathrm{Q}_{\mathrm{o}}=\operatorname{grad}\left(\mathrm{L}_{\mathrm{o}}\right)^{-1} \operatorname{div} \\
& \mathrm{P}_{\mathrm{o}}=I-\mathrm{Q}_{\mathrm{o}} \\
& \mathrm{~L}_{\rho}=\operatorname{div}\left(\frac{1}{\rho} \operatorname{grad}\right) \\
& \mathrm{L}_{\mathrm{o}}=\operatorname{div}(\operatorname{grad})
\end{aligned}
$$

Definitions of Other Terms

$$
\begin{aligned}
& A_{d} u=\vec{u} \cdot \operatorname{grad}(\vec{u})-\operatorname{grad}\left(\frac{\left|u_{p}+u_{h}\right|^{2}}{2}\right) \\
& \frac{1}{\rho} \operatorname{grad}(\pi)=-Q_{\rho}\left(A_{d} u\right) \\
& \delta=p-p_{o}(z)-\pi
\end{aligned}
$$

Separating Out Fast Gravity Waves

$$
\begin{aligned}
& \frac{\partial \pi_{\mathrm{H}}}{\partial z}=-\widetilde{\rho} g \\
& \mathrm{~L}_{\mathrm{z}} \frac{\partial \pi_{\mathrm{H}}}{\partial \mathrm{t}}+\frac{\partial \mathrm{u}_{\mathrm{d}}}{\partial \mathrm{x}}=\mathrm{f}_{\rho} \\
& \frac{\partial u_{d}}{\partial t}+\frac{1}{\rho_{0}} \frac{\partial \pi_{\mathrm{H}}}{\partial \mathrm{x}}=\mathrm{f}_{\mathrm{u}} \\
& \text { Wave equation }
\end{aligned}
$$

Outline of Algorithm

Recall: unknows are $u_{d}, u_{p}, \rho, \pi, \delta$
Find the eigenvalues and eigenvectors of L_{z}

1. Advance \mathbf{u}_{d} to half time step and to face centers
2. Advance ρ to half time step and to face centers
3. Partially advance \mathbf{u}_{d} using only the advective terms
4. Solve for $\pi_{H}{ }^{\text {Fast }}, u_{d}{ }^{\text {Fast }}$
5. Project out instable (fast) modes
6. Solve for auxiliary pressure π
7. Advance acoustic pressure δ implicitly
8. Advance curl-free velocity \mathbf{u}_{p}
9. Update ρ
10. Add missing terms in update for \mathbf{u}_{d}

