
Performance Study and Dynamic Optimization Design for
Thread Pool Systems

Dongping Xu
Department of Electrical and Computer Engineering

Iowa State University
Ames, IA 50011

and

Brett Bode
Scalable Computing Laboratory

Ames Laboratory
Iowa State University

Ames, IA 50011

ABSTRACT

Thread pools have been widely used by many multithreaded
applications. However, the determination of the pool size
according to the application behavior still remains problematic.
To automate this process, in this paper we have developed a set
of performance metrics for quantitatively analyzing thread pool
performance. For our experiments, we built a thread pool system
which provides a general framework for thread pool research.
Based on this simulation environment, we studied the
performance impact brought by the thread pool on different
multithreaded applications. Additionally, the correlations
between internal characterizations of thread pools and their
throughput were also examined. We then proposed and
evaluated a heuristic algorithm to dynamically determine the
optimal thread pool size. The simulation results show that this
approach is effective in improving overall application
performance.

K e y w o r d s : Thread Pool, Analysis, Characterization,
Implementation, and Dynamic Optimization.

1. INTRODUCTION

While multithreading provides a clean design approach to
handling asynchronous requests, the architecture used to
implement multithreading still can have a large impact on the
computational thread-creation overhead. Two models, including
thread-per-request  and thread pool, are widely used in
multithreaded programming for server applications. The thread-
per-request model spawns a thread for each request, and
destroys the thread after finishing the request. In contrast, a
thread pool system spawns and maintains a pool of threads.
When a request arrives, the application uses a free thread in the
pool to serve a client request, and returns the thread to the pool
after finishing the request. Experimental studies suggest that a
thread pool model can significantly improve system
performance and reduce response time [3][11][10]. Because of
its benefits, thread pool systems have been adopted by a large
number of popular server applications, such as Apache [1] and
Windows IIS [7].

The performances of these server applications rely in part on the
throughput which can be delivered by the thread pool. A major

factor which determines the thread pool performance is the pool
size. With a larger pool size, the thread pool can handle more
tasks simultaneously with a fast response time. As the pool size
increases, however the overhead of thread pool management
will become significant and degrade the system performance
eventually. Therefore, handling this tradeoff becomes important
for system optimization.

To solve this problem, people have proposed different
approaches to tune the thread pool system. The most widely
used approach is based on experience. In this approach, the
system administrators are required to constantly monitor the
system performance. Whenever a performance bottleneck is
noticed, they will tune the configuration to optimize the
performance. This approach is widely adopted by many server
applications, including Apache [1] and Microsoft IIS [7], both of
which are the most widely-used Web servers.  As an example,
Apache allows users to control the number of threads deployed
by each child process by changing the variable
ThreadsPerChild . Clearly, such experience-based
approaches have serious drawbacks. The performance
monitoring job is very time-consuming and inconvenient for a
system administer. In addition, the configuration drawn up
through this approach is often inaccurate, especially when the
performance varies a lot over time. To solve this problem, it is
desirable to have a thread pool which can configure itself based
on the current status of the server system.

Some researchers have proposed schemes to predict the optimal
thread pool size based on heuristic factors [6]. Unfortunately,
the formula usually is very complicated. It is hard, if not
impossible, to apply those formulas in practice because of the
complexity and overhead. To solve the problems above, we
want to construct a new dynamic optimization approach which
is simpler to avoid a huge runtime overhead. In addition, in our
approach we want to use metrics which can be obtained on-the-
fly easily. Bearing these two characteristics in mind, we expect
our approach will be more suitable for real implementation.

In this paper we will develop a set of performance metrics for
quantitatively analyzing the thread pool performance. Based on
these metrics, we will systematically study the internal
characterizations of a thread pool system. Additionally, we will
evaluate the idea of using a heuristic approach to determine the
optimal thread pool size based on the information collected so



far. This approach makes a tradeoff between the thread pool
performance and the management overhead. The simulation
results show that dynamic optimization for thread pool size is
very effective in alleviating the management overhead and
improving the overall performance. The results imply the
potential benefits of using dynamic optimization to replace
manual configuration in large multithreaded server applications.

This paper is organized as follows. In Section 2, we present the
metrics used in our system for performance evaluation. The
detailed implementations of our thread pool and multithreaded
benchmarks are presented in Section 3 and 4, respectively. The
experimental results are discussed in Section 5. Finally, Section
6 concludes this paper.

2. PERFORMANCE METRICS

Instead of the experience-based approach, we are searching for a
quantitative approach which allows us to predict the optimal
thread pool size without interference from humans. The
performance of our approach relies on a carefully selected set of
performance metrics, which must meet the following criteria.

• Measurable
• Low cost
• Complete but not redundant

Since the whole system is composed of three major components:
submitted tasks, the thread pool and the operating system. The
performance metrics must reflect the requirements of these
components. From the submitted tasks’ perspective, we mainly
focus on the Quality of Service (QoS) in meeting their requests.
We want to treat every submitted task in a fair manner and with
prompt response. For operating systems, the overhead and
performance of the underlying computing systems are our
concerns. Finally, in the thread pool we will adjust the number
of threads to reduce maintenance overhead.

The time flow of the submitted task is depicted in Figure 1. The
turnaround time of a task is defined as the time between
submission of a task and completion of the output. Turnaround
time can be further divided into three components (Figure 1).
The response time for task submission is the submission
response latency time. For each task, the idle time is defined as
the time spent in the waiting queue. The last one, which is more
task-dependent, is processing time. This is the time spent for a
task to be completed by the thread pool system.
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Figure 1. The time flow of a submitted task.

The processing time is quite application dependent. Some tasks
will take more time to complete while others take less.
Therefore, the processing time and turnaround time cannot be
used as performance metrics in a thread pool system. In our
experiments, we mainly focus on the response time and the idle
time of the thread pool. There are further metrics that also turn

out to be of practical interest. These metrics are more system
related, including thread pool throughput. Throughput refers to
the completed tasks per time unit (usually seconds).

3. IMPLEMENTATION OF THREAD POOL

3.1 Architecture of the Thread Pool System
Our thread pool implementation was written using POSIX C
using the Pthreads library to handle threading, which can be
easily integrated into the existing applications written in C/C++
[9].  Basically, the software package contains five major
modules, which are listed as follows. The relationship among
them is shown schematically in Figure 2.

• Thread queue
• Task queue
• Thread scheduling
• Performance monitoring and adjustment
• Report of system performance
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Figure 2. Software organization of thread pool system.

3.2 Design of the Thread Queue and Task Queue
Worker threads and tasks are two major entities in the thread
pool system. As we can observe from Figure 2, thread queue and
task queue are two data structures used to store the information
related to the worker threads and the submitted tasks,
respectively. All threads are managed in the thread queue, which
is organized as an array of pthread_t type. The size can be
adjusted automatically by the system using the heuristic
approaches which will be presented later. On the other hand, all
submitted tasks are stored in the task queue.

There are two modes for any thread: busy and idle. At the
beginning, all threads are running in idle mode and waiting for
the notification of arrivals of new tasks. Whenever new tasks
become available, a task_posted signal will be posted. All
worker threads waiting for this signal will be notified and
compete for a mutex. The winner (called the active thread) will
get the mutex and check the pool state. If the task queue is not
empty, the active thread will grab one available task in the task
queue and run it.

The thread pool should also allow users to submit tasks for
execution. The functionality is provided by task dispatcher.
Specifically, the task dispatcher will put the submitted task into
the task queue (shown in Figure 2) and notify the worker threads
which are waiting for new tasks. When the task to be done is
placed into a queue, the dispatcher function returns immediately.
However, the dispatch function has to be blocked when the task
queue becomes full.

3.3 Performance Monitoring and Adjustment



The statistics component of our thread pool system is
responsible for performance monitoring. The information
collected in this component will be used for analysis and
performance optimization in later stages.

QoS to Submitted Tasks
The data structure queueNode is used to store the information
related to each task. Within queueNode , we define the
following variables (Table 1) to record the information. The
detailed description of each variable is also provided in this
table. During runtime, these variables will be updated whenever
applicable.

Table 1. The statistics variables used for each task.
Variables Descriptions

Submmited_t The task submission time
accepted_t The task acceptance time
exe_t The starting time for task execution
finished_t The ending time for task execution

Throughput of the Thread Pool System
Even though there are numerous aspects that can be studied for
the thread pool system, we have focused on the information that
can be collected by the thread pool easily. All variables related
to the throughput of the thread pool, as well as the descriptions,
are listed in Table 2. Note that the throughput of the thread pool
system is defined as follows

timeexecution  total

 taskscompleted of #
=throughput

Table 2. The statistics variables used for monitoring the thread
pool system.

Variables Description

threadNum The total number of threads in thread
pool

submittedJob The total number of tasks submitted to
thread pool

completedJob The total number of completed tasks

executionTime The execution time of thread pool so
far

throughput The number of finished tasks per unit
time (sec.)

4. EXPERIMENTAL ENVIRONMENT

4.1 Design of the Benchmark Simulator
To measure the performance of the thread pool, we want to
measure it using real-world multithreaded applications that rely
on our thread pool library. Unfortunately, it is unrealistic to
compile different multithreaded applications with our thread
pool, because existing programs already implement their
threading system using different approaches. To solve this
problem, we have constructed a benchmark simulator to
simulate such multithreaded applications. The purpose of the
benchmark simulator is to simulate the functionality of
multithreaded servers to the thread pool. More specifically, a
request simulator will read the trace data collected from real
world examples and simulate its requests to the thread pool. The
general architecture of this simulation system is depicted in
Figure 3.

Since the data trace file contains all information related to the
submitted tasks, the first step of our simulator is to parse this file
and collect information. Each line of the trace file represents one
submitted task, and contains all related information, including
request ID, application ID, starting time, and task execution
time. Our simulation will operate according to the data of input
trace files.

Figure 3. The design of multithreaded simulator

In reality, a portion of the time of a submitted task should be
spent on other computations, while the rest is in waiting mode
because of I/O or other data dependencies. To reflect the
behavior of real world tasks, we defined a new variable, called
free_workload, in our benchmark. The meaning of this
variable is shown in Figure 4.

submitted task
real computation free_workload

total execution time

Figure 4. The description of free_workload.

This variable is used to adjust the frequency of sleep for each
submitted task. The larger free_workload is, the more time
spent on sleep. For example, if the free_workload =100, the
benchmark will force the task to sleep for 100 times of e µs. By
adjusting this value, we can emulate different types of
multithreaded applications using our simulator. Notice that the
real computation time is fixed for each submitted task.

4.2 Experimental Configurations
The operating system is RedHat Linux 9 running on a single
1GHZ Intel Pentium III processor. The CPU has 32KB (16KB
D-Cache/16KB I-Cache) L1 cache and 256KB unified L2 cache.
The physical memory size is 512 MB. To limit the number of
running processes, the machine is booted using text mode only.
All simulations are repeated three times, and the best value is
used for performance analysis. All network-related tests were
conducted in an isolated environment in order to minimize the
effects of other traffic.

5. RESULTS

5.1 Performance of Thread Pool System
First, we focus on the performance improvement brought to
multithreaded applications through the use of a thread pool.

Figure 5 shows the relationship between the throughput and the
thread pool size. First, we choose free_workload = 100.
From this figure, it is obvious that the throughput of
multithreaded applications can be improved proportional to the
pool size when the pool size is relatively small. Unfortunately,
such improvement cannot be sustained when the pool size is
greater than a threshold. We suspect this phenomenon is caused
by two issues. First, the application can only benefit from using
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a limited number of threads. When the pool size passes this
threshold, the capacity of the application to utilize available
threads becomes saturated and no performance improvement can
be obtained. Second, the maintenance overhead brought by
increasing pool size might overshadow the benefits obtained by
using more threads.
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Figure 5. Throughput vs. pool size

To verify our hypothesis, we have performed similar
experiments for two different benchmarks. These benchmarks
are obtained by varying the parameter free_workload (50
and 10 for our experiments). The experimental results are also
shown in Figure 5. The results show that the throughput is still
proportional the pool size at the beginning. However, compared
with free_workload=100, the threshold which can sustain
the linear improvement is smaller. This is related to the
characteristics of the multithreaded applications used in our
experiments. In the first experiment, the real computation
workload is lower (free_workload=100). According to
Figure 4, it means the application spends a large portion of
execution time on I/O. Therefore, the throughput will become
higher because the OS has more chances to schedule other active
threads for running. In contrast, as the free_workload
decreases to 50 and 10, the application becomes more
computation intensive. Under this circumstance, OS will be
bound to a small number of threads and the throughput will
lower.

Two conclusions can be drawn from the above experiments.
First, using a thread pool can help to improve the performance
(throughput) of multithreaded applications. Second, the degree
of improvement is application-dependent and work load
dependant. For computation intensive applications, the benefits
of using a thread pool can be smaller. This also demonstrates the
need to be able to dynamically resize the pool size for different
types of applications, which will be discussed in this section.

5.2 Internal Characterizations of Thread Pool System
The experiments above show us the impact of a thread pool
system on multithreaded applications. The results imply the
need to adjust the pool size for different types of applications.
To be able to adjust the pool size on the fly, we need to further
understand the internal characteristics of the thread pool system.
In this section, the performance metrics of the thread pool
presented before are studied in depth. In particular, we want to
correlate the metrics which are application independent to the
throughput. Such information will allow us to adjust the pool
size dynamically.

Average Job Idle Time
To study the relationship between the throughput and the thread
pool size, we have picked an internal performance metric, the
average idle time (AIT). The detailed description of idle time is
presented in Section 2. The AIT is much easier to measure
inside the thread pool and is independent from the behavior of
the tasks. If the results show that the AIT correlates to the
throughput, we might be able to use this metric for dynamic pool
size adjustment.

As in previous experiments, we pick two values for the
free_workload1, 100 and 50, for this study. The
experimental results are shown in Figure 6. To compare with
throughput easily, we use the reciprocal of average idle time

(RAIT) in our experiments. RAIT is defined as 

i
i AIT
AIT

RAIT 1= ,

where AITi is the average idle time when pool size is i .
Therefore, AIT1 is the average idle time of pool size 1. Instead
of using 1 as numerator, we use AIT1 such that RAIT always
starts from 1 when the pool size is 1.
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Figure 6. The RAIT vs. thread pool size

By comparing Figure 6 with Figure 5, it is clear that the average
idle time (AIT) of tasks has a strong correlation to system
throughput. These results indicate the possibility of using AIT to
infer the potential throughput of multithreaded programs. We
can use such information to adjust the thread pool size on the
fly.

Overhead of Thread Pool Management
The most attractive benefit of using a thread pool is to avoid the
overhead of thread creation. However, that does not mean users
should create a thread pool as large as possible. Indeed, the
overhead for managing threads in the pool can be a big issue. To
examine this problem, we study the thread pool management
overhead in our experiments.

The most straightforward way of studying the management
overhead is to increase the pool size. According to the previous
discussion, the performance improvements brought by a thread
pool will be saturated when the pool size reaches a threshold.
After that, increasing the pool size will not help to improve the
performance further. Instead, the overhead of thread pool
management will degrade the performance (throughput) when
the size becomes larger. Therefore, by increasing the pool size,
we should be able to observe the impact brought by the
overhead.

                                                  
1 The results of free_workload=1 are not shown here.
However, it gives similar results to other sizes.



Following this idea, we have measured the throughput of our
benchmark by increasing the pool size from 1 to 55. The results
are presented in Figure 7. According to this figure, the
throughput becomes stable when the pool size reaches 13. After
that the throughput mostly fluctuates around a fixed value. (The
best throughput is observed when the pool size reaches 38. After
that, it begins to drop gradually.)

0

1

2

3

4

5

6

7

8

1 5 9 13 17 21 25 29 33 37 41 45 49 53

pool size

th
ro

u
g

h
p

u
t 

(j
o

b
s
/s

e
c
)

Figure 7. The thread pool management overhead
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Figure 8. The relationship between throughput and the thread
pool size.

The observed behavior is consistent with our expectations.
Figure 8 shows the expected behavior of thread pool when the
pool size increases. The point where the throughput becomes
stable is called stable point. Beyond this point, the throughput
will maintain a relatively steady value. When the size is greater
than another threshold, called the degradation point, the
overhead of pool management will become dominant and offset
the benefits brought by using the thread pool. The performance
will drop after this point. In the previous examples, the stable
point is 12 and the degradation point is 40. These two points
might change for other applications and other workloads.

The design of a dynamic thread pool needs to be able to adjust
the pool size as quickly as possible to the safe zone, which is
defined to be the area between the stable point and the
degradation point. This is the area where the throughput will
reach a maximum without introducing too much overhead.

5.3 Dynamic Pool Size Adjustment Algorithm
We have developed a new algorithm, named
dynamicThreadPool, for thread pool size adjustment. The
pseudocode of this algorithm is presented in Figure 9. Instead of
comparing absolute values, this algorithm checks the percentage
of difference between the current AIT and the previous AIT. If
the difference is larger than 1%, the pool size is increased or
decreased depending on the relationship between other

variables. This algorithm is proactive in increasing pool size. By
comparing the current average idle time with the previous one,
the pool size will be increased by a fixed number (stride)
whenever appropriate. Decreasing the pool size only happens
when the algorithm finds that the previous increase in pool size
caused performance degradation.

Three variables are used in this algorithm. The purpose of both
preAIT and prepreAIT is to record the average idle time in
the past two cycles. These values will be propagated to each
other at the end of each cycle. stride determines the degree of
decrease and increase of thread pool size. Notice that the initial
value of stride will affect the runtime performance. In the
following experiments, we set the initial value of stride to be 2.

Figure 9. The pseudocode of dynamic thread adjustment.

Performance of Dynamic Pool Size Adjustment
First, we want to examine the behavior of our algorithm when it
is used in real applications. To do that, we implemented the
dynamicThreadPool algorithm in our thread pool system.
This algorithm is executed at the end of each cycle, which is
defined as five completed jobs in our experiments. For thread
pools with different initial pool sizes, the behavior of this
algorithm might be different. Therefore, we have chosen two
initial thread pool sizes, 4 and 16, for the experiments. The
results are shown in Figure 10. The experimental results show
that, for both initial thread pool sizes, the algorithm
continuously increases the thread pool size towards the safe
zone. The pool size becomes stable around this area.

Note that the maximal adjusted pool size is not constant when it
reaches the stable area. Instead, it fluctuates around some fixed

Algorithm dynamicThreadPool
Input:  stride,
         preAIT,
         prepreAIT
         poolSize;
BEGIN
  Store current average idle time in currentAIT;

  if((|currentAIT – preAIT|/preAIT) > 1%) {
    if(currentAIT > preAIT) {
      if(preAIT < prepreAIT)
        poolSize -= stride;
      else
        poolSize += stride;
    }
    else if (currentAIT < preAIT && preAIT < prepreAIT) {
      poolSize += stride;
    }
  }
  else if(prePoolSize == poolSize)
    poolSize += stride;

  if(poolSize <= 0)
    poolSize = 1;

  adjustPoolSize(poolSize);
  prepreAIT = preAIT;
  preAIT = currentAIT;
  prePoolSize = poolSize;
END



value. In a perfect environment, this size is would to be the
same. However, on real machines, the AIT we obtain might vary
due to other factors (such as OS workloads and job behaviors).
This will affect the accuracy of AIT and our algorithm.
Therefore, some fluctuation is acceptable for our algorithm.
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Figure 10. The adjusted thread pool size for two different initial
thread pool sizes.

Our second experiment is to compare the throughputs of the
original thread pool (which is called the static thread pool) and
the dynamic thread pool. The dynamic thread pool is designed to
adjust the pool size according to the behavior of multithreaded
applications. The ultimate goal is to achieve better performance
without introducing too much overhead. Therefore comparing
throughput will help to understand the performance
improvement brought by using the dynamic thread pool. The
experimental results are shown in Figure 11. To compare the
performance more clearly, the throughput of the dynamic thread
pool is normalized to the throughput of static thread pool.
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The experimental results clearly show the performance
improvement brought about by using a dynamic thread pool.
Actually, for a thread pool with initial thread number =1, the
throughput of the dynamic thread pool is about 8 times that of
the static one. For other initial pool sizes, similar improvements
are also observed. Interestingly, the improvement drops
gradually when the initial thread number increases. This is
because the performance of static thread pool is already closer to
optimal when the initial pool size is large.

6. CONCLUSIONS
In this paper we have developed a set of performance metrics for
quantitatively analyzing the thread pool performance. For our
experiments, we built a thread pool system which provides a
general framework for thread pool research. Based on this
simulation environment, we have studied the performance

impact brought by the thread pool to different multithreaded
applications. Additionally, the correlations between internal
characterizations and the throughput were also studied.

The experimental results indicate that the average task idle time
has strong correlation with the thread pool throughput. We
proposed and evaluated the idea of using a heuristic approach to
determine the optimal thread pool size based on the task average
idle time. The simulation results show that dynamic
optimization for thread pool size is very effective in alleviating
the management overhead and improving the overall
performance.
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