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ABSTRACT

Scurlock, J. M. O. (1998). Miscanthus: a review of European experience with a novel
energy crop. ORNL/TM-13732. Oak Ridge National Laboratory, Oak Ridge, Tennessee.
26 pp.

Miscanthus is a tall perennial grass which has been evaluated in Europe over the past 5�10
years as a new bioenergy crop. The sustained European interest in miscanthus suggests that this
novel energy crop deserves serious investigation as a possible candidate biofuel crop for the
United States alongside switchgrass. To date, no agronomic trials or trial results for miscanthus
are known from the conterminous United States, so its performance under U.S. conditions is
virtually unknown. Speculating from European data, under typical agricultural practices over
large areas, an average of about 8t/ha (3t/acre dry weight) may be expected at harvest time. As
with most of the new bioenergy crops, there seems to be a steep "learning curve."  Establishment
costs appear to be fairly high at present (a wide range is reported from different European
countries), although these may be expected to fall as improved management techniques are
developed.
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1.  INTRODUCTION

Extensive fields trials of Miscanthus x giganteus, a sterile hybrid genotype of the large
perennial grass miscanthus, have been carried out in northern Europe since 1983. The yield
potential of this novel annually harvested bioenergy crop has been shown to be substantial, but
some concerns remain about drawbacks, such as its relatively high establishment costs and its
currently narrow genetic base.

Miscanthus was first cultivated in Europe in the 1930s, as an ornamental introduction from
Japan. A number of other ornamental varieties of miscanthus are also known to exist under
various common names. The yield potential of miscanthus for cellulose fiber production was
investigated in the late 1960s in Denmark. Trials for bioenergy production commenced in
Denmark in 1983, spreading to Germany in 1987 before more widespread evaluation throughout
Europe. Possessing the efficient C4 photosynthetic pathway (with relatively low nutrient and
water requirements), yet tolerant of cool temperate climates, miscanthus is potentially an "ideal"
energy crop because its annual cropping cycle provides a regular income for the grower (unlike
woody crops, harvested only every 2�4 years). Lower-cost methods of establishment, together
with improved overwintering, had been developed by the mid-1990s, although much research
still remains to be done (Lewandowski 1998a).

The highest aboveground standing biomass is found at the end of each growing season (up to
20�30 t/ha dry weight), but it is usually considered desirable to allow the crop to dry out over
winter, with losses of 30�50% of the standing biomass (Figs. 1 and 2). Such losses are tolerated
because of the resulting improvements in fuel quality. Moisture content may drop to as low as
15% by early spring, with resultant advantages in handling and little need for further drying. Ash
and mineral content are also reduced (because many nutrients are recycled through leaf drop and
re-translocation to the rhizomes), alleviating the problems that elements such as potassium and
chlorine may cause in biomass fuel processing. The final annual yield at harvest is therefore up
to 12�18 t/ha (dry weight), although large-scale semicommercial trials suggest about 7�9 t/ha
(dry weight) is a more reasonable estimate over large areas. Rotations are estimated to be from
15 to 25 years, although most older trial stands are only in their 6th to 8th year of cropping, and
few European stands can be more than 10 years old.

2. VARIETIES EVALUATED IN EUROPE

Most European trials have involved clones of M. x giganteus, a triploid hybrid (n = 57) of
uncertain origin, probably M. sinensis (diploid) x M. sacchariflorus (tetrapoloid). This was
introduced into Denmark in 1935 from Yokohama, Japan, although the genus is known to occur
throughout tropical, subtropical, and warm temperate parts of South-East Asia (where it probably
has its origin) and the Pacific Islands. A member of the Andropogoneae/Poaceae family, the
genus is closely related to Saccharum (which includes sugar cane), and some species of the two
genera are easily intercrossed. In general, M. sacchariflorus types are well adapted for warmer
climates, whereas M. sinensis can provide genetic resources for cooler regions. The European
Miscanthus Improvement (EMI) project aims to broaden the genetic base of miscanthus,
maximizing the productivity and adaptive range of the crop, and to develop methods for
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Figure 1. Mature stand of Miscanthus x giganteus. The taller man
has a height of about 1.9 m, so the stand is approximately 3.5 m high.
Photograph taken September 1996, about 30 km south of Ulm in southern
Germany, by Dr. I. Lewandowski, University of Hohenheim. A color version of
the image is on the Bioenergy Information Network website photo gallery
(http://www.esd.ornl.gov/bfdp/).

Figure 2. Demonstration plot of Miscanthus x giganteus pictured
just before harvest. Scale divisions on range poles are 0.5 m, so stand is about
2.5 m tall. Photograph taken February 1995, Forchheim, Baden-Württemberg,
southern Germany, by Dr. I. Lewandowski, Institute for Crop Production and
Grassland Research, University of Hohenheim, Germany. Reproduced by
permission. A color version of the image is on the Bioenergy Information
Network website photo gallery (http://www.esd.ornl.gov/bfdp/).
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achieving these objectives. In 1997, extensive trials began of 15 genotypes across 5 different
locations in Europe, from Sweden to Portugal (Lewandowski 1998a). Results to date from
widespread trials suggest that yields of up to 25 t/ha/year (dry weight) may be obtained at the
time of harvest (typically February), under conditions from central Germany (lat. 50� N) to
southern Italy (lat. 37� N). More southerly locations, where water is usually a limiting factor in
crop production, have employed irrigation. Yields in more northern parts of Europe (lat. above
50� N, generally without irrigation) are more typically 15 t/ha/year. The nitrogen requirement of
miscanthus appears to be low, with no further response to fertilizer above about 150 kg
N/ha/year.

3. TEST LOCATIONS, SIZES, AND DURATIONS

The total area of miscanthus trials in Europe in 1995/96 was about 170 ha (Jorgensen and
Venendaal 1997); in 1998 the total was still modest, with Switzerland (300 ha) having the largest
area under cultivation (Lewandowski 1998b). The European Miscanthus Productivity Network
was established around 1993, with 18 sites participating from 10 countries. Results of these trials
have been summarized in a 1997 European Commission (EC) publication, the Miscanthus
Handbook (Walsh and McCarthy 1998). However, this publication has not yet been released by
the EC for worldwide distribution. The results given here in note form have been drawn from the
available literature. Country names are in alphabetical order. MAP = mean annual precipitation,
MAT = mean annual temperature, where reported.

Austria  (lat. about 48� N, MAP about 700 mm, MAT 8.8� C), M. x giganteus, 3-year old stands
@ 10,000/ha, est. 1989, gave 22 t/ha (dry weight). No response to nitrogen fertilizer above 90 kg
N/ha, despite added P, K, Mg � possibly due to fertile soil (Schwarz et al. 1994).

Southern Britain (lat. 51-52 N), 4 locations (MAP 500�700 mm), various soil types. M. x
giganteus, 10�15 t/ha at spring harvest in year 3 (Note low yields because of drought). No
response to N fertilizer (Bullard et al. 1996).

Denmark (Hornum, lat. about 56� N). M. x giganteus est. 1983, 1986, 1989, 1990, and
M. sinensis (15 varieties) est. 1990. 70�100 kg N/ha applied. Annual dry matter production
15�25 t/ha, but spring (April) harvesting when drier and more minerals recycled gives 7�10 t/ha.
Farmers’ trials give 7�9 t/ha (Jorgensen 1996).

Southern Germany, 3 locations (MAP 800�1000 mm, MAT 7.5�10.0� C). M. x giganteus. 8�30
t/ha, depending on soil fertility (Lewandowski and Kicherer 1997).

Southern Germany (MAP 606 mm, MAT 9.1� C), 6 genotypes, 3�8 years old, yields as noted
in the table below (Hotz et al. 1996).
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Genotype Yield (t/ha)

M. x giganteus 5�10 poor soil 15�24 good soil

M. sinensis "Goliath" 5�6 poor soil 10�19 good soil

M. sinensis "Gracillimus" 2 poor soil 6�17 good soil

M. sinensis "Grosse Fontaine" 5�10 poor soil 15�24 good soil

M. sinensis "Silberfeder" 2�5 poor soil 8�15 good soil

M. type "Ungarn" 4�6 poor soil 9�15 good soil

Western Germany (lat. 51� N, MAP 715 mm, MAT 9.3� C). M. x giganteus, 3-year-old stands
@ 10,000/ha, est. 1989, gave 30 t/ha dry matter (max.); final spring yield 15�18 t/ha. Low
fertilizer requirements �  60 kg N, 8 kg P, 80 kg K, 15 kg magnesium per hectare (Himken et al.
1997)

Germany (4 sites, clay to sand, MAP 565�603 mm, MAT 7.9�9.5� C). M. x giganteus. 4- to 6-
year-old stands produced 17.0�30.3 t/ha (mean of 3 years). Harvested biomass averaged
10�15 t/ha as a result of  preharvest loss of leaves and shoot tips (4�5 t/ha), stubble/residues left
in field (1.3�3.1 t/ha), and other loss of stems due to harvesting limitations. Carbon/nitrogen
ratio of harvested biomass = 110 (nitrogen content = 0.44%). Nitrogen requirements met by soil
mineralization, so nitrogen fertilizer not required (under these temperature/rainfall limited
conditions). High transpiration water requirement was confirmed by crop modeling showing soil
water depletion. However, miscanthus tended to increase soil organic matter and nitrogen
content for sandy soils (further details not available; cited in Boelcke et al. 1998).

Northern Greece (lat. 41� N), M. x giganteus, planted on 1.0-m grid, 0.2-ha plot, fertilized and
irrigated. Second-year maximum yield (September) = 44 t/ha (Danalatos et al. 1996).

Central Greece (lat. 38� N), M. x giganteus, planted at 0.5-m spacing on small plots. 2- to
3-year-old stands yielded 26 t/ha, with little effect of added nitrogen fertilizer or irrigation
(Christou et al. 1998).

Southern Italy (lat. 37� N), M. x giganteus, small plots, irrigated and fertilized. 30�32 t/ha final
(spring) yield in years 2�3 (Foti et al. 1996).

Northwestern Spain (lat. 43� N), M. x giganteus, small plots. Mixed results, but no fertilizer
effect observed. Demonstrated that 30 t/ha is achievable (Bao Iglesias et al. 1996).

Western Turkey (lat. 38� N, MAP 698 mm, MAT 17.6� C), M. x giganteus. 3-year-old stands
yielded 28 t/ha, with little effect of added nitrogen fertilizer (Acaroglu and Aksoy 1998).
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Figure 3. Miscanthus rhizome
propagation material ready for planting (length
is about 10 cm). Photograph taken June 1996,
Vejle, Denmark, by L.L. Wright, ORNL. A color
version of the image is on the Bioenergy
Information Network website photo gallery
(http://www.esd.ornl.gov/bfdp/).

4. CROP PHYSIOLOGY

Typical maximum leaf area index reported for the European trials (late summer) is around
8 m2/m2. Typical maximum canopy height is about 4.0 m, although after over-wintering and leaf
drop, the dry stalks are unlikely to be more than 2.5-3.0 m in height. These parameters are not
always reported for the various trials. 

Possessing the C4 photosynthetic pathway, miscanthus shows a remarkable combination of
high light, water, and nitrogen use efficiencies. Its photosynthetic mechanism appears to be
better adapted to low temperatures than that of many other C4 crops, equipping it for high
productivity under relatively cool temperatures. Although water use efficiency is high, the crop
may nevertheless require substantial amounts of water for maximal growth, because of its high
productivity (Walsh and McCarthy 1998).

5. CULTURAL PRACTICES EMPLOYED

The miscanthus crop is established by planting mechanically divided rhizomes or plantlets
micropropagated in tissue culture. Mechanically divided rhizome pieces may be collected with a
potato or flower bulb harvester from nursery fields (preferably with sandy soils for ease of
tilling), planted at a density of 3�6 plants/m2. After 2�3 years, nursery fields are subjected to a
single pass of  a rotary tiller, breaking up
rhizomes into 40-  to 100-gram pieces (Fig. 3).
This yields a multiplication factor of about 50 ×,
in comparison with 100 × for hand cutting of
rhizomes from whole plants (Pari 1996;
Huisman et al. 1996). Disc harrowing of
rhizomes followed by collection of pieces with
an automated stone picker has also been used,
yielding lower multiplication rates (Wilkins and
Redstone 1996). Micropropagation offers
potentially much higher multiplication rates (up
to 2000 ×; Lewandowski and Kahnt 1993), but
these techniques are currently considerably more
expensive than mechanical rhizome division.

Larger rhizome pieces, covering with straw
or cover crops, and deeper planting all increase
overwinter survival and establishment rates, but
new cultivars and genotypes (e.g. M. sinensis
"Goliath" have superior survival rates to M. x
giganteus (Eppel-Hotz et al. 1998). Similar
results were obtained by Schwarz et al. (1998),
who also found that micropropagated plantlets
were more sensitive to suboptimal conditions
(e.g., summer drought). In general, irrigation of
newly planted rhizomes appears to improve
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Figure 4 . Harvesting of demonstration plot of Miscanthus x
giganteus using a Kemper Champion 4500 forage harvester mounted on a
John Deere combine. The harvester is modified with hardened cutting blades to
withstand the extra wear due to the relatively high silicon content of miscanthus
biomass. Photograph taken February 1995, Forchheim, Baden-Württemberg,
southern Germany, by Dr. I. Lewandowski, Institute for Crop Production and
Grassland Research, University of Hohenheim, Germany. Reproduced by
permission. A color version of the image is on the Bioenergy Information
Network website photo gallery (http://www.esd.ornl.gov/bfdp/).

establishment rates under drier conditions. Mechanization of rhizome establishment has reduced
costs to ECU 350/ha (US$ 410/ha), and ECU 200/ha (US$235/ha) may be expected in the future.
Earlier cost estimates were ECU 0.04/rhizome (US$0.047/rhizome), or ECU 400/ha (US$470/ha)
at 10,000/ha (Huisman et al. 1996).

At a typical planting density of 10,000 plants/ha (1-meter spacing), a dense root mat has
developed by year 2 or 3, which can prevent leaching of nitrogen. By this time the maximum
root density is found at a depth of 0�40 cm, although some roots penetrate down to 250 cm
(Koessler and Claupein 1998).

To harvest the miscanthus crop, a chopping forage harvester may be used (Kemper
Champion 3000), although a row-independent device is needed on older stands where the
original planting pattern has become indistinct (Fig. 4). Such harvesting trials have used a
chopped length from 11 mm to 44 mm. Baling and bundling are both possible (Fig. 5), but field
losses (10% or more due to baling) and stem size/stiffness (bundling) need to be taken into
account (Huisman et al. 1996; Venturi and Huisman 1997).
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Figure 5. Baling of miscanthus straw from a demonstration plot,
using a Claas baler. Photograph taken February 1995, Forchheim, Baden-
Württemberg, southern Germany, by Dr. I. Lewandowski, Institute for Crop
Production and Grassland Research, University of Hohenheim, Germany.
Reproduced by permission. A color version of the image is on the Bioenergy
Information Network website photo gallery (http://www.esd.ornl.gov/bfdp/).

6. ENERGY AND CO2  BALANCE: OTHER ENVIRONMENTAL
CONSIDERATIONS

Compared with other bioenergy options, miscanthus appears to fall midway between annual
crops (e.g., rapeseed, beet) and woody perennials (e.g., willow, poplar) in terms of its life-cycle
analysis. If high yields can be attained, its energy and carbon balance may be favorable (though
not as good as woody crops), and nitrous oxide emissions are low compared with other annually
harvested crops because of its high nutrient-use efficiency (Kaltschmitt et al. 1996; Lambert et
al. 1996). However, energy balance modeling has suggested that overall energy output/input
ratio may be as low as 1.1 in the case of co-firing miscanthus with coal because of the high
energy requirement for fuel pulverization. In the best case (small-scale heat and power
cogeneration with fluidized-bed gasification/gas-turbine technology) the energy balance was 9.6
(Molenaar et al. 1996; Venturi et al.1998). Miscanthus stands also contain more large animals
(mammals, birds) than other herbaceous crops (corn or reeds), possibly because of the greater
diversity of canopy structure leading to a higher number and greater range of ecological niches
(Jodl et al. 1998). N2O emissions from normal levels of N-fertilizer application had only a
modest effect on net offsets of greenhouse gas warming potential (6% of total CO2 displacement)
(Jorgensen and Jorgensen 1996). Some soil erosion benefits are claimed, but details are not
available (Walsh and McCarthy 1998). To date, there are no reports of plant diseases
significantly limiting production, but the crop is known to be susceptible to Fusarium blight and
Barley Yellow Dwarf Luteovirus (Walsh and McCarthy 1998); as with other clonal crop stands,
disease may present a significant risk. The European Miscanthus Improvement project has
recommended that new genotypes should be sterile (e.g., triploid) as a precaution against them



8

becoming weeds. There have been some small-scale escapes of fertile ornamental genotypes in
Ohio and Indiana which have caused local concern and reinforce the case for releasing only
sterile hybrids of miscanthus in the United States (D. Bergdorf, personal communication). It will
be necessary to determine whether the likely benefits of miscanthus clearly outweigh any
potential harm as an invasive species and to take measures to minimize the risk of harm before
U.S. federal funds can be used to develop the species as an energy crop [White House, 1999;
Section 2 (3)].

7.  ECONOMICS

Economic analysis based upon Danish conditions suggests miscanthus production costs are
comparable to those of other annual and perennial energy crops � about 70 ECU/t (US$82/t) or
4.1 ECU/GJ (US$4.80/GJ) � making the crop marginally economically viable if agricultural set-
aside payments are included. The market price of straw is about 80 ECU/t (US$94/t) in
Denmark; in contrast, the price of wood chips in Sweden is as low as 32 ECU/t (US$38/t).
However, a 10-to 12-year rotation (growing cycle) is required to absorb establishment costs
(Parsby 1996; Jorgensen and Venendaal 1997). A crop model for optimizing methods of
harvesting, storage, and transport is under development at Wageningen in the Netherlands, but
results are not yet available (Huisman et al. 1996; Venturi and Huisman 1998). Economic
analysis by the British Agricultural Development and Advisory Service (ADAS) suggests that
miscanthus is already viable as a feedstock for specialized paper production in chemical pulp
mills, and that energy cropping would be viable under current European conditions (without
subsidy) if yields above 18 t/ha/year were obtained on large farms with low fixed costs. Market
incentives would be required if yields were only 15 t/ha/year (Walsh and McCarthy 1998)

8. COMBUSTION CHARACTERISTICS

Mineral concentrations are reported to be low at the time of the early spring harvest:
0.09�0.34% N; 0.37�1.12% K; 0.03�0.21% Cl (Lewandowski and Kicherer 1997). Other reports
suggest that miscanthus has low mineral and ash content compared with other lignocelluolosic
species, and that the ratio of useful fertilizer nutrients to heavy metal contaminants in cyclone
and grate ashes makes miscanthus, hay, and hemp ash more useful than wood ash (Hasler et al.
1998). The mineral content is low compared with wheat straw, and comparable with
willow/poplar coppice. Like other biomass fuels, reactivity/ignition stability is high compared
with coal. Overall, the CO2 balance shows a 90% reduction in emissions compared with coal
combustion (Lewandowski et al. 1995).

The composition of miscanthus ash includes approximately 30�40% SiO2, 20�25% K2O, 5%
P2O5, 5% CaO, and 5% MgO � a range of values is reported from different studies (e.g.,
Moilanen et al. 1996; Hallgren and Oskarsson 1998). Ash behavior (sintering) is no worse than
many other biomass ashes, with potassium content a significant factor. Choice of thermal process
may be more important (e.g., gasification with gas clean-up) (Moilanen et al. 1996). Sintering of
ash under fluidized-bed gasification may cause agglomeration (or, at worst, alkali-induced
defluidization). Miscanthus ash showed clear sintering tendencies at temperatures as low as 600�

C, compared with reed canary grass and willow (the latter of which was inert up to 900� C). This
may be due to the combination of relatively high silica content in miscanthus together with
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potassium and fluxing agents such as iron (Hallgren and Oskarsson 1998). However, sintering
can be controlled by replacing common fluidized bed materials (silica sand) with calcium-based
materials, such as dolomite.

Miscanthus has been successfully burned on a commercial scale in Denmark, using a
78-MW circulating fluidized bed combustor (50% co-firing with coal) and a 160-MW powdered
fuel combustor (20% co-firing). The plants were already adapted for co-firing with straw: 17 t of
miscanthus bales (Heston type, 450 kg, 12% moisture) were burned without major problems in
the fluidized bed combustor, and 100 t in the powdered fuel combustor (Visser 1996).

9. CONCLUSIONS AND SUMMARY

The sustained European interest in miscanthus suggests that this novel energy crop deserves
serious investigation as a possible candidate biofuel crop for the United States alongside
switchgrass (Table 1). Switchgrass may show some advantages over miscanthus (notably lower
establishment costs from seed and being a native grass species), but miscanthus is worthy of
consideration, at least for certain niche applications. To date, no agronomic trials or trial results
for miscanthus are known from the conterminous United States, so its performance under U.S.
conditions is virtually unknown. Limited experience has been gained by the USDA/NRCS Plant
Materials Center in Michigan, using an ornamental genotype of Miscanthus sinensis for
vegetative barriers against wind erosion and run-off. Plantings in Ohio, Michigan, and southern
Indiana established successfully, but those in Wisconsin did not work; limited experience has
also been obtained in Louisiana (D. Bergdorf, personal communication). Small-scale Canadian
trials of Miscanthus x giganteus began in 1997�1998 outside Montreal (lat. 42.5� N), with initial
annual yields at spring harvest of 10�11 t/ha dry weight (R. Samson, personal  communication).

Speculating from European data on small plots in agricultural experimental stations, the crop
may attain as much as 25 t/ha (10 t/acre dry weight) by fall, but it is usually harvested in early
spring, after nutrient recycling and drying has taken place � by which time the yield has reduced
to about 15 t/ha (6 t/acre dry weight). Over large areas, under typical agricultural practices, an
average of about 8t/ha (3t/acre dry weight) may be expected at harvesttime. The European
conditions for these trials range from lat. 50� N to 37� N (roughly from North Dakota to
Kentucky, but note that the European climate tends to be warmer and more moderate at the same
latitudes than the climate in the United States). Average annual temperatures and rainfall for the
European trials range from 7.5� C to 17.5� C (45�63� F), and 500�1000 mm (20�40 in.), with
irrigation at the warmer, more southern latitudes. Fertilizer needs appear to be relatively low,
depending upon local soil fertility. As with most of the new bioenergy crops, there seems to be a
steep "learning curve."  Costs are expected to fall and uncertainties to be reduced as first
demonstration trials and then commercial plantings become more widespread. Establishment
costs appear to be fairly high at present (a wide range is reported from different European
countries), although these may be expected to fall as improved management techniques are
developed.
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Table 1. Comparison of the properties of miscanthus and switchgrass

Fuel property Miscanthusa

(Miscanthus x
giganteus)

Switchgrassb

(Panicum virgatum)

Gross heating value (dry; GJ/t) 17.1�19.4 18.3

Net energy content (dry; GJ/t) 15.8�16.5 N/A

Moisture content at harvest (%) 15 15

Chopped density at harvest (kg/m3) 70�100 108

Baled density [compacted bales] (kg/m3) 130�150 [300] 105�133

Holocellulose (cellulose + hemicellulose)
(%)

64�71 54�67

Ash content (%) 1.5�4.5 4.5�5.8

Ash fusion (melting) temperature (C)
[temperature at which some sintering
observed]

1090
[600]

1016

Sulfur content (%) 0.1 0.12

aData for miscanthus from Acaroglu and Aksoy (1998); Nikolaisen (1998); Hallgren and Oskarsson
(1998); Huisman et al. (1996); Moilanen et al. (1996); Papatheofanous et al. (1996).

bData for switchgrass from McLaughlin et al. (1996). 
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  10. CONTACTS FOR FURTHER INFORMATION

Dr. Iris Lewandowski
Institute for Crop Production and Grassland Research
University of Hohenheim (340)
D 70599 Stuttgart
GERMANY
E-mail: lewandow@uni-hohenheim.de

Dr. S. McCarthy/Dr. M. Walsh
Hyperion Energy Systems Ltd.
Main Street
Watergrasshill, Co. Cork
IRELAND
Tel. +353 21 889461
Fax: +353 21 889465 
E-mail: energy@indigo.ie

European Energy Crops InterNetwork Web site:   http://btg.ct.utwente.nl/eeci/

For limited North American experience with (a) establishing miscanthus for soil erosion control,
and (b) evaluation of productive potential:

(a) Dr. David Bergdorf
Plant Materials Specialist
USDA Natural Resource Conservation Service
1405 South Harrison Road
East Lansing, MI 48823
USA
Tel. +1 (517) 337-6701 x1211
Fax: +1 (517) 337-6905
Email: dave@mi.nrcs.usda.gov

(b) Roger Samson
Executive Director
Resource Efficient Agricultural Production (REAP) - Canada
Box 125, Maison Glenaladale
Ste. Anne de Bellevue
Quebec H9X 3V9
CANADA
Tel. +1 (514) 398-7743
Fax: +1 (514) 398-7972
E-mail: reap@interlink.net
http://infosys.agrenv.mcgill.ca/~reap/
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