NASA's Wake Acoustics Research

Presentation by NASA and DOT-Volpe Center

4th NASA Integrated CNS Conference and Workshop Fairfax, VA, April 26-30, 2004

- NASA Conducted an Extensive Measurement Campaign at DIA on the Phenomenon of Acoustic Emission of Wake Vortices.
- August 18 to September 26, 2003.
- Recorded About 1200 Flybys (Mostly for Aircraft in Landing Configuration).

- NASA Developed an Active Wake Vortex Predictor for the Terminal Area (AVOSS -<u>Aircraft VOrtex Spacing System</u>) which was Demonstrated at DFW in July 2000.
- Under the Joint NASA-FAA Wake Turbulence Research Management Plan (RMP), NASA Will Focus on Developing Mid- and Long-Term Products to Improve NAS Capacity without Compromising Safety.

NASA's Interest in Wake Sensors

- NASA, as Part of Its Long-Term RMP Efforts, Continues to Mature the Predictor and Wake Sensor Components.
- NASA Has Been Exploring a Number of Technologies for the Wake Sensor Component of a Wake Vortex Advisory System.
- Examples Are Lidar, Windline, Sodar, Radar, RASS and More Recently...

NASA's Interest in Passive Wake Acoustics

 Congress Directed NASA to Examine the Concept Behind SOCRATES (Sensor for Optically Characterizing Remote Atmospheric Turbulence Emanating Sound) - A Laser Based Passive Wake Acoustics Sensor Under Development.

Objectives of the Denver Wake Acoustics Test

- ✓ 1: Scientific Investigation of the Acoustic Properties of Aircraft Wake Vortices and Ambient Noise Characterization Using a NASA-DOT Phased Microphone Array.
- ✓ 2: Assess Improvements in SOCRATES Instrumentation.
- ✓ 3: Benchmark NASA-DOT Microphone Array Using DLR Array.

Denver International Airport

✓ Desirable Acoustic Environment

✓ Diverse Traffic Mix, Abundance of *Large* and *Heavy* Aircraft

Participating and Supporting Organizations

- NASA LaRC
- OOT Volpe Center
- @ Titan
- OptiNav
- Microstar Laboratories
- OCTI
- MIT LL
- AeroVironment
- WLR Research
- FST
- Lockheed Martin
- OLR Berlin
- Anteon
- 🧶 FAU
- United Airlines
- Ita Airport
- Local Denver FAA

General Test Configurations

- Landing Configuration.
- Vortices Generated from Nominally 700 Feet Altitude.
- Acoustic Data from Government Microphone Array.
- Lidars Providing Ground-Truth Wake Track and Strength Data.
- Metrological Sensors Characterizing State of the Atmosphere.
- Aircraft Identification and Flight Tracks from ARTS.

DIA Test Site

The first operation on 16R/34L was a United Airlines 777 departure, flight 244 to Chicago at 10:38AM local time.

Test Site Aerial Photograph

Test Site Aerial Photograph

Primary Acoustic Sensor - NASA-DOT Array

- Two Configurations Deployed.
- Configuration 1 8/28 to 9/19 (20 1000 Hz).
- Configuration 2 9/22 to 9/23 (10 2000 Hz).

Array Layout

Configuration 1

Configuration 2

Aerodynamic Sensors

CTI Pulsed LidarMIT LL CW Lidar

Metrological Sensors

AeroVironment Wind Sodar

- 107 Ft Tower with R. M. Young Propeller Anemometers at Three Heights
- Vaisala Temperature and Relative Humidity Sensor at Mid-Height of Tower
- Kipp & Zonen Microwave Radiometer Temperature Profiler
- METEK Ultrasonic Anemometer

Additional Measurements

SOCRATES Laser Array DLR Phased Microphone Arrays

Looking South from the Government Array

Close-Up of the Array Components

Looking West

Looking East from CTI Pulsed Lidar

Looking South from SOCRATES

Lockheed-Martin Photograph

Meteorological Sensors

Tower – Metrological and Array Calibration

OptiNav Photograph

Meteorological Sensors

Array Signal Processing

Sensor 2 Hears an Earlier Version of Sensor 1

Array Signal Processing

Sensor 1 Sensor 2

The Time Delay Sensor 1 Hears is Proportional to the Additional Distance the Same Sound Needs to Travel in Getting to Sensor 1

Delay and Sum Beamforming

- If the Location of Sound Source Were Known, Appropriate Time Shifts in the Recorded Signals from Different Sensor Elements in the Array can be Applied in Software.
- Acoustic Signature from the Source of Interest is then added Constructively; Signal is Amplified from the Investigated Location.

Figure Taken from Johnson, P. and Dudgeon, 1993

Delay and Sum Beamforming

- Meanwhile, Sound From Other Locations Add Up Incoherently. The Result of Incoherent Summation Could be Shown as a Lower-Amplitude Wave ; Unwanted Noise is, in Effective, Rejected.
- Entire Array Acts as a Directional Acoustic Sensor (Hence, "Beamforming").

Figure Taken from Johnson, P. and Dudgeon, 1993

Delay and Sum Beamforming

- **Noise Source Location is Usually not Known Need to Find it.**
- Systematically Vary/Search Assumed Noise Source Locations.
- Apply the Appropriate Delays and then Sum Signals Based on Assumed Locations.
- Acoustic Pressure Level Computed at Each Searched Location (i.e., Grid Points).
- Results Can be Visualized as Contour Plots Noise Source Localization Map ("Acoustic Imaging"; "Acoustic Camera").

Sample Results - Microphone Array

- Run 030903_194324 : September 3 at 7:43PM Local Time (B767).
 Beamforming at 500 Feet Altitude, 1000 Feet x 1500 Feet Coverage Area for a Horizontal Beamforming Planes ("Snapshots").
- The Analysis Band is 200 Hz and Below.

Data Analysis Needs to Address

- Do Wake Vortices Generate a Unique Acoustic Signature?
- How Consistently do Wake Vortices Generate These Signature?
- What Are the Characteristics of these Signatures and Circumstances Under which they are Generated?
- What is the Frequency Range of these Acoustic Signals?

Data Analysis Needs to Address

- Can Vortex Strength be Reliably Inferred from Wake Acoustic Signatures? What is the Fundamental Scientific Principle?
- If the Answers to All of the Questions are Positive, Then Assess the Feasibility of an Acoustic-Based Sensor System Detecting, Identifying, Tracking Wake Vortices and Quantifying the Circulation in a High Ambient Noise Environment Typically Found in Major Airports.

Questions?

