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Preface

This project (Project 1448-43270-2M-002) has been coordinated through the Natchitoches

National Fish Hatchery (NNFH) and the U.S. Geological Survey’s National Wetlands Research

Center (NWRC).  From November 2001 to April 2002, over 280 sturgeon of the genus

Scaphirhynchus (including pallid sturgeon, shovelnose, and their hybrids) were sampled from the

outflow channel of the Old River Control Structure Complex (ORCC) in Concordia Parish, La.  In

the overall project, several datasets were collected (see Appendix), including species identification

by using microsatellites and morphometric characters, food habits, physical anomalies,

information on blood cells, and pathologic evidence of iridovirus – the first indication in the lower

Mississippi population of pallid sturgeon.  In this study, data on blood cells were obtained from

the sturgeon collected monthly from approximately 20 different animals at each sampling time.

This report presents preliminary information on differential blood cell identifications in

sturgeon, data on comparative genomic DNA content and DNA degradation, and summaries and

interpretations of data collected in light of available scientific literature addressing blood

parameters of fish and sturgeon, in particular.  Results obtained from collection and examination

of blood and body fluids are often essential in establishing the health of fish (Blaxhall, 1972;

Fange, 1992).  Blood cells and sperm cells can be obtained nondestructively from fishes, even

from small specimens that weigh less than 100 g (Stoskopf, 1992a).  For flow cytometry assays,

whereby cells are analyzed individually in a fluid stream, less than 1 :L of blood is needed.

Examinations of blood by microscopy and flow cytometry were performed at NWRC in assisting

in the efforts directed at recovery of the pallid sturgeon population in the Lower Mississippi River

Basin.
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Introduction

Hematological factors, particularly the cellular parameters, of sturgeon are not well studied.

Serum glucose, lactate, and osmolality (Kieffer and others, 2001) as well as various other

hematological features have been used to evaluate the physiological responses of fishes (Clark and

others, 1979;  Leonard and McCormick, 1999;  Martinez-Alvarez and others, 2002).  Species-

specific normal ranges of such parameters can be established as useful guidelines for interpreting

stress-induced physiological changes (Clark and others, 1979; Roche and Boge, 1996) with the

recognition that variances may be due to genetic makeup, early life history, nutritional status, and

the fish’s environment.

In the study of fish blood, there are inconsistent rules of nomenclature and procedures as

compared to mammalian hematology (Stoskopf, 1992b).  Generally, the nomenclature in fish

hematology has followed the nomenclature used in classifying mammalian cells.  A

comprehensive review on fish leukocytes (white blood cells or WBC) (Ellis, 1977) presents the

major types as lymphocytes, thrombocytes, granulocytes (or neutrophils or heterophils), and

monocytes.

The English scientific literature is not abundant with regard to pallid sturgeon, and incomplete

information is available with regard to sturgeon hematological parameters (Alyakrinskyay and

Dolgova, 1984).  What can be gleaned are the facts that immature sturgeon have high amounts of

hemoglobin, and that by sexual maturity, the total blood volume has lessened to approximately 3%

of their body weight (Alyakrinskyay and Dolgova, 1984).  The hemoglobin proteins are identical

during the sea and river periods of life, unlike salmonids (Luk’yanenko and others, 2002b), yet the

albumins do express heterogeneity (Luk’yanenko and others, 2002a).  Investigations into serum

electrolyte concentrations showed that sodium concentration is independent of the aquatic

environment, but potassium levels change with season, and that the overall serum ionic

composition of the body fluids remains stable in both salt water and freshwater environments

(Natochin and others, 1975; Hunn and Christenson, 1977).  Notable differences in osmolality

between sturgeon species and within animal compartments (serum versus milt) have been seen

with lake, pallid, and shovelnose sturgeon (Wayman, 2003).

Blood cells are the mediators of defense mechanisms in animals, and WBCs are key

components of innate immune defense (Jenkins and Ourth, 1993) where defense responses are

measurable and influenced by stressors (Adams, 2002).  In response to stressors in the aquatic
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environment, an overall drop in WBCs could indicate immunosuppression.  An overall increase

could mean infection or response to stressors mediated by cortisol hormone response.  In all

teleosts, cortisol is the major corticosteroid produced under stress, and it has been indicated as the

major factor that mediates the suppressive effects of stress on reproduction (Consten and others,

2002).  Circulating levels of cortisol are often used as an indicator of the degree of stress

experienced by fish (Adams, 2002).  Numbers of the neutrophil cell type, in response to increased

circulating cortisol, is often indicative of stressful conditions or infectious disease (Ellsaesser and

others, 1985;  Ellsaesser and Clem, 1986).  Hybrid Russion sturgeon (Acipenser gueldenstaedtii x

Huso huso) fingerlings fed increased dietary protein and lipid showed a distinct decrease in

neutrophil numbers and an increase in lymphocytes (Gershanovich and Kiselev, 1993).

Significant differences were found in the differential leukocyte counts between stellate sturgeon

Acipenser stellatus and beluga Huso huso sturgeons at age ~200 days, where 68.0-73.5% were

lymphocytes, 21.8-25.1% were neutrophils, and 3.0-4.6 were eosinophils (Palikova and others,

1999).  In 6-year-old Persian sturgeon Acipenser persicus, the leukocyte count was 10.3% with

20% neutrophils, and in the 6-year-old beluga the leukocyte count was 7.9% with 33.9%

neutrophils (Bahmani and others, 2001).

The Scaphirhynchus sturgeon stock at the ORCC is comprised of pallid sturgeon (an

endangered species), shovelnose sturgeon S. platorynchus, and their hybrids.  Spawning,

propagation, and recovery of pallid sturgeon are complicated by morphological similarity between

pallid sturgeon and their hybrids with sympatric shovelnose sturgeon.  Differentiation of species

by morphometric and meristic characters alone is problematic (Wills and others, 2002).  Because

fish red blood cells (RBC) are nucleated, DNA is readily available for measuring genome content

with flow cytometric methods (Shapiro, 1993).  Sturgeon blood analyzed in concert with a

standard of known genome size (Tiersch and Chandler, 1989) can be used in an attempt to

distinguish notable genomic size differences between animals, thereby assisting with species

determination efforts for pallid sturgeon, shovelnose sturgeon, and their hybrids.  This approach

has been attempted with pallid and shovelnose sturgeon, where no significant differences were

noted between the genome sizes (P = 0.9333) (Wayman, 2003).  For Eurasian sturgeon species,

DNA content differences were detected by flow cytometry (Birstein and others, 1993).

Genomic DNA alterations or fragmentations are widely used in physiological, genetic, and

toxicological studies.  Under normal circumstances, all nonreplicating normal diploid cells are in
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the G0 and G1 phases of the cell cycle, and these nuclei should have the same DNA content.  In

addition to increased DNA coefficient of variation (CV), deviations from normal diploid

histograms can be noted in cells from animals exposed to contaminants (Lamb and others, 1991;

Lengenfelser and others, 1997).  These are very sensitive and reliable endpoints that detect

deviations in ploidy from the normal 2N.  Because the acquisition of data on potential alterations

in CV or aneuploidy detection does not call for additional sample manipulation beyond DNA

content acquisition, samples were analyzed in this study for possible indications of loss of DNA

integrity.

Alterations observed in blood cell characteristics (number, shape, components, etc.) are

diagnostic indicators of environmental stress on fish (Llorente and others, 2002).  Overall, the goal

of this project was to obtain baseline data on differential blood cell counts, on comparative DNA

content, and on DNA integrity.  By sampling the sturgeon nondestructively, the additional data

was provided on the sturgeon collected in a pallid sturgeon recovery effort in the Lower

Mississippi River region in 2001 and 2002.

Materials and Methods

Fish were bled without anticoagulant, blood smears were fixed, and differential counts were

performed later.  The remaining blood was added to acid citrate dextrose (ACD) anticoagulant (~9

parts blood to 1 part ACD) for analysis of genome size and DNA integrity within 24 hours.

Blood Collection

In order to study the differential cell count and the genome size, the following NWRC

standard operating procedure was employed for the monthly blood collections at Natchitoches

National Fish Hatchery (NNFH):
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BLOOD COLLECTION OFFSITE
Each month, blood was collected from 20 different sturgeon.  The whole blood was analyzed for genome size
and possible aneuploidy by flow cytometry, and the smears were used for differential cell counts.

Supplies Needed
100 microscope slides 25 microcentrifuge tubes w/ 1 drop ACD
microcentrifuge tube box 25 3-ml syringes w/ 25G5/8 needle
methanol formaldehyde
staining jar transfer pipettes
permanent markers & pencil distilled water in squirt bottle
latex gloves microscope slide box
cooler and ice pack notebook
paper towels

METHODS
USFWS personnel drew blood from behind the anal fin during physical inspections of the fish.  Four

microscope slides were prepared for each fish by labeling twice with a marker with the fish number
(sequential in the notebook with corresponding recorded pit tag number) and “M” or “F”, so that there were 2
methanol-fixed and 2 formaldehyde vapor-fixed slides per fish.  Blood smears were made using a pinpoint of
blood.  Blood was gently smeared with the edge of another slide, without smashing cells (rest the slide on
your finger and drag it across the smear slide).  Smears were air-dried.

In the notebook, all possible information was recorded, remembering the fish ID number along with the
corresponding pit tag number so the data could be cross-referenced.

For methanol-fixed smears, 2 slides were fixed for 30 seconds with methanol using a transfer pipette.
Rinse with squirt bottle of water, then excess water was shaken off.  For formaldehyde vapor-fixed smears, 2
slides were fixed over formaldehyde vapors for 10 minutes in staining jar.  (The bottom of jar had a small
amount of formaldehyde in it, and the blood smears did not come into contact with liquid.)  Slides were
stored in a labeled microscope slide box.

The rest of the blood was placed in a microcentrifuge tube containing a drop of ACD.  The tube was
labeled twice (on the cap and side) with the fish number.  Tubes were inverted once.  The blood was stored in
a cooler with an ice pack, and cells were not allowed to freeze.

Differential blood cell counts.  Two of the methanol-fixed blood smears were stained by Wright

Giemsa (WG), and two of the formaldehyde vapor-fixed blood smears were stained by Sudan

Black B (SB) (Ellsaesser and others, 1984;  Jenkins and Ourth, 1993), and counterstained with

WG or methyl green.  Sudan Black B stains the lipids in neutrophils.  Images of cells are

presented (figs. 1-5).  The WG staining allows differentiation between WBC and RBC (figs. 1-2,

4).  The SB-stained slides were used to differentiate neutrophils from other WBC and RBC (figs. 3

and 5).  No attempts were made at further differentiation of WBC into categories such as

eosinophils, thrombocytes, monocytes, or lymphocytes.  In order to collect data for cell counts, at

least 300 total cells (RBC + WBC) per slide were counted in duplicate.  For SB slides, neutrophils

per total WBC (at least 100 WBC) were also scored in duplicate.
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Fig. 1.  Pallid sturgeon whole blood stained with Wright Giemsa.  Red blood cells are nucleated
and arrows point to multiple types of white blood cells.  Bar is equal to 10 :m.

Fig. 2.  Pallid sturgeon (fish 37) whole blood stained with Sudan Black B and counterstained with
Wright Giemsa.  Leukocytes, including thrombocytes, are congregated in the center of the field of
view, indicating an ongoing peripheral blood response.  RBC is red blood cells;  WBC is white
blood cells.  Bar is equal to 10 :m.
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Fig. 3.  Pallid sturgeon (fish 72) whole blood stained with Sudan Black B and counterstained with
methyl green.  Neutrophils (arrow) can be identified from other WBC by darkly staining
cytoplasmic granules.  WBC is white blood cells.  Bar is equal to 10 Fm.

Fig. 4.  Pallid sturgeon whole blood stained with Wright Giemsa.  Multiple cell types are noted,
and the arrow points to a fusiform shaped thrombocyte.  Bar is equal to 10 :m.
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Fig. 5.  Whole blood of pallid sturgeon stained with Sudan Black B and counterstained with
Wright Giemsa (top and bottom migrographs).  Neutrophil (arrows) can be identified from other
cells by darkly staining cytoplasm.  Bar is equal to 10 Fm.

Statistics.  Since the fish collected every month were not the same, differences between the two

WBC staining methods over the 6 months were analyzed by a two-way ANOVA for staining
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methods and month effects including their interaction, using the General Linear Means procedure

(PROC GLM) (SAS Institute Inc., 1990).  Ratios were scored as proportions and were arcsine

(sqrt) transformed for analysis (Zar, 1984).  For the significant main month effect, the Duncan’s

Multiple Range Test was applied at the level of significance " = 0.05.

Flow Cytometry of Blood

Cells were stained with equal volumes of 0.112% sodium citrate containing 50 µg/mL

propidium iodide (PI), RNAse A at 1 µg/mL, and 0.1% (v/v) Triton X-100 for 30 min at 24°C.

Stained cells were filtered through a 30 µm nylon mesh (Small Parts, Miami Lakes, Fla, USA) and

the distribution of nuclei in the G0/G1 phase of the cell cycle was analyzed with a flow cytometer

(FACScan; Becton Dickinson Immunocytometry Systems, San Jose, Ca [BDIS]). Nuclei were

analyzed at 1 x 106 per mL at a rate of 300 per second, and 5-10 K events were collected by using

a 1024-channel FL2 parameter at 340 linear, with linear size and scatter parameters, and doublet

discrimination mode.  Samples were run in triplicate.  Histograms, dot plots, and density plots

were generated by using CellQuest software (BDIS), with each sample analyzed in four ways:

FSC versus SSC, FL2A histogram, FL2A versus FSC, and FL2W versus FL2A.  These analyses

allowed degraded samples to be distinguished from intact samples (Alanen and others, 1989;

Zbieranowski and others, 1993).  Nuclei occurring in the G0/G1 peak were analyzed for distance

from chicken nuclei internal standard, and the CV was calculated at the full width of the peak at

half the maximum height (Shapiro, 1993).  ModFit LT or Cell Quest software (BDIS) were

employed for analyses of flow cytometry data.
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Results

In the preliminary analyses, fork length and fish weight were found to not influence the cell

counts, in that they were not significant as covariates in the model.  For WBC per total cells, no

significant differences were noted in staining methods for detecting WBC and RBC, as well as in

the interaction between month and method (p > 0.05).  Significant differences were noted between

the months (p < 0.0001), where Duncan’s test grouped March, April, and November as similar and

significantly higher than February and December, and January being significantly lower than all

(figs. 6 and 7).  Neutrophils were plotted in relation to RBC (fig. 8).
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Fig. 6.  White blood cells (WBC) as percent total cells in differential blood cell counts (+SE).
Blood was collected from ~20 different sturgeon per month in 2001-2002.  WBC are white blood
cells, total count is red blood cells plus WBC, SB is Sudan Black B staining method, and WG is
Wright Giemsa staining method.  Different letters designate significant differences.

For neutrophils per WBC counts, significant differences were noted between months, with

April significantly highest (62.2%), followed by February (48.3%) and March (46.3%), and then

the group November (35.3%), December (30.0%), and January (28.7%) (fig. 7).
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Fig. 7.  Neutrophils as percent white blood cells in differential blood cell counts (+SE).  Blood
was collected from ~20 different sturgeon per month in 2001-2002.  Cells were stained with Sudan
Black B and counterstained with methyl green or Wright Geimsa.  Different letters designate
significant differences.
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Fig. 8.  Average of neutrophils as percent red blood cells in differential blood cell counts.  Blood
was collected from ~20 different sturgeon per month in 2001-2002.  Cells were stained with Sudan
Black B and counterstained with methyl green or Wright Geimsa.

The graphs that follow represent data per fish by month (figs 9 – 14).
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Differential Blood Count per Fish for Nov. 2001
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Fig. 9.  Differential blood cell counts using Sudan Black B (SB) and Wright Giemsa (WG)
staining with sturgeon blood.  Striped bars indicate fish had a morphological abnormality (top).
Note fish 3 had elevated neutrophils (Neuts) and a decreased total white blood cell (WBC) count.
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Differential Blood Count per Fish Dec. 2001
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Differential Blood Count per Fish Dec. 2001
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Fig. 10. Differential blood cell counts using Sudan Black B (SB) and Wright Giemsa (WG)
staining with sturgeon blood.  Bars in yellow indicate iridovirus suspected in the fish, and striped
bars indicate fish with a morphological abnormality (top).  Note low neutrophils (Neuts) for fish
19, and the elevated neutrophil count for fish 35.  WBC is white blood cells.
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Differential Blood Count per Fish Jan. 2002
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Differential Blood Count per Fish Jan. 2002
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Fig. 11.  Differential blood cell counts using Sudan Black B (SB) and Wright Giemsa (WG)
staining with sturgeon blood.  Striped bars indicate fish had a morphological abnormality (top).
Note low percent neutrophils (Neuts) for fishes 45 and 48, and elevated neutrophils for 40 and 47.
WBC is white blood cells.
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Differential Blood Count per Fish Feb. 2002
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Fig. 12.  Differential blood cell counts using Sudan Black B (SB) and Wright Giemsa (WG)
staining with sturgeon blood.  Striped bars indicate fish had a morphological abnormality (top).
Note the elevated percent neutrophils (Neuts) for fish 75.  WBC is white blood cells.
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Differential Blood Count per Fish March 2002
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Differential Blood Count per Fish March 2002
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Fig. 13. Differential blood cell counts using Sudan Black B (SB) and Wright Giemsa (WG)
staining with sturgeon blood.  Bars in yellow indicate iridovirus detected, and striped bars indicate
fish had a morphological abnormality (top).  Note low number of percent neutrophils (Neuts) in
fish 82.  WBC is white blood cells.
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Differential Blood Count per Fish April 2002
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Fig. 14.  Differential blood cell counts using Sudan Black B (SB) and Wright Giemsa (WG)
staining with sturgeon blood.  Striped bars indicate fish had a morphological abnormality (top).
Neuts is neutrophils;  WBC is white blood cells.

A summary of the pit tag and NWRC fish identification numbers, along with morphological
anomalies and iridovirus evidence, are provided in table 1.
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Table 1. Pit tag numbers and corresponding NWRC I.D. numbers*.
Fish ID # NWRC# Fish ID # NWRC# Fish ID # NWRC#

Nov-01 Jan-02 Mar-02
131969654A 1 115224797A 38 131674651A 78
131817271A 2 115325597A 39 131866730A 79
131734772A 3 132618723A 40 131752577A 80
131827211A 4 114953621A 41 131679652A 81
131752511A 5 132623093A 42 131659350A 82
131866280A 6 133116374A 43 131959356A 83
131715473A 7 132937351A 44 131762337A 84
131911640A 8 115225144A 45 131811445A 85
131833172A 9 132579385A 46 131946460A 86
012617596b 10 132939735A 47 131727293A 87
132271352A 11 132937135A 48 131736514A 88
131859460A 12 114955317A 49 131914283A 89
131872521A 13 133114772A 50 132232192A 90
131666630A 14 115225461A 51 131931454A 91
131751561A 15 115266243A 52 131874240A 92
131672570A 16 132622264A 53 131934170A 93
131679567A 17 132968535A 54 131659165A 94

132936457A 55 131966597A 95
132939522A 56 131736643A 96
115233754A 57 131877246A 97

Dec-01 Feb-02 Apr-02
132246640A 18 133112621A 58 131872595A 98
131669367A 19 132625123A 59 131725116A 99
131939285A 20 132632254A 60 131736095A 100
131661364A 21 133109513A 61 131728690A 101
131767627A 22 132945647A 62 131733112A 102
131736763A 23 132962160A 63 131847356A 103
131758560A 24 132953096A 64 131871656A 104
131728246A 25 132616172A 65 131916532A 105
131663525A 26 132973235A 66 131677091A 106
132269194A 27 132616151A 67 131677545A 107
131713140A 28 132619753A 68 132613227A 108
132268445A* 29* 133118654A 69 131869212A 109
012611022b 30 132622346A 70 131768653A 110
131751652A 31 133119277A 71 131865137A 111
131865516A 32 132968145A 72 131746133A 112
131674596A 33 132944766A 73 131662656A 113
131936091A 34 132939226A 74 131869692A 114
131914717A 35 132962694A 75 131722447A 115
132272560A 36 133117761A 76 131674497A 116
131925643A 37 132932547A 77 131917221A 117

131715522A 118
131659517A 119

*Yellow highlights indicate iridovirus detected or suspected in the samples by histopathology (see
Appendix).  Pink highlights indicate fish had a morphological anomaly such as developmental
abnormality (see fig. 18) from predator/prey interaction, or lesion, etc. Most abnormalities were
accompanied by redness of tissue, indicating an inflammation reaction.
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A nonlinear analysis performed on the cumulative frequency distribution (Frank Manheim,

personal communication) resulted in the following graphic (fig. 15):

Fig. 15.  This graphic depicting a nonlinear data analysis on the cumulative frequency distribution
(y axis) of white blood cells (WBC) suggests that animals are not showing equivalent numbers of
WBC.  Most samples had an average value, while a few animals displayed many or few WBC.
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A trend in increased numbers of WBC was noted with increased temperature (figs. 16 and 17).
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Fig. 16.  Water temperature at the sturgeon sampling site, the Old River Control Structure
Complex on the Mississippi River, versus the percent white blood cells (WBC) in the total cell
population.
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Fig. 17.  Water temperature at the sturgeon sampling site, the Old River Control Structure
Complex on the Mississippi River, versus the percent neutrophils relative to the RBC counts.
RBC is red blood cells.
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Results of flow cytometry:

Blood was analyzed for relative genome size and DNA integrity.  The results are summarized

per month.

November:  Normal profile for DNA content and DNA integrity.

December:  Normal profile for DNA integrity.

NWRC Fish 35 (pit tag 131914717A), having physical anomalies  (fig. 18) and having been

identified as a shovelnose sturgeon, had greater DNA content than the other fish (fig. 19).

Fig. 18.  Digital photograph of fish 131914717A pit tag, or NWRC 35.  Note the malformed
pectoral fin.



21

Fig. 19.  Flow cytometry frequency histogram indicating DNA content of blood from sturgeon
NWRC ID 35 (peak at 491) and internal chicken blood standard (peak at 296).  Peaks are
designated with markers (M).
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Fig. 20.  Flow cytometry frequency histogram indicating DNA content of blood from sturgeon
NWRC ID 34 (peak at 400) and internal chicken blood standard (peak at 293).  This histogram,
indicating the distance between the peaks, was the most common among all the samples.  Peaks
are designated with markers (M)

The nuclear DNA content of chicken erythrocytes is about 2.5 pg/cell (Tiersch and Chandler,

1989), and clearly less than the DNA content of sturgeon 34 and 35 (and all other samples) (figs.

19 and 20).  Although detailed analyses of geometric means were not performed for each sample,

the distance between peaks was measured linearly per sample.  Sturgeon 35 was clearly different

from the other samples, where the genome content for sturgeon 35 is estimated at 4.2 pg (fig. 19)

and the other samples were estimated at 3.4 pg DNA.

January :  Fish 51 (pit tag 115225461A) appeared to have a hyperdiploid peak (fig. 21 top).  Upon

closer inspection by the following flow dot plot (fig. 21 bottom), the peak was not due to increased



23

DNA amount, but to degraded DNA.  This is indicated by the pattern of increased stain binding to

smaller nuclei (Alanen and others, 1989; Zbieranowski and others, 1993).

Fig. 21.  Flow cytometry histogram and density plot of DNA content of nuclei from blood from
sturgeon NWRC ID 51.  A hyperdiploid peak is noted (arrow) (top).  When size (FSC-H) is
compared with DNA staining (FL2A), the position of the subpopulation of nuclei (arrow)
indicates a degraded sample, not being an indication of DNA fragmentation (bottom).
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February :  Fish 63 (pit tag 1133109513A), having two different species designations in FWS

spreadsheet), had two diploid peaks close to each other (fig. 22 top).  Fish 68 (pit tag

132619753A) had a similar profile as fish 63, except the peaks were more clearly separated (fig.

22 bottom).  Fish 68 also was noted as having two species designations in the FWS spreadsheet

(Jan Dean, personal communication; see Appendix).
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Fig. 22.  Flow cytometry histograms of DNA content of sturgeon (right peak, Marker 1 and
Marker 2) with internal chicken standard (left peak) (top).  Bottom histogram without internal
chicken control shows two peaks (Marker 1 and Marker 2) clearly, and the size (FSC-H) versus
DNA content (FL2A) does not indicate the sample was degraded and shows two fluorescent
subpopulations of different sizes.  There was a 45 channel difference in DNA amount between
diploid peaks for Fish 63, and a 43 channel difference in DNA amount between diploid peaks for
Fish 68.  The doublet peaks may indicate a hybrid sturgeon.
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March:  Normal profiles for DNA content and DNA integrity.

April:  Normal profiles for DNA content and DNA integrity.

Discussion

In light of efforts to restore depleted populations of sturgeon, these data add to the

physiological information needed for better understanding pallid, shovelnose sturgeon, and their

hybrids.  There are multiple reasons for studying blood of endangered and threatened species.

Firstly, the use blood provides a nondestructive sample, thereby not decreasing animal numbers.

Moreover, the data are obtained from the focus species, and not a surrogate.  Secondly, species

determinations can be assisted by the study of stained blood cell DNA content.  Thirdly, loss of

DNA integrity could point to possible exposure to anthropogenic compounds.  Fourthly, baseline

normal values for differential blood cell counts can establish ranges of blood cells numbers that

reflect average values for the species.  In our study, sampling blood over the course of six months

and obtaining resultant differential cell counts have begun to provide a basis for delineating the

normal ranges of blood cell values for the pallid sturgeon.  Because the percentages of neutrophils

for the final three sampling months appeared high (fig. 7), data will be compared to both a second

year of sampling (planned 2003 – 2004 study) and a recount on the slides from this 2001-2002

sampling season.  Finally, additional valuable information can be obtained from blood, such as a

measure of stress by serum cortisol concentrations, or measures of sex steroids or ions that can be

used to assist with gauging breeding readiness.

Overall, fish did not show extremely high or low values of WBC counts (fig. 6), and no fish

showed DNA integrity loss (fig. 21).  In a previous study of baseline contaminant levels in

shovelnose sturgeon from the same study area, whole body levels of organochlorines and

toxaphene indicated exposure to environmental contamination (Conzelmann and others, 1997).

The results of this study found no evidence of genotoxicity.

Under normal circumstances, all nonreplicating normal diploid cells are in the G0 and G1

phases of the cell cycle, and these nuclei should have the same DNA content.  By the inclusion of

a sample with a known DNA content with the unknown sample, one can measure the DNA

content of the unknown relative to the known (Tiersch and Chandler, 1989).  One fish had a

notably higher DNA content than the others (figs. 19 and 20), and two fish presented two diploid

peaks each (fig. 22).
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The range of the heterophil or neutrophil numbers in fish blood is quite wide, but this cell type

is usually not the predominant leukocyte in peripheral circulation (Stoskopf, 1992b).  The increase

in this cell type is a relatively rapid response in fish – within 24 hours – and has appeared to be

independent of temperature (Stoskopf, 1992b).  Stress was likely induced due to gillnet capture.

An increase in WBC and neutrophil counts appeared directly or indirectly related to temperature

(figs. 16 and 17).  Fathead minnows, Pimephales promelas, were shown to have increased

numbers of leukocytes during their spawning season during a time of increased temperatures,

where the count tripled (Thomas and others, 1999).  In stressed channel catfish Ictalurus

punctatus, neutrophils approximated 30% of the circulating leukocytes, and in non-stressed catfish

levels were about 4% (Ellsaesser and Clem, 1986).  In fish, an increase of neutrophils due to stress

responses is frequently associated with a decreased overall leukocyte number (Slicher, 1961) and

may be seen in instances of chronic stress (Adams, 2002).  In this study, some individuals

exhibited this pattern (figs. 9 and 10).  Again, additional monthly sampling of pallid sturgeon will

be illustrative.

Thrombocytes are responsible for clot formation and are considered to be distinct and

unrelated to lymphocytes.  Thrombocytes were noted to clump (fig. 2).  For the purposes of this

study, although some were distinct by their elongated, eliptical, or fusiform shape (fig. 4), they

could not be reliably separated from the other WBC types.  Counting thrombocytes as WBC may

have inflated the overall WBC counts.

The use of either WG or SB showed that each is a reliable method for distinguishing WBC

from RBC for pallid sturgeon.  In the upcoming study for 2003 – 2004, the flow cytometry data

from the 2001 – 2002 season will be analyzed for DNA content rather than simply noting relative

genetic differences among the population studied.  Additionally, another replicate of neutrophil

counts will be performed on the 2001 – 2002 microscope slides.  Data obtained from the blood of

pallid, shovelnose sturgeon, and their hybrids from 12 months over two field seasons of sampling

will provide a solid basis for assisting in delineating sturgeon health and assist with distinguishing

between the species and their hybids.
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Appendix

Notes derived from minutes of Pallid Sturgeon Lower Basin Work Group as recorded by
Karen Kilpatrick, November 2002

Over 280 sturgeons of the genus Scaphirhynchus, including pallid and shovelnose sturgeon and
their hybrids, have been collected via gill nets from the outflow channel of the Old River Control
Structure Complex in Concordia Parish, La., during November 2001 through April 2002.  Fish
number collected was about 20 fish each month.

At the waterside, data were collected on at least 20 fish.  Most were implanted with passive
integrated transponder (PIT) tags and released into the same waters near their capture site.

Datasets and Preliminary Conclusions:
1 Mark-recapture population estimate.  Using the recaptured fish, a mark-recapture

population estimate was made for the study area.
An assumption for the Schnabel mark-recapture population estimate is that the population is

closed.
2. Age: on X number of animals that were euthanized or that died.
3. Species identification.

a. Visual observations using digital pictures of the ventral side, head area, and lateral
view of the heads.  Morphometric character indices, too.  By visual observations,
the populations comprised:  10% pallids, 35% hybrids, and 55% shovelnose.  Pallid
percentages were 32 and 26% in Nov. and Dec.

b. Fin clips are being used for genetic (allozyme) analyses.
4. Iridovirus.  Out of 263 samples, four confirmed and one suspected incident were found, but

none were in pallids.  This is the first documentation of iridovirus in wild sturgeon from
the Lower Mississippi population.

5. Physical anomalies or damage.  46 fish positive.
6. Gastric lavage.  Food habits.
7. Differential blood cell counts.  Hematological characteristics.
8. Genome size.
9. Ploidy.  Two fish were classified as aneuploids and one fish had slightly more DNA than

the others.
J. Dean presented this Jan. 03 at: the Middle Basin Pallid Sturgeon Recovery Work
Group meeting in St. Louis. “For my presentation on the
6-month study, I plan to mention your work and show a couple of slides
from your data (relative no. of red and white blood cells).”

10. Vocalizations.
11. Evaluation of MS-222 as an anesthetic for sturgeon.

Habitat diversity and managing to increase population is the best management practice for
restoring all the sturgeon species, as decided by the Work Group.
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