

Chukchi Sea Planning Area

Oil and Gas Lease Sale 193 and Seismic Surveying Activities in the Chukchi Sea

Draft Environmental Impact Statement

Volume II Tables, Figures, Maps, and Appendices

U.S. Department of the Interior Minerals Management Service Alaska OCS Region Alaska Outer Continental Shelf

OCS EIS/EA MMS 2006-060

Chukchi Sea Planning Area Oil and Gas Lease Sale 193 and Seismic Surveying Activities in the Chukchi Sea

Final Environmental Impact Statement

Volume II (Tables, Figures, Maps, and Appendices)

Author Minerals Management Service Alaska OCS Region

Cooperating Agency U.S. Department of Commerce, National Oceanographic and Atmospheric Administration, National Marine Fisheries Service

U.S. Department of the Interior Minerals Management Service Alaska OCS Region

October 2006

Tables, Figures, and Maps

Tables

III.A-1	Community Climate Data
III.A-2	Temperature Departure for Barrow and Kotzebue
III.A-3	Mean Occurrence Dates (1996-2004) for Landfast Ice Conditions
III.A-4	Mean and Maximum Polynya Widths
III.A-5	Ambient Air Quality Standards Relevant to the Chukchi Sea Planning Area
III.A-6	Measured Air-Pollutant Concentrations at Prudhoe Bay, Alaska 1986-1995
111.74-0	Wedstree Ant-1 ondiant Concentrations at 1 rudnoe Day, Maska 1960-1995
III.B-1	Fish Resources of Arctic Alaska
III.B-2	Arctic Fish Occurrence in Coastal and Marine Waters of the Alaskan Chukchi and
III.D 2	Beaufort Sea
	Beauton Sea
III.C-1	Estimated Number of Jobs by Sector, North Slope Borough Residents Only
III.C-2	Employment of Residents by Sector, North Slope Communities, 2003
III.C-3	Employment Estimates (in thousands) (nonagriculture wage and salary employment)
III.C-4	Annual Bowhead Whale Subsistence Harvest for Chukchi Sea Villages, 1982-2005
III.C-5	Annual Beluga Whale Harvest for Barrow, Wainwright, Point Lay, Point Hope, and Kivalina, 1980-2005
III.C-6	Annual Walrus Harvest for Barrow, Wainwright, Point Lay, Point Hope, and Kivalina,
III.C-0	1985-2005
III.C-7	Annual Polar Bear Harvest for Barrow, Wainwright, Point Lay, Point Hope, and
III.C-7	Kivalina, 1983-2005
III.C-8	Breakdown of Total Harvest by Subsistence-Harvest Category for Point Hope, Alaska,
ULC O	1992 Teo Eiro Security Han actual of Deirot Hanna Albaha di site Caluada Vara 1992
III.C-9	Top Five Species Harvested at Point Hope, Alaska during Calendar Year 1992
III.C-10	Participation in Subsistence-Harvest Activities, Point Hope, Alaska, 1992
III.C-11	Point Hope, Amount of Food Consumed Harvested from Local Sources
III.C-12	Point Hope Money Spent on Subsistence Activities, 2003
III.C-13a	Kivalina Marine Mammal Subsistence Harvests
III.C-13b	Kivalina Land Mammal Subsistence Harvests
III.C-13c	Kivalina Fish Subsistence Harvests
III.C-13d	Kivalina Bird Subsistence Harvests
III.C-13e	Kivalina Plant Subsistence Harvests
III.C-14	Importance of Subsistence Foods to Households in NANA Region
III.C-15	Ethnic Composition of Barrow, Atqasuk, Wainwright, Point Lay, and Point Hope –
	Percent by Race
IV.A-1	Exploration and Development Scenario, Chukchi Sea OCS
IV.A-2a	Possible Timetable for Development
IV.A-2b	Possible Timetable for Production
IV.A-3	Commercial Development Potential for Sale 193 Alternatives
IV.A-4	Large and Small Spill Sizes, Source of Spill, Type of Oil, Number and Size of Spill and
	Receiving Environment We Assume for Analysis in this EIS by Section
IV.A-5	Small Crude Oil Spills: Assumed Spills over the Production Life of Chukchi Sea Sale
10.11.5	193
IV.A-6	Small Refined Oil Spills: Assumed Spills over the Production Life of Chukchi Sea Sale
1 .71-0	193
	175
IV.C-1	Sale 193 Employment and Personal Income Effects
IV.C-1 IV.C-2	Sociocultural Effects from Routine Activities
1 V.U=2	Sourcemental Effects from Routine Activities
V-1	Alaska North Slope Oil and Gas Discoveries as of March 2006
, 1	musica mortal prope on and Gas Discoveries as of Materia 2000

V-2 Past Development:	2005 Production and Reserve Date
-----------------------	----------------------------------

- V-3 Present Development: Estimated Reserve Data
- V-4 Future Lease Sales
- V-5 Detailed Reserve and Resource Estimates for the Cumulative Analysis
- V-6 Trans-Alaska Pipeline System and Proposed Future Natural Gas Projects
- V-7a Oil and Gas Production 1969 to December 2005 on the North Slope of Alaska
- V-7b Summary of Reserve and Resource Estimates for the Cumulative Analysis
- V-7c Detailed Reserve and Resource Estimates for the Cumulative Analysis

Figures

III.A-1 III.A-2	Bathymetry Highs Contiguous to the Sale 193 Area Coastal Physiography
III.A-2 III.A-3	Surficial Features
III.A-4	Ice Gouging
III.A-4 III.A-5	Distribution of Near-Surface Acoustic Anomalies Possibly Related to Shallow Gas
	Barrow Mean Annual Temperature (°F)
III.A-6	
III.A-7	Barrow Total Annual Precipitation (in)
III.A-8	Kotzebue Mean Annual Temperature (°F)
III.A-9 III.A-10	Kotzebue Total Annual Precipitation (in)
	Mean Annual Temperature Departure for Alaska (1949-2004) Generalized Maximum Retreat of Sea Ice 1996-2004
III.A-11	
III.A-12	Generalized Location of Chukchi Polynyas
III.A-13	Maximum Polynya and Flaw Lead for 1995, 1997, 2003, and 2004
III.A-14	Monthly Recurrence Probability of Leads Derived from All Images for the Time Period 1993-2004.
III.B-1	The Distribution of Average Summer Chlorophyll Concentrations, or the "Greenness" of the Surface Water.
III.B-2	Abundance of Snails and Other Epifaunal Mollusks in the Northeastern Chukchi Sea.
III.B-3	Approximate Distribution of the Western Arctic Stock Bowhead Whales.
III.B-4	Counts of Bowhead Whales in the Chukchi Sea taken by the MMS Bowhead Whale
	Aerial Survey Project
III.B-5	Approximate Distribution of Fin Whales in the Eastern North Pacific.
III.B-6	Approximate Distribution of Humpback Whales in the Western North Pacific.
III.B-7	Approximate Areas used by Cape Lisburne and Cape Thompson Common and Thick- Billed Murre Colonies when Foraging in Summer and by the Juvenile and Attendant Males during the Postnesting Period
III.B-8	Approximate Sea Duck Migration Distances from Shore for King Eiders, Common
	Eiders, and Long-Tailed Ducks in Fall
III.B-9	Vegetation and Wetlands within a 50-km Belt from the Chukchi Shoreline
III.C-1	Point Hope Historic Subsistence-Harvest Areas: All Resources/All Seasons
III.C-2	Point Hope Subsistence-Use Areas: Bowhead Whale
III.C-3	Point Hope Subsistence-Use Areas: Seals
III.C-4	Point Hope Subsistence-Use Areas: Walrus
III.C-5	Point Hope Subsistence-Use Areas: Beluga
III.C-6	Point Hope Annual Subsistence Cycle
III.C-7	Point Hope: Changes in Subsistence Activity
III.C-8	The Past and Present Kivalina Hunting Areas for the Eastern Chukchi Sea (Summer) Stock of Beluga
III.C-9	Kivalina Hunting Area for Bowhead Whales
III.C-10	Kivalina Hunting Area for Pacific Walrus
III.C-11	Kivalina Hunting and Feeding Area of Bearded Seals

IV.C-1	Oil-Spill Impacts Model for Selected Fishes using Nearshore/Intertidal Substrates as
	Spawning and/or Rearing Habitats

Maps

Map 1	Program Area Chukchi Sea Sale 193	
-------	-----------------------------------	--

- Map 2 Map 3 Map 4 Corridor I Deferral Chukchi Sea Sale 193
- Corridor II Deferral Chukchi Sea Sale 193
- Subsistence-Harvest Areas in the Chukchi Sea Sale 193 Area

Table III.A-1 Community Climate Data

Community	Temperature Range	Average Precipitation	Normal Snow Cover		
Point Hope	-49 to 78 °F	10.0 inches	36 inches		
Point Lay	-55 to 78 °F	6.9 inches	21 inches		
Wainwright	-56 to 80 °F	5.0 inches	12 inches		
Barrow	-56 to 78 °F	5.0 inches	20 inches		

Source:

Alaska Department of Commerce, Community Online Database

Table III.A-2

Temperature Trend for Barrow and Kotzebue (1949-2004)

Station Information				Long-term mean, °F (1949 - 2004)				Total change, °F (1949 - 2004)					
Location	Latitude	Longitude	Elev. (ft)	Annual	Spring	Summer	Autumn	Winter	Annual	Spring	Summer	Autumn	Winter
Barrow	71°17'	-156°46'	30.8	10.0	1.7	37.4	15.2	-14.2	3.4	4.3	2.6	1.2	5.5
Kotzebue	66°53'	-162°36'	9.8	21.8	15	50.0	24.7	- 2.5	3.3	2.4	2.5	1.0	7.4

Source:

http://climate.gi.alaska.edu/ClimTrends/Change/4904Change.html

Table III.A-3
Mean Occurrence Dates (1996-2004) for Landfast Ice Conditions

	Eicken	et al., 2006	, 2006 Barry et al., 1979			
		Zone 1	Central Chukchi Sea	Central Beaufort Sea		
First Ice*	Mean	Dec 01	Early	Mid-	First continuous fast ice	
FIISLICE	σ'	31.8	November	October		
Stable Ice	Mean	Feb 23	February	January	Stable ice inside of 15-m isobath	
	σ'	41.9	rebluary	February		
Breakup	Mean	Jun 04	June 10	June 30	First apopings and movement	
Бгеакир	σ'	13.9	Julie IU	Julie 30	First openings and movement	
Ice Free	Mean	Jun 18	July 05	August 01	Nearshore largely free of fast ice	
	σ'	12.7		, agast 01		

Source: Eicken et al. 2006; Barry et al. 1979

Table III.A-4 Mean and Maximum Polynya Widths

	Mean Pol	ynya Width	Maximum Po	lynya Width	
Year	SSMI/I, km	W/C, km	SSMI/I, km	W/C, km	
1990	33	8	94	37	
1991	15	13	49	61	
1992	29	11	151	39	
1993	20	14	81	37	
1994	39	12	138	50	
1995	10	11	29	47	
1996	22	12	128	42	
1997	15	14	38	60	
1998	15	15	54	47	
1999	30		114	—	
2000	20		72	_	
2001	27		75	_	
9-year mean	21.9	12.2	84.6	46.7	
9-year σ	±9.8	±2.1	±45.8	±9.1	
12-year mean	22.9		85.2	—	
12-year σ	±8.8	—	±40.3	—	

Source

Martin et al., 2004.

 Table III.A-5

 Ambient Air Quality Standards Relevant to the Chukchi Sea Planning Area

Ambient Air Quality Standards								
Pollutant	Averaging Period ¹	Alaska Standards	National Standards ²	Standard Type				
Carbon Monoxide	8-hour	10 mg/m ³	9 ppm (10 mg/m ³)	Primary				
	1-hour	40 mg/m ³	35 ppm(40 mg/m ³)	Primary				
Nitrogen Dioxide	Annual	100 μg/m³	.053 ppm (100 µg/m ³)	Primary & Secondary				
Ozone	1-hour	235 µg/m³	_	—				
Ozone	8-hour	_	.08 ppm (157 μg/m ³)	Primary & Secondary				
Lead	Quarterly	1.5 µg/m³	1.5 μg/m ³	Primary & Secondary				
Particulate Matter (PM10)	Annual	50 µg/m³	50 μg/m³	Primary & Secondary				
Failleulate Matter (FMT0)	24-hour	150 μg/m³	150 μg/m³	Primary & Secondary				
Particulate Matter (PM2.5)	Annual	—	15 μg/m³	Primary & Secondary				
Failiculate Matter (FM2.5)	24-hour	_	65 μg/m ³	Primary & Secondary				
	Annual	80 µg/m³	.03 ppm (80 μg/m ³)	Primary				
Sulfur Dioxide	24-hour	365 µg/m³	.014 ppm (365 µg/m ³)	Primary				
	3-hour	1300 µg/m ³	.5 ppm (1300 μg/m ³)	Secondary				
Reduced Sulfur Compounds	30-minute	50 µg/m ³	_					
Ammonia	8-hour	2.1 µg/m ³	_	—				

State of Alaska, Dept. of Environmental Conservation (2005), 18 AAC 50.010; U.S. Environmental Protection Agency (40 CFR Part 50)

Notes:

(a dash [--] indicates that no standards have been established)

 mg/m^3 = milligrams per cubic meter

 $\mu g/m^3$ = micrograms per cubic meter

Footnotes:

¹National standards (other than ozone, particulate matter, and those based on annual averages or annual arithmetic mean) are not to be exceeded more than once a year. The ozone standard is attained when the fourth high 8-hour concentration in a year, averaged over 3 years, is equal to or less than the standard. For PM₁₀, the 24-hour standard is attained when the expected number of days per calendar year with a 24-hour average concentration above 150 μ g/m³ is <1. For PM_{2.5}, the 24-hour standard is attained when 98% of the daily concentrations, averaged over 3 years, are equal to or less than the standard.

²Concentration expressed first in units in which it was promulgated. Equivalent units given in parentheses are based upon a reference temperature of 25 °C and a reference pressure of 760 torr. Most measurements of air quality are to be corrected to a reference temperature of 25 °C and a reference pressure of 760 torr; ppm in this table refers to ppm by volume, or micromoles of pollutant per mole of gas.

Table III.A-6 Measured Air-Pollutant Concentrations at Prudhoe Bay, Alaska 1986-1996

	Monitor Sites						
Pollutant ¹	A ²	B ³	C ⁴	D⁵	National Standards ⁶	Class II Increments ⁷	
Ozone							
Annual Max. 1 hr	115.8	180.3	115.6	100.0	235	—	
Nitrogen Dioxide							
Annual	26.3	11.9	16.0	4.9	100	25	
Inhalable Particulate Matter (PM ₁₀)							
Annual	—	_	10.5	—	50	17	
Annual Max. 24 hr	29.3	_	25.0 ⁸	—	150	30	
Sulfur Dioxide							
Annual	2.6	_	5.2	2.6	80	20	
Annual Max. 24 hr	10.5	—	26.2 ⁸	13.1	365	91	
Annual Max. 3 hr	13.1	_	44.5	55.0	1,300	512	
Carbon Monoxide							
Annual Max. 8 hr		_	1,400	—	10,000	—	
Annual Max. 1 hr	_	_	2,500 ⁸	—	40,000	—	

Sources:

ERT Company, Inc. (1987); Environmental Science and Engineering (1987); ENSR, (1996), as cited in U.S. Army Corps of Engineers (1999) Note:

(measured in micrograms per cubic meter; absence of data is indicated by a dash [--])

Footnotes:

¹Lead was not monitored.

²Site CCP (Central Compressor Plant), Prudhoe Bay monitoring program, selected for maximum pollutant concentrations. All data are for years 1992-1996.

³Site Pad A (Drill Pad A), Prudhoe Bay monitoring program, site of previous monitoring, selected to be more representative of the general area or neighborhood. All data are for years 1992-1996.

⁴Site CPF-1 (Central Processing Facility), Kuparuk monitoring program, selected for maximum pollutant concentrations. Ozone, nitrogen dioxide, and sulfur dioxide are for years 1990-1992; PM₁₀ and carbon monoxide data are for 1986-1987.

⁵Site DS-1F, Kuparuk monitoring program site selected to be representative of the general area or neighborhood. All data are for years 1990-1992. ⁶Applicable National Ambient Air Quality Standards. Please refer to Table III.A-5 for more specific definitions of air quality standards.

⁷Class II PSD Standard Increments.

⁸Second highest observed value (in accordance with approved procedures for determining ambient air quality).

Table III-B-1 Fish Resources of Arctic Alaska

		Fish Species			ution by e Ecosystem
Order	Family	Species Name	Common Name	Beaufort Sea	Chukchi Sea
Petromyzontiformes	; ;				
	Petromyzontidae (lampreys)	Lampetra tridentata	Pacific lamprey	_	R
	r euoniyzonituae (lampreys)	Lampetra camtschatica	Arctic lamprey	W	W
Squaliformes					
	Dalatiidae (sleeper sharks)	Somniosus pacificus	Pacific sleeper shark	_	W
	Squalidae (dogfish sharks)	Squalus acanthias	spiny dogfish	_	R
Clupeoiformes					•
	Clupeidae (herrings)	Clupea pallasii	Pacific herring	W	W
Osmeriformes					1
	Osmeridae (smelts)	Mallotus villosus	capelin	W	W
		Osmerus mordax	rainbow smelt	W	W
Salmoniformes			1.	_	I
		Stenodus leucichthys	inconnu	R	
		Coregonus sardinella	least cisco	W	W
	Salmonidae/Coregoninae	Coregonus autumnalis	Arctic cisco	W	
	(whitefishes)	Coregonus laurettae	Bering cisco	W	W
		Coregonus nasus	broad whitefish	W	W
		Coregonus pidschian	humpback whitefish	W	W
		Salvelinus alpinus	Arctic char	W	W
		Salvelinus malma	Dolly Varden	W	W
	Salmonidae/Salmoninae	Oncorhynchus gorbuscha	pink salmon	W	W
	(trouts and salmons)	Oncorhynchus kisutch	coho salmon	R	W
		Oncorhynchus tshawytscha	Chinook salmon	R	W
		Oncorhynchus keta	chum salmon	W	W
		Oncorhynchus nerka	sockeye salmon	R	W
Myctophiformes					
	Myctophidae (lanternfishes)	Benthosema glaciale	glacier lanternfish	R	
Gadiformes					1
		Boreogadus saida	Arctic cod	W	W
		Arctogadus glacialis	polar cod	R	
	Gadidae (cods)	Arctogadus borisovi	toothed cod	R	
		Eleginus gracilis	saffron cod	W	W
		Theragra chalcogramma	walleye pollock		W
		Gadus ogac	ogac	W	_

Table III.B-1 Fish Resources of Arctic Alaska (continued)

		Fish Species			ition by e Ecosystem
Order	Family	Species Name	Common Name	Beaufort Sea	Chukchi Sea
asterosteiformes					
	Gasterosteidae (sticklebacks)	Gasterosteus aculeatus	threespine stickleback	R	R
	Gasterosterdae (sticklebacks)	Pungitius pungitius	ninespine stickleback	W	W
corpaeniformes					
•	Hexagrammidae (greenlings)	Hexagrammos stelleri	whitespotted greenling	U-R	W
		Triglops pingelii	ribbed sculpin	W	W
		Hemilepidotus papilio	butterfly sculpin	_	W
		Hemilepidotus jordani	yellow Irish lord	_	R
		Icelus spatula	spatulate sculpin	W	W
		Icelus bicornis	twohorn sculpin	R	
		Gymnocanthus tricuspis	Arctic staghorn sculpin	W	W
		Cottus aleuticus	coastrange sculpin	_	LD
	Cottidae (sculpins)	Enophrys diceraus	antlered sculpin	_	W
		Megalocottus platycephalus	belligerent sculpin	_	W
		Myoxocephalus quadricornis	fourhorn sculpin	W	W
		Myoxocephalus scorpius	shorthorn sculpin	W	W
		Myoxocephalus scorpioides	Arctic sculpin	W	W
		Myoxocephalus jaok	plain sculpin	_	W
		Microcottus sellaris	brightbelly sculpin	_	R
		Artediellus gomojunovi	spinyhook sculpin	R	R
		Artediellus scaber	hamecon	W	W
		Artediellus pacificus	hookhorn sculpin	_	R
		Artediellus ochotensis	Okhotsk hookear sculpin	_	R
	Hemitripteridae	Blepsias bilobus	crested sculpin	_	W
	(sailfin sculpins)	Nautichthys pribilovius	eyeshade sculpin	_	W
	Psychrolutidae	Eurymen gyrinus	smoothcheek sculpin	_	R
	(fathead sculpins)	Cottunculus sadko	Sadko sculpin	R	
		Hypsagonus quadricornis	fourhorn poacher	_	R
		Pallasina barbata	tubenose poacher	_	R
	Agonidae (poachers)	Occella dodecaedron	Bering poacher	_	R
		Leptagonus decagonus	Atlantic poacher	R	R
		Podothecus veternus	veteran poacher	U-R	R/P

Table III.B-1 Fish Resources of Arctic Alaska (continued)

		Fish Species		Distribu Large Marine	
Order	Family	Species Name	Common Name	Beaufort Sea	Chukchi Sea
corpaeniformes (c	continued)		•		
· · ·	Agonidae (poachers)	Ulcina olrikii	Arctic alligatorfish	W	W
	(continued)	Aspidophoroides monopterygius	alligatorfish	_	LD
	Cyclopteridae (lumpsuckers)	Eumicrotremus derjugini	leatherfin lumpsucker	R/P	
		Eumicrotremus andriashevi	pimpled lumpsucker		R
		Liparis gibbus	variegated snailfish	W	W
	Linguides (ensilfishes)	Liparis tunicatus	kelp snailfish	W	W
	Liparidae (snailfishes)	Liparis bristolensis	Bristol snailfish	_	R
		Liparis fabricii	gelatinous seasnail	R/P	_
		Liparis callyodon	spotted snailfish	_	W
rciformes					
		Gymnelus hemifasciatus	halfbarred pout	R/P	R/P
		Gymnelus viridis	fish doctor	R/P	R/P
		Lycodes seminudus	longear eelpout	R	_
		Lycodes mucosus	saddled eelpout	R	R
		Lycodes turneri	estuarine eelpout	R	W
		Lycodes polaris	polar eelpout	W	W
	Zoarcidae (eelpouts)	Lycodes raridens	marbled eelpout	_	W
		Lycodes rossi	threespot eelpout	R	R
		Lycodes sagittarius	archer eelpout	R	_
		Lycodes palearis	wattled eelpout	_	W
		Lycodes pallidus	pale eelpout	R	_
		Lycodes squamiventer	scalebelly eelpout	R	_
		Lycodes eudipleurostictus	doubleline eelpout	R	_
		Lycodes concolor	ebony eelpout	_	R
		Eumesogrammus praecisus	fourline snakeblenny	W	W
		Stichaeus punctatus	Arctic shanny	W	W
	Stiphonidan (prinklahanka)	Chirolophis snyderi	bearded warbonnet	_	R
	Stichaeidae (pricklebacks)	Leptoclinus maculatus	daubed shanny	R	R
		Anisarchus medius	stout eelblenny	W	W
		Lumpenus fabricii	slender eelblenny	W	W
	Pholidae (gunnels)	Pholis fasciata	banded gunnel	_	R
	Anarhichadidae (wolffishes)	Anarhichas orientalis	Bering wolffish	W	W
	Ammodytidae (sand lances)	Ammodytes hexapterus	Pacific sand lance	W	W

TableIII.B-1 Fish Resources of Arctic Alaska (continued)

		Fish Species		Distribution by Large Marine Ecosystem			
Order	Family	Species Name	Common Name	Beaufort Sea	Chukchi Sea		
Pleuronectiformes							
		Hippoglossus stenolepis	Pacific halibut	_	U-R		
		Hippoglossoides robustus	Bering flounder	—	W		
		Reinhardtius hippoglossoides	Greenland halibut	R	U-P		
	Pleuronectidae	Platichthys stellatus	starry flounder	W	W		
	(righteye flounders)	Pleuronectes quadrituberculatus	Alaska plaice	_	W		
		Pleuronectes glacialis	Arctic flounder	W	W		
		Limanda proboscidea	longhead dab		W		
		Limanda aspera	yellowfin sole	_	W		
		Limanda sakhalinensis	Sakhalin sole	—	U-R		

Note

Distribution Keys

- **LD** = Limited distribution relative to available biotope (e.g., continental slope)
- **R** = Rare (<5 records) and disjunct
- **E** = Rare and endemic species
- **RS** = Rare species known occurring only in one LME
- **R/P** = Rare and patchy
- **U-R** = Unverified record-rare and disjunct
- **U-P** = Unverified and patchy
- W = Widespread
- = Undocumented, no verified records

Sources:

.

Mecklenburg, Mecklenburg, and Thorsteinson, 2002; Stevenson, et al., 2004.

Table III.B-2

Arctic Fish Occurrence in Coastal and Marine Waters of the Alaskan Chukchi and Beaufort Seas

Freshwater Nentice Ventre Operation Determinal							Bracki	sh					Marii	ne				Behavioral Stratification									
Lampetra tridentata Pacific lamprey A X				Fres	hwater		Nearsh	ore		Neriti	с				00	eanic	;		Ber	avior	al Strat	ificati	on				
Lampetra canneschaftes Arcis Lamprey A X	Species	Common Name	Principle Environment	Fluvial	Lacustrine	Estuarine	Intertidal	0-2m (Infralittoral Fringe)	1-50m	51-100m	101-200m	201-300m	301-500m	501-700m	701-1000m	1001-3000m	>3000m	Demersal	Bathydemersal	Bentho-Pelagic	1-200m (epipelagic)	201-1000m (mesopelagic)	>1000m (bathypelagic)	cryopelagic			
Sommosus pacificus Pacific seleper shark M - - - - X	Lampetra tridentata	Pacific lamprey	A	X	Х	X	Х	Х	X	Х	Х	Х	_	_	_	<u> </u>	—	Х	_	_	_	1	_	_			
Sommosus particus Pacific sleeper shark M X <td></td> <td>Arctic lamprey</td> <td></td> <td>_</td> <td>_</td> <td>_</td> <td>_</td> <td>—</td> <td></td> <td>_</td> <td>_</td> <td>_</td> <td>-</td> <td>_</td> <td>_</td>		Arctic lamprey											_	_	_	_	—		_	_	_	-	_	_			
Squalus acanthias spin yoofgish M X						1					Х	Х	Х	Х	Х	Х	Х	-	Х	_	_	- 1	_	_			
Charge pallasii Peafic herring M X <th< td=""><td></td><td></td><td>М</td><td></td><td>_</td><td>- 1</td><td>_</td><td>Х</td><td></td><td>X</td><td></td><td>Х</td><td></td><td>Х</td><td>Х</td><td>Х</td><td>Х</td><td>_</td><td>Х</td><td>_</td><td>_</td><td>- 1</td><td>_</td><td>—</td></th<>			М		_	- 1	_	Х		X		Х		Х	Х	Х	Х	_	Х	_	_	- 1	_	—			
Mallotus villosus capelin M K X<				I —	l _	- 1	X									1		—	_	_	_	—	_	í —			
Osmerus mordax rainbow smelt A X - - X		· · · · ·			_	- 1							_	_	_	—	—	_	_	_	_	—	_	_			
Stenodus leucichthys Inconnu FW/A X <t< td=""><td></td><td></td><td>Α</td><td>X</td><td>_</td><td>_</td><td>Х</td><td>Х</td><td></td><td></td><td></td><td></td><td>_</td><td>_</td><td>_</td><td></td><td>—</td><td>_</td><td></td><td>_</td><td>_</td><td>_</td><td>_</td><td>_</td></t<>			Α	X	_	_	Х	Х					_	_	_		—	_		_	_	_	_	_			
Coregonus sardinella least cisco A X <	Stenodus leucichthys				Х	X						1	_	_	_	-	—	Х	_	_	_	-	_	_			
Coregonus auturnalis Arctic cisco A X X											_	_	_	_	_	_	_	_	_	_	_	_	_	_			
Corregionus laurettae Bering cisco A X <		Arctic cisco									_	_	_	_	_	_	_	_	_	_	_	_	_	-			
Coregonus nasus broad whitefish FW/A X						_					_	_	_	_	_	_	_	_	_	_	_	-	_	_			
Coregonus pidschian humpback whitefish A X - - X X - X		<u> </u>			Х	X					_	_	_	_	_	_	_	X	_	_	_	-	_	_			
Salvelinus alpinus Arctic char A/FW X <						_				_		_	_	_	_	_	_		_	_	_	-	_	_			
Salvelinus malma Dolly Varden A X					Х	X				X	-	_	_	_	_	_	_	_	Х	_	_	_	_	_			
Oncorhynchus gorbuscha pink salmon A X X											X	X	_	_	_	_	_	_		_	_	_	_	_			
Oncorhynchus kisutch coho salmon A X X <						_							Х	_	_	_	_	_		_	_	-	_	—			
Oncorfynchus tshawytscha Chinook salmon A X X <td></td> <td></td> <td></td> <td></td> <td>_</td> <td>- 1</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>_</td> <td>_</td> <td>_</td> <td>_</td> <td>_</td> <td></td> <td>_</td> <td>_</td> <td>-</td> <td>_</td> <td>—</td>					_	- 1								_	_	_	_	_		_	_	-	_	—			
Oncorrighnehus keta chum salmon A X X					_	-								_	_	_	_	_		_	_	_	_	_			
Oncorfynchus nerka sockeye salmon A X X	· · · · ·				_	1_								_	_			_		_	_	-		_			
Benthosema glaciale glacier lanternfish M X <thx< th=""> X<!--</td--><td></td><td></td><td></td><td></td><td>Х</td><td>x</td><td></td><td></td><td></td><td></td><td></td><td></td><td>X</td><td>_</td><td>_</td><td></td><td></td><td>_</td><td></td><td>_</td><td>_</td><td>_</td><td>_</td><td>_</td></thx<>					Х	x							X	_	_			_		_	_	_	_	_			
Boreogadus saida Arctic cod M X X <t< td=""><td></td><td></td><td></td><td>+</td><td></td><td>-</td><td></td><td></td><td></td><td>_</td><td></td><td></td><td></td><td>х</td><td>X</td><td>X</td><td>X</td><td>_</td><td></td><td>_</td><td>_</td><td>-</td><td>_</td><td>_</td></t<>				+		-				_				х	X	X	X	_		_	_	-	_	_			
Arctogadus glacialis polar cod M X		*		_	_	1_	x		-	X	x	X						_	Х	_	_	1_	_	(—			
Arctogadus borisovi toothed cod B/M X X X				_	_	1_		_	-								_	_		_	_	_	_	_			
Beginus gracilis saffron cod M X X <th< td=""><td></td><td></td><td></td><td>_</td><td>_</td><td>1_</td><td>_</td><td></td><td>-</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>_</td><td>_</td><td></td><td>_</td><td>_</td><td>_</td><td>_</td><td>_</td></th<>				_	_	1_	_		-								_	_		_	_	_	_	_			
Theragra chalcogramma walleye pollock M X <td></td> <td></td> <td></td> <td></td> <td></td> <td>1_</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>-</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>_</td>						1_										-								_			
Gadus ogac ogac M X X X X X X						1_			<u> </u>	_												_		_			
Gasterosteus aculeatus threespine stickleback A/FW X <t< td=""><td>· · · · ·</td><td>· · · ·</td><td></td><td></td><td></td><td>1_</td><td></td><td></td><td>X</td><td>X</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>_</td><td>- 1</td><td>_</td><td>_</td></t<>	· · · · ·	· · · ·				1_			X	X											_	- 1	_	_			
Pungitius pungitius ninespine stickleback A/FW X<					Х	X	x							X	Х					_	_	-	_	-			
Hexagrammos stelleri whitespotted greenling M X X X X X <																				X	_	1_	_	_			
Triglops pingelii ribbed sculpin M - - - X X X X X - - - X - - - X - - - - - - - - - X <			-		1	1_						X		_	_	1_	—				_	1_	_	_			
Hemilepidotus papilio butterfly sculpin M - - X X X X X - - - X - - - X - - - X -		· · · ·				1_															_			_			
Hemilepidotus jordani yellow Irish lord M - - - X X X X -						1_																		_			
						-																		_			
		,				1_																		_			
$\frac{1}{1} \frac{1}{1} \frac{1}$			1			+								_									<u> </u>				

Table III.B-2 Arctic Fish Occurrence in Coastal and Marine Waters of the Alaskan Chukchi and Beaufort Seas. (continued)

			Fresh	Nator		Bracki		Marine Oceanic		Behavioral Stratification													
			TIESIN		N	earsh	ore		Neriti	с 	<u> </u>	1		00		T		I	1				
Species	Common Name	Principle Environment	Fluvial	Lacustrine	Estuarine	Intertidal	0-2m (Infralittoral Fringe)	1-50m	51-100m	101-200m	201-300m	301-500m	501-700m	701-1000m	1001-3000m	>300m	Demersal	Bathydemersal	Bentho-Pelagic	1-200m (epipelagic)	201-1000m (mesopelagic)	>1000m (bathypelagic)	cryopelagic
Gymnocanthus tricuspis	Arctic staghorn sculpin	М	_	_	- 1	[- T	X	Х	X	Х	1	-	_	_	- 1	Х	[[_	_	_	T
Cottus aleuticus	coastrange sculpin	B/FW	X	Х	X	Х	Х	_	<u> </u>	_		1_	_	_	_	- 1	X	-	-		_	_	1_
Enophrys diceraus	antlered sculpin	M	_	_	_	_		X	X	_	<u> </u>	1_	_	_	_	_	X	-	-		_	_	1-1
Megalocottus platycephalus	belligerent sculpin	B	X	_	X	Х	Х	X	<u> </u>	_	<u> </u>	1_	_	_	_	- 1	X	—	—		_	_	1-1
Myoxocephalus quadricornis	fourhorn sculpin	B/M/FW	X	_	X	X	X	X	- 1	_	<u> </u>	1_	_	_	_	_	X	_	_		_	_	1_
Myoxocephalus scorpius	shorthorn sculpin	B/M	_	_	X	X	X	X	X	Х	_	- 1	_	_	_	_	X	_	_		_	_	1-1
Myoxocephalus scorpioides	Arctic sculpin	B/M	_	_	X	X	X	X	_	_	_	- 1	_	_	_	_	Х	_	_		_	_	-
Myoxocephalus jaok	plain sculpin	M	_	_	_	X	X	X	X	_	_	- 1	_	_	_	_	Х	_	_		_	_	-
Microcottus sellaris	brightbelly sculpin	B/M	_	_	_	_	_	X	X	_	_	- 1	_	_	_	-	X	_	_		_	_	T
Artediellus gomojunovi	spinyhook sculpin	M	_	_	_	_	_	X	X	X	Х	X	_	_	_	_	X	_	_	_	_	_	1_
Artediellus scaber	hamecon	B/M	_	_	_	_	_	X	Х	_	_	1_	_	_	_	-	Х	-	_	_	_	_	
Artediellus pacificus	hookhorn sculpin	M	_	_	_	—	- 1	X	Х	Х	Х	- 1	—	_	_	- 1	Х	—	—	_	_	_	-
Artediellus ochotensis	Okhotsk hookear sculpin	М	_	_	_	_	- 1	X	Х	—	_	1_	—	_	_	-	Х	—	—	_	_	—	
Blepsias bilobus	crested sculpin	М	_	_	_	_	_	X	Х	Х	_	- 1	_		_	_	Х	—	—	_	_	_	1-1
Nautichthys pribilovius	eyeshade sculpin	М	_	_	_	—	_	X	Х	Х	Х	Х	—		_	-	Х	—	—	_	_	_	1-1
Eurymen gyrinus	smoothcheek sculpin	М	_	_	_	—	_	X	Х	Х	Х	X	_		_	—	Х	—	—		_	_	1-1
Cottunculus sadko	Sadko sculpin	М	_	_	_	—	_	_	1	_	Х	X	Х	Х	_	—	Х	—	—		_	_	1-1
Hypsagonus quadricornis	fourhorn poacher	М	_	_	_	_	_	X	Х	Х	Х	X	_	_	_	_	Х	—	—	_	_	—	1-1
Pallasina barbata	tubenose poacher	М	_	_	_	Х	Х	Х	—	_	_	- 1	_		_	_	_	—	—	_	_	_	
Occella dodecaedron	Bering poacher	М	_	_	_	_	_	X	-	_	_	-	_	_	_	_	Х	_	_	_	_	_	-
Leptagonus decagonus	Atlantic poacher	М	_	_	_	_	_	X	Х	Х		-	_	_	_	_	Х	_	_	_	_	_	—
Podothecus veternus	veteran poacher	M		_	_	_	_	X	Х	Х	Х	-	—	_	_	-	Х	_	_	_	_	_	-
Ulcina olrikii	Arctic alligatorfish	B/M	_	_	_	_	_	Х	Х	_		-	—	_	_	-	Х	—	—	_	_	—	-
Aspidophoroides monopterygius	alligatorfish	М	_	_	_	—	_	Х	Х	Х		-	—	_	_	_	Х	—	—	_	_	_	-
Eumicrotremus derjugini	leatherfin lumpsucker	М	_	_	—	—	—	—	Х	Х	Х	-	—	_	_	-	Х	—	—	_	—	—	-
Eumicrotremus andriashevi	pimpled lumpsucker	М	_	_	—	—	—	X	Х	—	_	-	—		_	-	Х	—	—	_	—	—	—
Liparis gibbus	variegated snailfish	М	_	_	—	—	_	Х	Х	Х	Х	-	—		_	—	Х	—	—	_	_	—	-
Liparis tunicatus	kelp snailfish	М		_	- 1	—	—	X	Х	Х	-	-	—	_	_	-	Х	—	—	—	—	—	-
Liparis bristolensis	Bristol snailfish	М		—	—	—	—	X	Х	—		-	—	_	—	-	Х	—	—	—	_	—	-
Gymnelus viridis	fish doctor	М	_	_	-	Х	Х	X	Х	Х	Х	- 1	-	_	_	-	Х	-	-	_	_	_	-
Lycodes seminudus	longear eelpout	М	_	_	_	_	_	-	- 1	Х	Х	X	Х	_	_	-	Х	_	_	_	_	_	- 1
Lycodes mucosus	saddled eelpout	М	_	_	_	-	_	X	Х	_	_	- 1	_	_		-	Х	-	- 1	_	_	_	- 1
Lycodes turneri	estuarine eelpout	М	_	_	- 1	_	- 1	X	X	Х	_	1_	_	_	_	-	Х	_	- 1	_	_	_	1_
Lycodes polaris	polar eelpout	M	l _	_	_	_	_	X	X	X	l _	1_		_	_	-	Х	_	_	_	_		<u> </u> _

Table III.B-2 Arctic Fish Occurrence in Coastal and Marine Waters of the Alaskan Chukchi and Beaufort Seas. (continued)

					B	rackis	sh	Marine							Dah			atificati					
			Fresh	water	Ne	arsho	ore	Ne	Neritic Oceanic			ic		Den	aviora	ai Stra	auncau	on					
Species	Common Name	.Principle Environment	Fluvial	Lacustrine	Estuarine	Intertidal	0-2m (Infralittoral Fringe)	1-50m	51-100m	101-200m	201-300m	301-500m	501-700m	701-1000m	1001-3000m	>3000m	Demersal	Bathydemersal	Bentho-Pelagic	1-200m (epipelagic)	201-1000m (mesopelagic)	>1000m (bathypelagic)	cryopelagic
Lycodes raridens	marbled eelpout	М	_	_	_	_	_	Х	Х	Х	_	_	_	_	_	_	Х	_	-	_	_	1 –	—
Lycodes rossi	threespot eelpout	М	-	-	-	-	_	X	X	X	X	Х	-	-	-	-	Х	_	-	-	_	-	-
Lycodes sagittarius	archer eelpout	М	-	_	_	_	_	_	_	-	_	Х	Х	_	_	_	Х	_	-	_	-	-	-
Lycodes palearis	wattled eelpout	М	_	_	_	_	_	Х	Х	Х	_	_		_	_	_	Х	_	-	_	_	-	-
Lycodes pallidus	pale eelpout	М	_	_	_	_	_	Х	Х	Х	Х	Х	Х	Х	Х	_	X	Х	_	_	_	- 1	_
Lycodes squamiventer	scalebelly eelpout	М	_	_	_	_	_	_	_	_	_	Х	Х	Х	Х	_	Х	Х	_	_	_	- 1	-
Lycodes eudipleurostictus	doubleline eelpout	М	_	_	_	_	_	Х	Х	Х	Х	_	_	-	_	_	X	_	_	_	_	- 1	-
Lycodes concolor	ebony eelpout	М	_	_	_	_	_	Х	Х	Х	Х	Х	Х	Х	Х	_	Х	Х	-	_	_	- 1	-
Eumesogrammus praecisus	fourline snakeblenny	М	_	_	_	_	_	Х	Х	Х	Х	Х		_	_	_	X	_	-	_	_	- 1	-
Stichaeus punctatus	Arctic shanny	М	_	_	_	_	_	Х	Х	-	_	_	_	_	_	_	X	_	-	_	_	- 1	-
Chirolophis snyderi	bearded warbonnet	М	_	_	_	-	_	Х	X	-	_	_	_	_	_	_	X	_	-	_	_	- 1	-
Leptoclinus maculatus	daubed shanny	М	_	_	_	-	_	X	X	Х	Х	Х	_	_	_	_	X	_	_	_	_	- 1	-
Anisarchus medius	stout eelblenny	М	_	_	_	-	_	X	X	Х	_	_	_	_	_	_	X	_	_	_	_	- 1	-
Lumpenus fabricii	slender eelblenny	М	_	_	-	Х	Х	Х	X	_	_	_		_	_	_	_	_	Х	_	_	-	-
Pholis fasciata	banded gunnel	М	_	_	- 1	_	_	Х	_	_	_	_	_	_		_	Х	_	_	_	_	-	-
Anarhichas orientalis	Bering wolffish	М	_	_	_	_	_	Х	_	_	_	_	_	_	_	_	Х	_	_	_	_	- 1	-
Ammodytes hexapterus	Pacific sand lance	М	_	_	_	Х	Х	Х	Х	_	_	_	_	_	_	_	_	_	_	_	_	- 1	-
Hippoglossus stenolepis	Pacific halibut	М	_	_	_	_	_	Х	Х	Х	Х	Х	Х	Х	Х	_	Х	_	-	_	_	- 1	-
Hippoglossoides robustus	Bering flounder	М	_	_	_	_	_	X	Х	Х	Х	Х	_	_	_	_	X	_	_	_	_	- 1	-
Reinhardtius hippoglossoides	Greenland halibut	М	_	_	_		_	X	X	Х	Х	Х	Х	Х	Х	_	X	_	_	_	_	- 1	-
Platichthys stellatus	starry flounder	M/B	X	_	X	Х	Х	X	X	Х	Х	Х	_	_	_	_	X	_	_	_	_	- 1	-
Pleuronectes quadrituberculatus	Alaska plaice	М	-	-	_	_	_	X	X	Х	Х	Х	_	_	_	_	Х	_	_	_	_	-	-
Pleuronectes glacialis	Arctic flounder	B/M	Х	-	Х	_	Х	X	_	_	_	_	_	_	_	_	Х	_	_	_	_	-	_
Limanda proboscidea	longhead dab	М	Х	-	Х	_	Х	X	_	_	_	_	_	_	_	_	Х	_	_	_	_	-	_
Limanda aspera	yellowfin sole	М	Х	_	Х	_	Х	Х	X	Х	Х	Х	Х	_	_	-	Х	_	_	_	_	- 1	-
Limanda sakhalinensis	Sakhalin sole	М	Х	_	Х	_	Х	Х	Х	Х	_	Х	_	Х	_	_	Х	_	-	-	_	- 1	-

Sources:

Moulton and George, 2000; Mecklenburg, Mecklenburg, and Thorsteinson, et al., 2002; Froese and Pauly, 2003.

Note:

- = Absent	B = Brackish	M = Marine
A = Anadromous	FW = Freshwater	X = Present

 Table III.C-1

 Estimated Number of Jobs by Sector, North Slope Borough Residents Only

	1980	1988	1993	1998	2003
Federal Government	100	83	37	39	61
State Government	12	20	25	35	26
City Government	_	71	61	57	66
NSB Government	642	1,087	893	989	777
NSB School District	—	419	345	289	409
Private Construction	201	95	21	66	43
Regional/Village Corporation		311	304	407	383
Transportation	107	122	45	43	53
Oil Industry	30	46	21	16	23
Service	71	84	53	83	108
Other	176	168	138	368	242
Total	1,689	2,506	1,943	2,392	2,191

NSB = North Slope Borough

Notes:

1) 1980 data from Alaska Consultants, Inc., 1981.

2) 1988, 1993, 1998, and 2003 data are from North Slope Borough Economic Profile and Census Reports.

Table III-Economics-2Employment of Residents by Sector, North Slope Communities, 2003

	Anaktuvuk					Point	Point	
Sector	Pass	Atqasuk	Barrow	Kaktovik	Nuiqsut	Норе	Lay	Wainwright
Federal Government	1	0	45	1	0	10	2	2
State Government	2	0	22	0	1	0	1	0
City Government	12	1	21	3	5	14	2	8
NSB Government	51	20	464	27	29	44	24	48
NSB School District	30	20	194	21	27	62	29	44
NSB CIP	0	0	4	0	2	0	1	3
Oil Industry	3	0	14	1	3	2	0	0
Private Construction	4	0	23	5	3	1	4	4
ASRC	3	0	69	5	3	1	4	3
Village Corporation	19	27	87	18	37	60	9	38
Finance	0	0	5	0	0	0	1	0
Transportation	0	0	48	0	1	3	1	1
Communication	0	0	8	0	0	0	0	0
Trade	0	1	27	0	0	2	0	1
Service	4	0	103	0	0	0	1	0
Ilkisagvik College	0	0	58	0	0	2	1	1
Other	2	3	132	3	10	25	5	18
Total	131	72	1,324	84	121	226	85	171

Source:

2003 Economic Profile and Census Report, Volume IX, Department of Planning and Community Service North Slope Borough.

Table III.C-3 Employment Estimates (In thousands) (nonagricultural wage and salary employment)

	1995	1996	1997	1998	1999	2000	2005
Anchorage-Mat Su Region	131	132	135	141	144	148	157
Kenai Peninsula Borough	16	16	16	17	17	17	16
Fairbanks North Star Borough	31	31	32	33	33	34	36
Total for 3 Areas	178	178	183	191	194	199	209
Alaska Total	261	261	269	275	278	284	292

Source:

Alaska Department of Labor and Workforce Development, Research and Analysis Section.

Year	Barrow	Wainwright	Point Hope	Kivalina
1982	0	2	1	0
1983	2	2	1	0
1984	4	2	2	1
1985	5	2	1	0
1986	8	3	2	0
1987	7	4	5	1
1988	11	4	5	0
1989	10	2	0	0
1990	11	5	3	0
1991	12	4	6	1
1992	22	0	2	1
1993	23	5	2	0
1994	16	4	5	2
1995	19	5	1	1
1996	24	3	3	0
1997	30	3	4	0
1998	25	3	3	0
1999	24	5	2	0
2000	18	5	3	0
2001	27	6	4	0
2002	22	1	0	0
2003	16	5	4	0
2004	21	4	3	0
2005	29	3	7	0

 Table III.C-4

 Annual Bowhead Whale Subsistence Harvest for Chukchi Sea Villages, 1982-2005

S.R. Braund and Assocs. 1984; Stoker and Krupnik, 1993; AEWC, 1993, 1994, 1995; Philo et al., 1994; Suydam et al., 1995; S.R. Braund and Assocs. 2002; S.R. Braund and Assocs. and North Slope Borough Department of Wildlife Management, 2006.

		Number of Whales							
Year	Barrow	Wainwright	Point Lay	Point Hope	Kivalina				
1980	0	0	15-18	23-35	3-5				
1981	5	0	29-38	4-7	10-15				
1982	3-5	0	28-33	17	4-5				
1983	3	0	18	20-31	24				
1984	0	0	0	30	27				
1985	0	0	18	30	120-200				
1986	0	5	33	30	7				
1987	0	47	22-35	40	4				
1988	0	3	40	59	6				
1989	1	0	16	17	0				
1990	0	0	62	16	1				
1991	1	5	35	39	1				
1992	0	20	24	15	10				
1993	2	0	77	79	3				
1994	5	0	56	53	3				
1995	0	0	31	40	3				
1996	2	0	41	15	7				
1997	8	4	3	32	1				
1998	1	38	48	52	0				
1999	1	3	47	33	1				
2000	1	0	0	16	44				
2001	1	23	34	24	0				
2002	1	37	47	23	3				
2003	2	38	36	34	0				
2004	1	0	53	29	1				
2005	7	1	41	?	2				

 Table III.C-5

 Annual Beluga Whale Harvest for Barrow, Wainwright, Point Lay, Point Hope, and Kivalina, 1980-2005

Alaska Beluga Whale Committee [ABWC], 2002, 2006, Fuller and George, 1997; Lowry et al., 1989; Burns and Frost, 1989; Impact Assessment, 1989; Burns and Seaman, 1986; Braund and Burnham, 1984.

Harvest		Number of Walrus							
Season	Barrow	Wainwright	Point Lay	Point Hope	Kivalina				
1985									
1986									
1987	54		6						
1988	1-62	0-59	0						
1989	14	43	0	2	46				
1990	7	0	0	5	0				
1991	23	32	0	0	0				
1992	26	48	0	5	1				
1993	27	44	1	5	12				
1994	16	68	1	6	16				
1995	12	83	4	0	38				
1996	13	24	4	0	13				
1997	48	50	7	3	2				
1998	24	69	8	5	0				
1999	17	48	6	5	0				
2000	19	36	6	6	0				
2001	37	94	3	2	0				
2002	39	119	11	16	0				
2003	51	29	9	12	0				
2004	52	47	5	20	0				
2005	5	21	5	0	4				

 Table III.C-6

 Annual Walrus Harvest for Barrow, Wainwright, Point Lay, Point Hope, and Kivalina, 1985-2005

USDOI, FWS, 1997, 2002; FWS, MTRP Tagging Database, 1989-2005; Braund, 1993; Braund and Burnham, 1984; CPDB, 1996; Fuller and George, 1997.

	Number of Bears						
Harvest Season*	Barrow	Wainwright	Point Lay	Point Hope	Kivalina		
1983/84	27	34	8	30	3		
1984/85	33	18	0	18	3		
1985/86	14	8	6	17	2		
1986/87	18	13	4	13	1		
1987/88	15	9	2	9	5		
1988/89	29	14	2	9	1		
1989/90	14	9	1	23	5		
1990/91	14	6	3	18	3		
1991/92	22	3	0	9	2		
1992/93	26	8	3	17	1		
1993/94	30	10	1	8	1		
1994/95	11	7	1	20	2		
1995/96	18	14	1	7	0		
1996/97	40	9	6	14	0		
1997/98	18	6	3	12	0		
1998/99	16	2	0	18	3		
1999/00	17	5	4	10	0		
2000/01	28	10	1	15	1		
2001/02	25	2	1	9	0		
2002/03	20	5	1	12	1		
2003/04	10	13	3	10	0		
2004/05	2	5	4	9	2		
2005/06***	?	?	?	?	?		

Table III.C-7 Annual Polar Bear Harvest for Barrow, Wainwright, Point Lay, Point Hope, and Kivalina, 1983-2005

Schliebe, Amstrup, and Garner, 1995; Schliebe, 2006.

Notes:

* Harvest runs from 1 July to 30 June.
** Atqasuk harvested 2 bears during the 1988/89 season.

*** Harvest season incomplete.

Table III.C-8 Breakdown of Total Harvest by Subsistence-Harvest Category for Point Hope, Alaska, 1992. The 1993 Population of Point Hope was 699; The Total Number of Households was 156.

Subsistence Harvest Category	Total Weight	Pounds Per Household	Pounds Per Capita
Birds	9,429	60	13
Fish	30,589	196	44
Invertebrates	88	1	0
Marine Mammals	262,009	1,680	375
Plants	2,720	17	4
Terrestrial Mammals	35,548	228	51
Total	340,383	2,182	487

Source:

Fuller and George, 1997.

Top Five Species Harvested	Edible Pounds Harvested	Number Harvested	Pounds Per Household	Pounds Per Capita	Percent of Total Harvest
Beluga	137,172	98	879	196	40.3%
Walrus	55,797	72	358	80	16.4%
Bearded Seal	28,242	160	181	40	8.3%
Caribou	26,303	225	169	38	7.7%
Bowhead	23,365	3	150	33	6.9%

Table III.C-9 Top Five Species Harvested at Point Hope, Alaska during Calendar Year, 1992

Fuller and George, 1997.

Table	III.C	:-10

Participation in Subsistence Harvest Activities, Point Hope Alaska, 1992, of 156 Households, 142 Households Participated in This Survey

				Not	%	%	%	%
Activity	Often	Sometimes	Sometimes	at All	Often	Sometimes	Vacation	Not at All
Fall Whaling	4	5	0	133	3%	4%	0%	94%
Fish	86	29	1	26	61%	20%	1%	18%
Helped Whaling Crew	92	27	2	21	55%	19%	1%	15%
Hunt Caribou	71	27	1	43	50%	19%	1%	30%
Hunt Moose, Bear, or Sheep	35	27	2	78	25%	19%	1%	55%
Hunt Seal	78	29	0	35	55%	20%	0%	25%
Hunt Walrus	70	33	0	39	49%	23%	0%	27%
Hunt Waterfowl and Eggs	81	27	1	33	57%	19%	1%	23%
Make Sleds or Boats	53	26	0	63	37%	18%	0%	44%
Pick Berries	81	39	1	21	57%	27%	1%	15%
Sew Skins, Make Parkas	49	35	0	58	35%	25%	0%	41%
Spring Whaling	98	16	4	24	69%	11%	3%	17%
Trap	14	22	0	106	10%	15%	0%	75%

Source: Fuller and George, 1997.

	1998		20	003
Amount	Number	Percent	Number	Percent
None	4	2.9%	10	7.0%
Very Little	11	8.2%	16	11.3%
Less Than Half	23	17.2%	23	16.2%
Half	34	25.4%	28	19.7%
More Than Half	34	25.4%	30	21.1%
Nearly All	19	14.2%	15	10.6%
All	9	6.7%	20	14.1%
Total	134	100%	142	100%

Table III.C-11 Point Hope, Amount of Food Consumed Harvested from Local Sources^{*}

Note:

^{*} Results include only those households responding to the census survey and the query about the amount of subsistence harvested by the household.

Source:

Fuller and George, 1997.

Table III.C-12 Point Hope Money Spent on Subsistence Activities, 2003

Amount	Number	Percent
\$0 to \$100	27	22.5%
\$200 to \$400	9	7.5%
\$500 to \$700	10	8.3%
\$800 to \$1,200	11	9.2%
\$1,200 to \$3,000	22	18.3%
\$3,100 to \$9,500	22	18.3%
\$9,600 to\$20,000	18	15.1%
\$21,000\$	1	0.8%
Total	120	100%

Note:

Results include only those households responding to the census and the questions about money spent on subsistence. **Source:**

Fuller and George, 1997.

Kivalina Marine Mammal Subsistence Harvests for 1964-1965, 1965-1966, 1982-1983, 1983-1984, and 1991-1992

Resource	Number Taken						
	1964-1965	1965-1966	1982-1983	1983-1984	1991-1992		
Bearded seal	153	119	134	60	139		
Spotted seal	4	1	1	1	30		
Ringed seal	908	467	172	109	110		
Ribbon seal	NR	NR	1	NR	8		
Walrus	0	3	51	4	28		
Beluga	6	12	27	28	10		
Bowhead whale ^a	0	0	0	1	1		
Gray whale	0	0	0	part of carcass	0		
Polar bear	NR	1	NR	2	8		

Notes:

^a Two additional bowhead whales were taken in 1994.

NR None reported.

Table III.C-13b
Kivalina Land Mammal Subsistence Harvests for 1964-1965, 1965-1966, 1982-1983, 1983-1984, and 1991-1992

Resource	Number Taken					
Resource	1964-1965	1965-1966	1982-1983	1983-1984	1991-1992	
Caribou	256	1,010	346	564	351	
Moose	NR	4	6	6	17	
Grizzly	1	2	NR	2	3	
Fox	6	19	47	58	21	
Sheep	NR	NR	2	NR	U	
Wolf	1	1	NR	1	9	
Wolverine	17	21	12	10	23	
Lynx	NR	6	1	NR	0	
Porcupine	1	1	1	NR	0	
Mink	NR	1	NR	NR	2	
Otter	NR	NR	1	NR	2	
Hare	NR	NR	NR	NR	0	
Squirrel	NR	NR	3	53	10	

Notes:

NR None reported.

Table III.C-13c

Kivalina Fish Subsistence Harvests for 1964-1965, 1965-1966, 1982-1983, 1983-1984, and 1991-1992

Resource	Pounds Taken									
	1964-1965	1965-1966	1982-1983	1983-1984	1991-1992					
Char	93,995	28,140	69,059	68,467	69,792					
Cod	NR	6,955	9	4,299	6,095					
Burbot	NR	2	2	2	516					
Grayling	NR	40	290	968	644					
Salmon	1,425	116	464	2,107	5,081					
Whitefish	2,500	13	100	1,608	4,662					
Sculpin	ND	ND	9	9	ND					
Smelt	ND	ND	ND	20	22					

Notes:

ND No data collected.

NR None reported.

Table III.C-13d Kivalina Bird Subsistence Harvests for 1964-1965, 1965-1966, 1982-1983, 1983-1984, and 1991-1992

Resource	1964-1965 Number Taken	1965-1966 Number Taken	1982-1983 Number Taken	1983-1984 Number Taken	1991-1992 Number Taken	
Geese	ND	ND	215	387	944	
Ducks	ND	ND	134	210	609	
Ptarmigan	ND	16	46	242	637	
Cranes	ND	ND	4	4	12	
Snowy Owls	ND	ND	15	26	29	
Swans	ND	ND	1	NR	0	
Murres	ND	10	ND	18	ND	

Notes:

ND No data collected.

NR None reported.

Table III.C-13e

Kivalina Plant Subsistence Harvests for 1964-1965, 1984, 1965-1966. 1982-1983, 1983-1984, and 1991-1992

Resource	1964-1965 Ibs taken	1965-1966 Ibs taken	1982-1983 Ibs taken	1983-1984 Ibs taken	1991-1992 Ibs taken	
Blackberries	550	181	457	591	See mixed	
Sourdock	260	213	85	NR	See mixed	
Eskimo Potato	ND	ND	40	NR	See mixed	
Salmonberries	ND	ND	1,721	14	See mixed	
Blueberries	ND	ND	461	488	See mixed	
Mixed	370 (salmonberries, blackberries, sourdock)	283 (berries)	ND	ND	4,615 (recorded as berries, not as type)	

Notes:

ND No data collected.

NR None reported.

Sources of data for Tables III.C-14a-14e:

Burch, 1985. Also, Alaska Department of Fish and Game Community Profile Database.

Table III.C-14Importance of Subsistence Foods to Households in NANA Region (Indicated by:"How Much of Your Own Food Did Your Family Catch, Hunt. Or Fish for This Year?"

Response	Kivalina	Noatak	Kotzebue
"All of our food"	5.6%	—	5.6%
"Most of our food"	L6.7%	57.1%	14.9%
Half of our food"	38.9%	28.6%	16.1%
"Some of our food"	38.9%	14.3%	49.1%
"None of our food"	—	—	14.3%
Total	100.0%	100.0%	100.0%

Source:

NANA Regional Strategy, Community Survey, 1978, as reported in Red Dog Mine Project EIS, February, 1984.

Draft EIS Navigation Improvements Delong Mountain Terminal, Alaska.

	State of	Alaska	Barr	ow	Atqas	suk	Wainw	right	Point I	ay	Point	Норе
	Population	Percent										
Total	626,932		4,581		228		546		247		757	
Hispanic or										-		
Latino	25,852	4.1	153	3.3	0	0.0	0	0.0	6	2.4	13	1.7
Not Hispanic or					-				1			
Latino	601,080	95.9	4,428	96.7	228	100	546	100	241	97.5	744	98.2
Population of					1				1			
one race	570,626	91.0	4,063	88.7	227	99.6	531	97.2	233	94.3	728	96.1
White			1	1	1	1	1	1	I	I	Γ	1
Winte	423,788	67.6	972	21.2	11	4.8	37	6.7	28	11.3	66	8.7
Black or African-			1	1	1		1		1	1	Γ	1
American	21,073	3.4	44	1.0	0	0.0	1	0.2	0	0.0	1	0.1
American Indian				1	1		1		1	1	[
or Alaska Native	96,505	15.4	2,558	55.8	215	94.3	493	90.2	204	82.5	659	87.0
Asian			1									
	24,741	3.9	429	9.4	1	0.4	0	0.0	1	0.4	1	0.1
Native Hawaiian and Pacific			1	1	1		1			1		
Islander	3,181	0.5	59	1.3	0	0.0	0	0.0	0	0.0	0	0.0
Some other race									·			
	1,388	0.2	1	0.0	0	0.0	0	0.0	0	0.0	1	0.1
Two or more			1	1	1		1		I	I		1
races	30,454	4.9	365	8.0	1	0.4	15	2.7	14	5.6	29	3.8

Table III.C-15 Ethnic Composition of Barrow, Atqasuk, Wainwright, Point Lay, and Point Hope—Percent by Race

Source: Census Table SF-1, http://146.63.75.45/census2000/Census Iv2.asp

Table IV.A-1
Exploration and Development Scenario, Chukchi Sea OCS

Scenario Element	Range	Comments
Oil production (billion barrels)	1	First development project only
Natural gas production	0	Delayed for North Slope gas line; reinjected
Exploration wells	3-6	2-5 wells are dry holes or subcommercial shows
Delineation wells	4-8	Confirm and define the commercial discovery
		Central platform with processing facility; supports 4-20
Production platforms	1	subsea satellite templates
Production wells	80-120	Total includes 20-80 subsea production wells
Service wells	20-40	All service wells are on platform
In-field flowlines (miles)	10-50	Gathering system from subsea wells
Offshore sales pipeline (miles)	30-150	Possible distance to landfall
Onshore sales pipeline (miles)	Up to 300	Connecting to existing/future North Slope pipelines
Peak production (thousand barrels per day)	200-250	Oil production only; associated gas is reinjected
New landfall	1	Point Belcher near Wainwright
New support shore base	1	Point Belcher near Wainwright
New processing facility	1	Collocated with shore base
New waste facility	1	Collocated with shore base
		475 tons/well with 80% recycled for all exploration and
Drilling-fluid discharge by exploration wells (tons)	665-1330	delineation wells (95 tons discharged for 7-14 wells)
Rock-cutting discharge by exploration wells (tons)	4200-8400	600 tons/well (7-14 wells total)
		80% of drilling fluids are recycled; remaining waste fluids
		and rock cuttings for on-platform wells will be disposed of
		in service wells. Drilling wastes from subsea wells will be
Discharges during development drilling	0	barged to an onshore disposal facility.
Years of activity	30-40	Period from lease sale to end of oil production

Source: USDOI, MMS

Year	Seismic Surveys	Exploration Wells	Delineation Wells	Exploration Drilling Rigs	Production Platforms	On-Platform Wells	Subsea Wells	Service Wells	Production Drilling Rigs	In-Field Flowlines (miles)	Offshore Pipelines (miles)	New Shorebases	Annual Oil Production (MMbbl)	Daily Oil Production (bopd)
2005														
2006														
2007														
2008														
2009		1		1										
2010		1		1										
2011			2	2 1										
2012			2											
2013			2											
2014		1		1										
2015		1		1								1		
2016														
2017											30			
2018 2019									0	-	30 30			
2019						1 6	8		2 3 3	5	30	1	54.0	147,945
2020						1 18	8			5			54.0 70.0	147,945
2021						18	8		5 4 5 4	5			82.0	224,658
2022						18	8		5 4	5			82.0	224,658
2023						10	8		6 3	5			82.0	224,658
2025						10	0		4 0	0			82.0	224,658
2023						10			+				72.2	197,699
2020													63.5	173,975
2028													55.9	153,098
2029													49.2	134,726
2030													43.3	118,559
2031													38.1	104,332
2032													33.5	91,812
2033													29.5	80,795
2034													26.0	71,099
2035													22.8	62,567
2036													20.1	55,059
2037													17.7	48,452
2038													15.6	42,638
2039													13.7	37,521
2040													12.1	33,019
2041													10.6	29,057
2042													9.3	25,570
2043													8.2	22,501
2044													7.2	19,801
2045														
2046														
2047													1000	
	25	4	6			1 80	48	2		30	90	1	1000	
notes:	(1 mo/yr)			(4 mo/yr)		(30 inj wells)			(rig/years)					

.

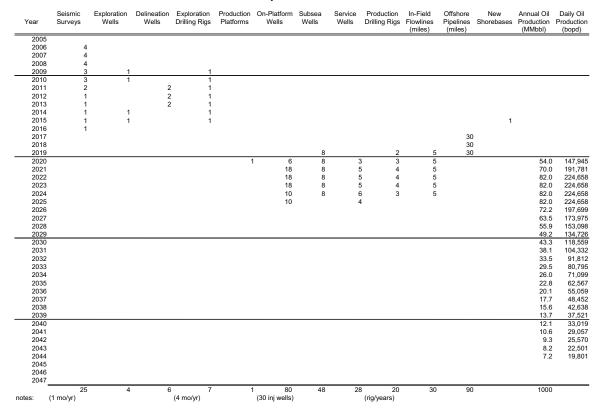
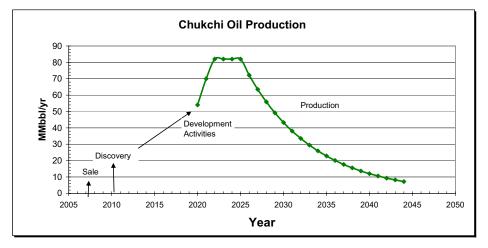



Table IV.A-2a. Possible Timetable for Development

Table IV.A-2b. Possible Timetable for Production.

Chukchi Sea, Sale 193 Alternatives	Opportunity Index (Commercial Chance)			
Alternative 1 (Full Program Area Proposal)	1.0			
Alternative 2 (No Lease Sale)	0.0			
Alternative 3 (Corridor I Deferral)	0.64			
Alternative 4 (Corridor II Deferral)	0.85			

 Table IV.A-3

 Commercial Development Potential for Sale 193 Alternatives

Table IV.A-4

Large and Small Spill Sizes, Source of Spill, Type of Oil, Number and Size of Spill and Receiving Environment We Assume for Analysis in this EIS by Section

EIS Section	Source of Spill	Type of Oil	Number and Size of Spill(s)	Receiving Environment	
Large Spil	ls (≥1,000 barrels)				
IV.C	Offshore Pipeline Platform/Storage Tank	Crude Or Diesel	1 spill 4,600 Or 1,500 barrels	Open Water Under Ice On Top of Sea Ice Broken Ice Coastal Shoreline	
Small Spil	ls ¹ (< 1,000 barrels)				
IV.C	Offshore and/or Onshore Dies Operational Spills or from All Sources Crud		133spills <1 barrel	Open Water On Top of Sea Ice Broken Sea Ice Snow/Ice	
	Onshore and/or Offshore			Tundra Coastal Shoreline	
	Operational Spills from All Sources	Refined	440 spills of 0.7 barrels each		

Table IV.A-5

Small Crude Oil Spills: Assumed Spills over the Production Life of Chukchi Sea Sale 193

	Assumed Small Crude-Oil Spills <500 barrels									
Sale 193 Alternative	Resources Spill Rate (Bbbl) ¹ (Spills/Bbb		Assumed Spill Size (bbl)	Estimated Number of Spills	Estimated Total Spill Volume (bbl)					
I Proposed Action	1	178	3	178	534					
II No Lease Sale	0	178	3	0	0					
III Corridor I	0.640	178	3	114	342					
IV Corridor II	0.845	178	3	152	453					
Alternative		Assumed Small	Crude-Oil Spills ≥	500 and ≤1,000 bar	rels					
I Proposed Action	1	0.64	680	0.64	680					
II No Sale	0	0.64	680	0	0					
III Corridor I	0.640	0.64	680	0.41	680					
IV Corridor II	0.845	0.64	680	0.54	680					

Note: ¹The estimation of oil spills is based on the estimated resources. If these resources are not produced then no oil spills occur.

Source:

USDOI, MMS, Alaska OCS Region (2006).

Table IV.A-6 Small Refined Oil Spills: Assumed Spills over the Production Life of Chukchi Sea Sale 193

Sale193 and its Alternatives	d its Resource		Average Spill Size (bbl)	Estimated Number of Spills ¹	Estimated Total Spill Volume (bbl) ¹	
I Proposed Action	1	440	0.7 (29 gal)	440	308	
II No Sale	0	440	0.7 (29 gal)	0	0	
III Corridor I	0.6402	440	0.7 (29 gal)	282	197	
IV Corridor II	0.8457	440	0.7 (29 gal)	373	250	

Note: ¹ The fractional estimated mean spill number and volume is rounded to the nearest whole number.

Key:

Bbbl = Billion barrels. bbl = barrel.

gal = gallon.

Source:

USDOI, MMS, Alaska OCS Region (2006)

Table IV.C-1Sale 193 Employment and Personal Income Effects

	E	Employment Annual Average Jobs		Total Personal Income Annual Average in Millions of Constant 2006 \$			
Area of Residence// Phase of OCS Activity	Indirect and Direct Induced		Total	For Direct Workers	For Indirect and Induced Workers	Total	
North Slope Borough (a)							
Exploration	2	1	3	2	1	3	
Development	22	8	30	14	5	19	
Production	8	3	11	6	2	8	
South Central Alaska and	d Fairbanks	(b)					
Exploration	215	108	323	94	19	113	
Development	1,054	527	1,581	108	22	130	
Production	502	251	753	43	9	52	

Sources:

Jack Faucett Associates, Inc. (2000); USDOI, MMS (2006).

Table IV.C-2 Sociocultural Effects from Routine Activities

Phase of Project									
Characteristic	Seismic	Exploration	Development and Production	Decommissioning					
Onaracteristic	Survey Social O	Exploration rganization	and Production	Decommissioning					
Households, families, and also wider ne responsible for acquiring, distributing, a	etworks of kinship a	nd friends, which		ed in groups that are					
Employment/Income Characteristics	Measurable but little effect. See Section IV.C.10, Economy. Indirect and negligible effect to extent that project revenues accrue to Alaska Permanent Fund (APF) which is an important source of income to households in North Slope Borough (NSB) communities or are allocated to the Capital Improvement Program (CIP), which has been an important source of employment in NSB communities. See Section V.C-13, Cumulative Effects for further discussion.								
Demographics Change in population size, density, and rate of change Ethnic and racial composition Residential Stability	anticipated for the population and fev Could be measure	se locations. New w newcomers are able in Wainwrigh idential stability if	gligible effect in Barr expected from proje t because of proximi employment reverse	ct-related employment. ty to supply base, with					
Workforce Changes				observers on seismic-					
Influx and outflow of temporary workers Changes to age structure of community due to outmigration of adults to project-related employment Outmigration of higher trained or skilled labor force Removal of adults and especially harvesters from community for employment in remote project areas Removal of trained individuals from community to work in project-related employment	Some employment opportunities for Alaskan Native as observers on seismic- survey vessels and during other activities. Temporary workers should see a negligible effect in Point Lay and Point Hope , as no project-related activity is anticipated for these locations. Negligible effect in Barrow, as it has a large population and few newcomers are expected from project-related employment. Could be measurable in Wainwright because of proximity to supply base and use of airport as transfer point. Use of construction enclaves should minimize the movement of temporary workers through the communities. Communities have experienced influx of and outmigration of temporary and resident workers as a result construction. Workforce changes could be measurable in Wainwright because of proximity to supply base to the extent that residents seek and secure employment. Petroleum employment generally has not translated to employment for Native residents. Programs and policies are in place to provide the opportunities.								
Employment/Income Characteristics	negligible effect to important source of to NSB CIP, which communities.	extent that proje of income to hous n has been an imp	portant source of em	o APF, which is an nunities or are allocated ployment in NSB					
Social Well Being	•		n of subsistence res ading to greater risk						
Risk, safety and health	pattern of onshore subsistence areas	e distribution, lead and decline in th	ling to displacement e availability of wild	from traditional foods; and induce					
Displacement/relocation concerns	Effects would be r	nost pronounced	in the Wainwright ar	oil spill and discharges. ea because of the					
The ability of future Alaskan Native to care for themselves in either	presence of onsho	ne innastructure.							
traditional way or cash economy	harvest, with effect	ts realized beyon	d the immediately af						
Community leadership, family, and/or kinship networks destabilized		ot successful in th	orks and task group le bowhead whale ha						

Table IV.C-2 Sociocultural Effects from Routine Activities (continued)

(continued)	Cultural Value	100			
sharing. Subsistence is a central activi	es, emphasis on kinship, ma	es naintenance of the community, cooperation, and ues, with bowhead whale hunting the paramount			
subsistence activity.					
Subsistence Values		related to effects on subsistence harvest. See Section al for change is in Wainwright area.			
Loss or damage to property or equipment used in wildlife harvesting	Conflict avoidance agreement should eliminate the potential loss or damage to property. Indirect effects could be realized, if disturbance or displacement of subsistence resources requires traveling farther distances or greater times.				
Present or future loss of income and/or income-in-kind from wildlife harvesting	Indirect effects proportional to effects of project-related activities on subsistence-distribution network. For example, disruption of sharing networks from disturbance would reflect a loss of income-in-kind from wildlife harvesting.				
Known Cultural, Historical, and Archaeological ResourcesNone. Operations do not disturb sites.Potential effects to sites from disturbance are mitigated.					
Cultural Continuity No adverse impacts to language, spiritual teachings, or knowledge transfer are anticipated.					
Language, spiritual teachings, knowledge transfer	Conflicts with values of newcomers should negligible at Point Lay and Point Hope, as no project-related activity is anticipated for these locations and in Barrow as it has a diverse population and few newcomers are expected from				
Conflicts with newcomers with different values	proximity to supply base.	ent. Could be measurable in Wainwright because of Wainwright's previous experience with newcomers as stry Orientation Program should moderate the effects.			
Structure of Borough, City, and Tribal g not-for-profit corporations, and nongove		nization Alaskan Regional and various village for-profit and			
Governmental Functions	None. Short-term activity on shore industrial activity				
Size, structure, and functions of local government	service demands.	Significant change near Wainwright from presence of nearby supply base—new			
Land use, planning, zoning and permitting		industrial infrastructure for the area.			
Community infrastructure and services		Considerable planning and zoning actions for Wainwright/Peard Bay area from placement onshore of industrial facilities such as the new supply base and onshore pipeline, similar to other projects that are routinely considered by NSB departments.			
		For other services, effect is negligible as the onshore industrial activity is not expected to generate service demands. Stress caused by project could marginally increase demand for public mental health services.			

Table IV.C-2 Sociocultural Effects from Routine Activities (continued)

(continued)	
Non-Governmental Organizations Organizational capability and characteristics	Considerable effort expended by existing organizations, such as Alaska Eskimo Whaling Commission effort in conflict avoidance negotiations. Once project construction completed, the agreement and monitoring will become routine as in the Northstar annual-open-water meeting.
Distribution of power and authority Interorganizational cooperation	Opportunities for participation structured under NEPA and other statutes should not change. Capacity and characteristics of other organizations could be affected to the extent that the activity represents a new activity for them to consider and they must develop the expertise and financial resources to participate which could cause organizational stress. High level of interorganizational cooperation and integration currently exists at the regional level, although this may need to accommodate organizations for which the activity represents a new activity. Cooperative management policies implemented by the Department of the Interior should moderate these effects.

Source:

Characteristics derived from "Principles and guidelines for social impact assessment in the USA" in Impact Assessment and Project Appraisal, v. 21, no. 3, pp 231-250, (September 2003); Determining Significance of Environmental Effects: An Aboriginal Perspective. Canadian Environmental Assessment Agency's Research and Development Program, Research and Development Monograph Series, 2000 (<u>http://www.ceaa-acee.gc.ca</u>) and Socioeconomic and Resource Use Considerations in The Norton Basin Environment and Possible Consequences of Planned Offshore Oil Development. 1984. Outer Continental Shelf Environmental Assessment Program.

Table V-1	
Alaska North Slope Oil and Gas Discoveries as of March 2006	

	Name	Location of Field or Pool		Location of Production Facility	Discovery	Production Began	Category	Ranking Criteria
Past	Development And Produ			racinty	Discovery	Degun	oategory	Ranking Onteria
1	South Barrow	Onshore	Gas	Onshore	1949	1950	Field	
2	Prudhoe Bay	Onshore	Oil	Onshore	1943	1930	Field	
3	Lisburne	Onshore	Oil	Onshore	1967	1977	Field	
4	Kuparuk	Onshore	Oil	Onshore	1967	1981	Field	
4 5								
-	East Barrow	Onshore	Gas	Onshore	1974	1981	Field	
6	Milne Point	Onshore	Oil	Onshore	1969	1985	Field	
7	Endicott	Offshore	Oil	Offshore	1978	1986	Field	—
8	Sag Delta	Offshore	Oil	Onshore	1976	1989	Field	—
9	Sag Delta North	Offshore	Oil	Offshore	1982	1989	Satellite ¹	
10	Schrader Bluff	Onshore	Oil	Onshore	1969	1991	Satellite ²	When
11	Walakpa	Onshore	Gas	Onshore	1980	1992	Field	Production
	Point McIntyre	Offshore	Oil	Onshore	1988	1993	Field	Began
13	North Prudhoe Bay	Onshore	Oil	Onshore	1970	1993	Field	—
14	Niakuk	Offshore	Oil	Onshore	1985	1994	Field	—
15	Sag River	Onshore	Oil	Onshore	1969	1994	Satellite ³	—
16	West Beach	Onshore	Oil	Onshore	1976	1994	Field	—
17	Cascade	Onshore	Oil	Onshore	1993	1996	Field	
18	West Sak	Onshore	Oil	Onshore	1969	1997	Satellite ²	_
19	Badami	Offshore	Oil	Onshore	1990	1998	Field	_
20	Eider	Offshore	Oil	Offshore	1998	1998	Satellite ¹	_
21	Tarn	Onshore	Oil	Onshore	1991	1998	Field	_
22	Tabasco	Onshore	Oil	Onshore	1992	1998	Satellite ²	_
	Midnight Sun	Onshore	Oil	Onshore	1998	1999	Satellite ⁴	_
24	Alpine	Onshore	Oil	Onshore	1994	2000	Field	_
25	Northstar	Offshore	Oil	Offshore	1984	2001	Field	
26	Aurora	Onshore	Oil	Onshore	1999	2001	Satellite ⁴	
	NW Eileen/Borealis	Onshore	Oil	Onshore	1999	2001	Field	
			Oil			2001	Satellite	
28	Polaris	Onshore		Onshore	1999			
	Meltwater	Onshore	Oil	Onshore	2000	2001	Pool	
30	Palm	Onshore	Oil	Onshore	2001	2002	Pool	—
31	Orion	Onshore	Oil	Onshore	2000	2003	Satellite	
32	Raven	Onshore	Oil	Onshore	?	2006	Pool	
	ent Development	-	-			-		
	Fiord (CD 3)	Onshore	Oil	Onshore	1992	(2006)	Pool	Production
34	Nanuq (CD 4)	Onshore	Oil	Onshore	1996	(2006)	Pool	When
35	Oooguruk	Offshore	Oil	Offshore	2003	(2008)	Pool	Is Expected
Reas	sonably Foreseeable Futu	ire Developm	ent					
36	Nikaitchug	Offshore	Oil	Offshore	2004	_	Pool	
37	Alpine West (CD 5)	Onshore	Oil	Onshore	1998	—	Pool	
	Lookout (CD 6)	Onshore	Oil	Onshore	2001	_	Pool	Ranked in order of
39	Tuvaaq	Offshore	Oil	Offshore	2005	_	Prospect	the chance and
40	Liberty	Offshore	Oil	Offshore	1983	_	Pool	timing of
41	Spark (CD 7)	Onshore	Gas & Oil	Onshore	2000		Pool	future development
42	Carbon	Onshore	Oil & Gas	Onshore	2000		Prospect	
	Moose's Tooth	Onshore	Gas & Oil	Onshore	2004		Prospect	(highest = first)
43 44	Rendezvous	Onshore	Gas & Oil Gas & Oil	Onshore	2001		Pool	(ingliest - ilist)
	Kalubik	Offshore	Oil	Onshore	1992		Prospect	
	Thetis Island		Oil	Offshore	1992			
46		Offshore				—	Prospect	
47	Sikulik	Onshore	Gas	Onshore	1988	—	Pool	
48	Gwydyr Bay	Offshore	Oil	Onshore	1969	<u> </u>	Pool	
49	Pete's Wicked	Onshore	Oil	Onshore	1997	—	Prospect	
50	Point Thomson	Onshore	Gas & Oil	Onshore	1977	—	Pool	
51	Sandpiper	Offshore	Gas & Oil	Offshore	1986	—	Pool	
52	Mikkelson	Onshore	Oil	Onshore	1978	_	Prospect	
	Kalstavils (Llammarhaad)	Offshore	Oil	Offshore	1985	—	Pool	
	(nanimemeau)				1994		Show	
53	Kaktovik (Hammerhead) Sourdough	Onshore	Oil	Onshore	1334			
53 54	Sourdough	Onshore Onshore	Oil Oil	Onshore Onshore	1994		Show	
53 54 55	Sourdough Yukon Gold	Onshore	Oil	Onshore	1994	—	Show	
53 54	Sourdough					 		

Table V-1 Alaska North Slope Oil and Gas Discoveries as of March 2006 (continued)

	Name	Location of Field or Pool	Production Oil, Gas	Location of Production Facility	Discovery	Production Began	Category	Ranking Criteria
Sp	eculative Future Develop	nent						
59	Hemi Springs	Onshore	Oil	Onshore	1984	—	Pool	—
60	Ugnu	Onshore	Oil	Onshore	1984	—	Pool	—
61	Umiat	Onshore	Oil	Onshore	1946	—	Pool	—
62	Fish Creek	Onshore	Oil	Onshore	1949	—	Show	—
63	Simpson	Onshore	Oil	Onshore	1950	—	Prospect	—
64	East Kurupa	Onshore	Gas	Onshore	1976	—	Show	Insufficient
65	Meade	Onshore	Gas	Onshore	1950	—	Prospect	Information to
66	Wolf Creek	Onshore	Gas	Onshore	1951	—	Show	Estimate Chance
67	Gubik	Onshore	Gas	Onshore	1951	—	Pool	of Development
68	Square Lake	Onshore	Gas	Onshore	1952	—	Show	_
69	East Umiat	Onshore	Gas	Onshore	1964	—	Prospect	_
70	Kavik	Onshore	Gas	Onshore	1969	_	Show	_
71	Kemik	Onshore	Gas	Onshore	1972	—	Show	_

Notes:

Field information is taken from State of Alaska, Dept. of Natural Resources Annual Report December, 2004 and Petroleum News Footnotes for Satellites identify the associated production unit:

¹Duck Island Unit;

²Kuparuk River Unit;

³Milne Point Unit; ⁴Prudhoe Bay Unit.

Parentheses indicate when production startup is expected. Definitions: Field—infrastructure (pads/wells/facilities) installed to produce one or more pools.

Satellite—a pool developed from an existing pad.

Pool-petroleum accumulation with defined limits.

Prospect—a discovery tested by several wells.

Show-a one-well discovery with poorly defined limits and production capacity.

Table V-2 Past Development: 2005 Production and Reserve Data

						Reserves ²			
Unit or Area	Field	Type (Oil or Gas)	Discovery	Began	Gas (Bcf)	2005 Oil (MMbbl) ¹	Production to	Oil (MMbbl) ¹	Gas (Bcf)
Duck Island									
_	Endicott	0	1973	1987	-	454.988710	Endicott	66	"
_	Sag Delta North ²	0	1989	1989	_	"	Endicott	"	"
_	Sag Delta ²	0	1976	1989	_	"	Endicott	"	"
_	Eider	0	1998	1998	_	2.718,616	Endicott	"	**
_	Ivishak	0	_	_	_	8.102,357	Endicott	"	"
Duck Island Unit	_	_	_	_	_	_	_	131	843
Prudhoe Bay	1	1	1			1	1		
	Prudhoe Bay	0	1967	1977	-	1,283.684.252	Prudhoe	"	"
_	Lisburne	0	1968	1981	_	156.991045	Lisburne	41	"
	Niakuk	0	1985	1994	_	83.893006	Lisburne	41"	"
	West Beach	0	1976	1994	_	3.581710	Lisburne	"	"
	N. Prudhoe Bay	0	1970	1993	_	2.070780	Lisburne	"	"
	Point McIntyre	0	1988	1993	_	396.736189	Lisburne	"211	"
	Prudhoe Bay IPA's	0	-	-	_		_	2,839	23,000
	Midnight Sun	0	1998	1999	_	13.474471	Prudhoe	2,000	
	Aurora	0	1999	2001	_	14.849654	Prudhoe	"	_
	NW Eileen/Borealis	0	1999	2001	_	37.925608	Prudhoe	"	_
	Polaris	0	1999	2001	_	4.786145	Prudhoe	66	_
	Orion	0	1968	2001	_	5.206855	Prudhoe	"	_
	P. Bay Satellites	0	- 1900	2003	_	- "	Prudhoe	473	
 Kuparuk River	F. Day Salelilles	0	-	_	_	_	Fludiloe	475	
Ruparuk River	Kuparuk River	0	1969	1981	_	2,024.989583	Kuparuk	956	1,000
	Tabasco	0	1992	1998	_	11.264871	Kuparuk	15	- 1,000
_	Tarn	0	1992	1998		72.680379	Kuparuk	71	50
	West Sak	0	1992	1998	_	12.000319	Kuparuk	528	100
	Meltwater	0		2001		9.757986	Kuparuk		
	Palm	0	—	2001	-	9.757966	Kuparuk	-	-
	Paim	0		2002			Кирагик	-	_
Milne Point	Milne Point	0	1969	1985	_	18.9794041	Milne Point	-	_
—		0	1909	1905	_	10.9794041	Milne Point		
		_				-			
—	Schrader Bluff	0	1969	1991	-	44.534458	Milne Point	-	-
Milne Point Uni	Sag River	-	1968	1994		1.677089	Milne Point	479	- 14
Miline Point Uni	-	-		_	_	-	-	479	14
Badami	Badami	O&G	1990	1998	_	4.498862	TAPS	2	
Colville River	Alpine	0	1990	2000	_	184.716137	Kuparuk	450	400
Northstar	Northstar	0	1994	2000		89.636187	TAPS	152	400
NPR-A ¹	East Barrow	G	1974	1981	0.081	-	Barrow	-	-430
_	South Barrow	G	1949	1950	0.2.25	_	Barrow	_	4
_	Walakpa	G	1980	1993	1.5167	_	Barrow	_	25
	s Total	-		-	-	_		6.4	33

Notes:

¹ Production information is from State of Alaska, Oil and Gas Conservation Commission (2005)
 ² Reserves were estimated by subtracting 2005 production from State of Alaska, Oil and Gas Conservation Commission (2005) from the Reserve Data in State of Alaska, Dept. of Natural Resources (2005).
 ³Endicott includes Endicott, Sag Delta and Sag Delta North. Prudhoe Bay satellites include Midnight Sun, Aurora, Borealis, Polaris and Orion
 ⁴Cascade is included in Milne Point.

Unit or Area	Field	Type (Oil, Gas)	Discovery	Status	Oil Reserves (MMbbl)
				Present	
Colville River	CD 3 Fiord	Oil	1992	Development	50
				Present	
Colville River	CD 4 Nanuq	Oil	1996	Development	38
				Present	
Oooguruk	Oooguruk	Oil	-	Development	50-90a
Total for All Units or Areas		_	_	_	158

Table V-3Present Development:Estimated Reserve Data

Note:

For purposes of analysis we use70 MMbbl.

Table V-4 Future Lease Sales

Sale	Proposed Sale Date(s)	Area/Description	Resources or Hydrocarbon Potential
Federal			
2002-2007 5-Year Program – Beaufort Sea OCS Sale 202	May 2007	As much as 9.9 million acres from the Canadian border on the east to Barrow on the west in the Beaufort Sea (<i>Federal Register,</i> 2001c).	340-557 mmbbl Oil (Estimated)
2007-2012 5-Year Program – Beaufort Sea OCS Sales 208 and 216	2009 and 2011, respectively	As much as 33.29 million acres from the Canadian border on the east to Barrow on the west	0.5-1.0 BBO
2007-2012 5-Year Program – Chukchi Sea OCS Sales 193, 212, and 221	November 2007, 2010, and 2012, respectively	As much as 46.75 million acres from Barrow on the east to Point Hope on the south	1.0 BBO
Northeast NPR-A	September 2006	As much as 3 million acres of the Northeast NPR-A Planning Area (USDOI, BLM, 2005).	0.50-2.2 Bbbl Oil (Estimated)
Northwest NPR-A	September 2006	As much as 9.98 million acres of the Northwest NPR-A Planning Area (USDOI, BLM and MMS 2003)).	0.00-0.735 Bbbl Oil Estimated
South NPRA	To Be Determined		
State Of Alaska			
North Slope Areawide	March 2006 ¹ October 2006-2010	As much as 5,100,000 acres of State-owned lands between the Canning and Colville rivers and north of the Umiat Baseline (about 69° 20' N.).	Moderate to High
Beaufort Sea Areawide	March 2006 ¹ October 2006-2010	Unleased State-owned tide- and submerged lands between the Canadian border and Point Barrow and some coastal uplands acreage located along the Beaufort Sea between the Staines and Colville rivers. The gross proposed sale area is in excess of 2,000,000 acres and is divided into 576 tracts	Moderate to High
North Slope Foothills Areawide	May 2006 February 2007-2010 ¹	State-owned lands lying between the National Petroleum Reserve-Alaska and the Arctic National Wildlife Refuge south of the Umiat Baseline and north of the Gates of the Arctic National Park and Preserve. The gross proposed sale area is in excess of 7,000,000 acres.	Moderate
Canada	<u> </u>		
Beaufort Sea	May 2006	Petroleum exploration rights on a total of two (2) parcels of land in the Beaufort Sea/Mackenzie Delta region of the Northwest Territories covering 156,348 hectares, more or less.	?

Note:

1 Other than the March and May 2006 sales, no decision has been made on whether these sales will be held Bbbl = billion barrels.

Source:

State of Alaska (2006) Five Year Oil and Gas Leasing Program; USDOI, MMS (2006).

 Table V-5

 Detailed Reserve and Resource Estimates for the Cumulative Analysis

Activity	Oil (billions of barrels)	Gas (trillions of cubic feet)
Production of remaining reserves (Past and Present)	6.6	—
Onshore–past (Prudhoe Bay and surrounding fields on State lands)	6.15	—
Offshore–past (Duck Island Unit and Northstar)	0.28	—
Onshore Present (CD3, CD4,)	0.08	
Offshore Present (Oooguruk)	0.07	—
Reasonably Foreseeable Future Production (resources total)	3.5	32.0
Onshore discovered gas	—	32.0
Onshore discovered, satellites, heavy oil, and reserve growth	2.0	—
Offshore discovered (Beaufort)	0.5	—
Undiscovered Offshore (Chukchi Sale 193)	1.0	
Speculative Production (resources total)	7.7	13.3
Onshore	5.7	9.0
Offshore	2.0	4.3

Notes:

1. Reserves are proven and economically recoverable oil or gas produced through existing infrastructure.

2. Resources are unproven (undiscovered) oil and gas that could be produced with new infrastructure.

3. Reasonably foreseeable gas production includes gas from stranded reserves in Prudhoe Bay area fields. We subtract the gas consumed for field use (300 Bcf per year) from reserves (35 Tcf) until the expected startup of a North Slope gas pipeline in 2015.

4. Speculative production is entirely from undiscovered oil and gas resources with development delayed several decades in the future. Onshore gas resources are from NPRA as associated and non-associated pools. Offshore gas resources are from associated gas reinjected during oil production. Offshore gas would then be recovered through existing oil field infrastructure. Associated gas estimates assume a GOR of 1000 cf/bbl.

Table V-6 Trans-Alaska Pipeline System and Proposed Future Natural Gas Projects

Name	Estimated Pipeline Length (miles)	Project Description and Route
		Active Project
Trans-Alaska Pipeline (TAPS)	800	The TAPS is the key transportation link for all North Slope oil fields. It has been in operation since 1977 and to date, has carried nearly 15 billion barrels of oil. Approximately 16.3 square miles are contained in the pipeline corridor that runs between Prudhoe Bay and Valdez. The Dalton Highway (or Haul Road) was constructed parallel to the pipeline between Prudhoe Bay and Fairbanks. The pipeline design capacity is 2 million barrels per day, and it reached near peak capacity in 1988. The TAPS 2005 year to date average barrels of oil pumped through pump station 1 was just under 900,000 barrels. The lower operational limit generally is thought to be between 200,000 and 400,000 barrels per day. If oil production from northern Alaska cannot be sustained above this minimum rate, the TAPS will become non-operational, and all oil production is likely to be shut in. Alyeska Pipeline Service Company is planning pipeline reconfiguration efforts between 2005 and 2011 to extend the economic life of the TAPS and North Slope oil fields.
		Future Natural Gas Projects
All-Alaska Gas Pipeline	800	The "All Alaska Gas Pipeline" is similar to the old "Trans-Alaska Gas System" project. The route would originate in the Prudhoe Bay Unit and run parallel to the Trans-Alaska oil pipeline to Valdez, then jog to the east to Anderson Bay to an LNG plant. There are "variations" on this project depending on whether it is standalone or is connected, at Delta Junction, to a transportation pipeline coming from Prudhoe Bay that goes into Canada.
Alaska Natural Gas Transportation System (ANGTS) ¹	2,102	The ANGTS plan is a pipeline system connecting Alaska North Slope gas production through Canada to the lower 48. The new pipeline would run parallel to the TAPS from the North Slope to interior Alaska and then cross the Yukon Territory to connect to existing pipelines in Alberta. The primary market would be consumers in the U.S. Numerous permits, rights-of-way, and approvals have been obtained for the proposed pipeline route through Alaska and Canada. Downward revisions to construction costs and the recent increase in gas prices into the \$3-\$4-million/cubic-foot range make this project more appealing today. Currently, several variations to routes are being considered for the overland gas-pipeline system.
Natural Gas to Liquids Conversion ²	Will use existing TAPS pipeline	Atlantic Richfield Co. (ARCO) and Syntroleum Corp constructed a pilot-scale, natural gas to liquids (GTL) conversion facility in Puget Sound, Washington. BP began production at the GTL pilot project on the Kenai Peninsula in Alaska in July 2003. This plant is expected to operate at least through 2006 ³ . All of the major North Slope gas owners (BP-Amoco, Exxon-Mobil, and Connoco-Phillips-Alaska) are studying the feasibility of various gas-commercialization projects. GTL is an attractive option because it will use the existing TAPS pipeline (extending its life and lowering future tariffs) and produce clean-burning fuels to meet more stringent Environmental Protection Agency emission standards for vehicles. At the present time, the overall cost of a full-scale gas to liquids project is comparable to a similar sized LNG project. As an emerging technology, new cost-reduction breakthroughs are expected for gas to liquids processing, improving the economic potential for future gas to liquid projects.
Mackenzie Gas Pipeline	1,300	The Mackenzie Gas Project is a proposed 1220-kilometre natural gas pipeline system along the Mackenzie Valley of Canada's Northwest Territories to connect northern onshore gas fields with North American markets The industries goal is to have natural gas moving through the pipeline by 2010.

Notes: ¹ Thomas et al. (1996). ² Alaska Report (1997).

3 Hult, J. (2006)

Table V-7aOil and Gas Production 1969 to December 2005 on the North Slope of Alaska

Production To Date	Oil (billions of barrels)	Gas (trillions of cubic feet)	Reference		
Onshore	14.5	—	State of Alaska,Alaska Oil and Gas		
Offshore	0.5	—	Conservation Commission (2005)		
Total	15.0	51.6	State of Alaska, DNR (2005)		

Notes:

1. Oil production includes both crude oil and natural gas liquids that are blended into the stream carried by TAPS.

2. Large volumes of associated natural gas has been recovered with oil production, however 90% of it has been reinjected to increase oil recovery. In 2003, North Slope gas production was 3.3 Tcf (average 9.1 Bcf per day) and a total of 297 Bcf was consumed as fuel for facilities. Small amounts of natural gas have been produced fields in the Barrow area since the mid-1940's largely to supply energy for the village of Barrow.

Table V-7b

Summary of Reserve and Resource Estimates for the Cumulative Analysis

Production Activity	Oil (billions of barrels)	Contribution of by Volume of OCS Oil (%)	Gas (trillions of cubic feet)	Contribution of by Volume of OCS Gas (%)
Low End of the Range (Past and Present)	6.6	15%	0	0
Middle Portion (Past, Present, and Reasonably Foreseeable)	10.1	10%	32.0	0
High End (Past, Present, Reasonably Foreseeable, and Speculative)	17.8	5.6%	45.3	9.5

Source: .USDOI, MMS 2006

Table V-7c

Detailed Reserve and Resource Estimates for the Cumulative Analysis

Activity	Oil (billions of barrels)	Gas (trillions of cubic feet)
Production of remaining reserves (Past and Present)	6.6	—
Onshore–past (Prudhoe Bay and surrounding fields on State lands)	6.15	—
Offshore–past (Duck Island Unit and Northstar)	0.28	—
Onshore Present (CD3, CD4,)	0.08	—
Offshore Present (Oooguruk)	0.07	—
Reasonably Foreseeable Future Production (resources total)	3.5	32.0
Onshore discovered gas	—	32.0
Onshore discovered, satellites, heavy oil, and reserve growth	2.0	—
Offshore discovered (Beaufort)	0.5	—
Undiscovered Offshore (Chukchi Sale 193)	1.0	—
Speculative Production (resources total)	7.7	13.3
Onshore	5.7	9.0
Offshore	2.0	4.3

Notes:

1. Reserves are proven and economically recoverable oil or gas produced through existing infrastructure.

2. Resources are unproven (undiscovered) oil and gas that could be produced with new infrastructure.

3. Reasonably foreseeable gas production includes gas from stranded reserves in Prudhoe Bay area fields. We subtract the gas consumed for field use (300 Bcf per year) from reserves (35 Tcf) until the expected startup of a North Slope gas pipeline in 2015. Speculative production is entirely from undiscovered oil and gas resources with development delayed several decades in the future. Onshore gas resources are from NPRA as associated and non-associated pools. Offshore gas resources are from associated gas reinjected during oil production. Offshore gas would then be recovered through existing oil field infrastructure. Associated gas estimates assume a GOR of 1000 cf/bbl.