
Efficiency Testing of ANSI C Implementations of
Round1 Candidate Algorithms for the

Advanced Encryption Standard

Lawrence E. Bassham III

Computer Security Division
Information Technology Laboratory

National Institute of Standards and Technology

October 13, 1999

ii

iii

1. INTRODUCTION .. 1

2. SCOPE... 1

3. METHODOLOGY ... 1

3.1 TIMING PROGRAM ... 3
3.2 CYCLE COUNTING PROGRAM .. 3

4. OBSERVATIONS... 4

4.1 GENERAL ... 4
4.2 ALGORITHM SPECIFIC.. 6

5. CONCLUSIONS ... 6

5.1 PC ... 6
5.2 SUN ... 8
5.3 SGI.. 10
5.4 OVERALL PERFORMANCE .. 10

6. REFERENCES ... 11

APPENDIX A – TIMING AND CYCLE COUNT TABLES.. 12

A.1 TIMING TABLES .. 12
A.2 CYCLE COUNT TABLES ... 18

APPENDIX B - COMPILING INFORMATION .. 25

B.1 PC... 25
B.2 SUN... 25
B.3 SGI ... 25

iv

1

1. Introduction

The evaluation criteria for the Advanced Encryption Standard (AES) Round1 candidate
algorithms, as specified in the “Request for Comments” [1], includes computational efficiency,
among other criteria. Specifically, the “Call For AES Candidate Algorithms”[2] required both
Reference ANSI1 C code and Optimized ANSI C code, as well as Java2 code. Additionally, a
“reference” hardware and software platform was specified for testing. NIST performed testing
on this reference platform, as well as several others. Candidate algorithms were tested for
computational efficiency using the Optimized ANSI C source code provided by the submitters.

This paper describes the testing methodology used in ANSI C efficiency testing, along with
observations regarding the resulting measurements. Conclusions are provided regarding which
algorithms have the most consistent performance across different platforms. This paper also
includes an appendix containing tables of timing and cycle counting values obtained from testing
the algorithms. Some knowledge regarding compilation and processor architectures is useful in
understanding how the data was derived. However, the raw data in the document can also be
useful without necessarily understanding how it was derived.

2. Scope

Performance measurements were taken on multiple platforms. These measurements were
analyzed to determine the general rankings of the candidate algorithms with respect to one
another. At this point in the AES development effort, NIST is not interested in the absolute
value of the performance measurement, but in the relational value of one algorithm’s speed when
compared with the rest. From an efficiency point of view, NIST does not intend to rank one
algorithm as “better” because it is relatively faster than another algorithm by .5%. However, if
one algorithm was faster than another algorithm by 50%, then that would be considered a
significant difference. NIST is interested in finding the consistent “top performers” on the test
platforms by analyzing the performance data for the algorithms and observing natural breaks.

3. Methodology

In the “Call for AES Candidate Algorithms” [2], NIST cited a specific hardware and software
platform as the “NIST Analysis Platform” (referred to in this document as the “reference
platform”) for testing candidate algorithms. This platform consists of an IBM-compatible PC
with an Intel Pentium Pro Processor, 200 MHz-clock speed, 64MB RAM, running
Microsoft Windows 95, and the ANSI C compiler in the Borland C++ Development Suite
5.0. Performance measurements were taken on this platform and a large number of additional
hardware and software platform combinations. The platforms tested are detailed in Table 1.

1 ANSI – American National Standards Institute
2 Certain commercial products are identified in this paper. In no case does such identification imply
recommendation or endorsement by the National Institute of Standards an Technology, nor does it imply that
material identified is necessarily the best for the purpose.

2

Performance measurements were conducted in two different ways. The first method of testing
performance deals with determining the amount of time required to perform cryptographic
operations (e.g., how many bits of data can be encrypted in a second, or how many keys can be
setup in a second). This type of test is referred to as a “Timing Test” in this document. The
second method of testing performance deals with counting the number of clock cycles required
to perform cryptographic operations (e.g., how many cycles are consumed in encrypting a block
of data, or how many cycles are consumed in setting up a key). This type of test is referred to as
a “Cycle Count Test” in this document.

The Timing Tests utilized the clock() timing mechanism in the ANSI C library to calculate
the processor time consumed in the execution of the API call and underlying cryptographic
operation under test (i.e., makeKey(), blockEncrypt(), and blockDecrypt()).
The time consumed to perform a particular operation was then used to calculate the bits/second
or keys/second speed measure. The Cycle Count Tests counted the actual clock cycles
consumed in performing the operation under test (for more information on counting clock cycles
see [3]). Because cycle counting utilizes assembly language code in the testing program,
interrupts could be turned off during testing3. This results in a very accurate measure of the
performance of the API calls and the underlying cryptographic operations. Additionally, cycle
counting eliminates the variability of the processor speed. The same number of clock cycles are

3 Interrupts occur, for example, when the operating system decides it needs to perform some action unrelated to the
process that is running. If an interrupt were to occur during cycle count testing, the time spent performing the
operating system activity would be included in the time spent on the cryptographic operation. This would lead to
inflated and erroneous values for the cycles necessary to perform the cryptographic operation.

Table 1: System Platforms (Hardware/Software) and
Compilers Used in Efficiency Testing

Processor/Hardware Operating System Compiler
Borland C++ 5.01 (time&cycles)

Visual C++ 6.0 (time&cycles)

Windows95

DJGPP – gcc version pgcc –
2.90.23 980102 (egcs-1.0.1)

200MHz Pentium Pro Processor,
64MB RAM

Linux GCC 2.8.1
Borland C++ 5.01 (time&cycles)
Visual C 6.0 (time&cycles)

450MHz Pentium II Processor, 128
MB RAM

Windows98 4.10.1998

DJGPP – gcc version pgcc –
2.90.23 980102 (egcs-1.0.1)
Borland C++ 5.01 (cycles only)500MHz Pentium III Processor, 128

MB RAM
Windows98 4.10.1998

Visual C 6.0 (cycles only)
GCC 2.8.1
Sun Workshop Compiler C 4.2

Sun: 300MHz UltraSPARC-II w/
2MB Cache, 128 MB RAM

Solaris 2.7 (a 64 bit
operating system)

(Workshop Professional C 5.0)
– 64 bit executables in Round2
GCC 2.8.1Silicon Graphics: 250MHz

R10000 w/ 2MB Cache, 512 MB
RAM

IRIX64 6.5.2 (a 64 bit
operating system) (MIPSpro C Compiler)

– 64 bit executables in Round2

GCC 2.8.1Sun: 2*360MHz UltraSPARC-II w/
4MB Cache, 256 MB RAM

Solaris 2.7
Sun Workshop Compiler C 4.2

3

required to perform an operation on a 300 MHz Pentium II processor as it does on a 450 MHz
Pentium II processor; there are simply more clock cycles in a second on a 450 MHz-based
system. Cycle counting could only be performed on the Intel processor based systems. This is
the only processor used by NIST during Round1 testing that provides access to a true cycle
counting mechanism.

3.1 Timing Program

For each key size required by [2] (128 bits, 192 bits, and 256 bits) three values are calculated:
• The time to make 65536 calls to blockEncrypt() (65536calls*128bits/call=8388608

bits = 1Mbyte = 8 Mbits)4;
• The time to make 65536 calls to blockDecrypt() (65536calls*128bits/call=8388608

bits = 1Mbyte = 8 Mbits); and
• The time to setup 1000 key pairs (a key pair consists of one encrypt key and one decrypt

key).5

The test program generates 1000 triples (i.e., sets of timing information) as described above for
each key size. The time values in each category are then sorted, and the median value is
determined. A standard deviation is calculated for each test category. Finally, the average of all
values that fall within three standard deviations of the median is determined. This value is the
reported average time to perform the specific operation (encrypt, decrypt, or key setup) for a
particular key size. Using these time values, speed values of Kbits/sec are calculated for
encryption and decryption, and keys/sec is calculated for key setup. Time values in this test
program are calculated around the NIST API calls. Results for the Timing Program can be found
in Appendix A.1. Pseudo code for the generation of timing information for the
blockEncrypt() operation is included in Figure 1.

3.2 Cycle Counting Program

For each key size required by [2] (128 bits, 192 bits, and 256 bits) four values are calculated:

4 More blocks of data were encrypted or decrypted on some of the faster algorithms in order to get a better resolution
on the timer. The timer has a resolution of 5 msec. If the timer reports values of 5 or 10 msec (100% change) it is
not as useful as having it report values of 55 or 60 msec (9% change).
5 Due to the speed of the computation of keys, only 100 pairs of keys were setup for FROG. Due to memory
constraints and speed, only 100 pairs of keys were setup for HPC.

(r=0; r<1000; r++);
makeKey();
cipherInit();
(Start Timer)
(i=0; i<256; i++);

(j=0; j<256; j++);
blockEncrypt(1 block);

(Stop Timer)

Fig. 1: Pseudo code for Time Testing for blockEncrypt()

4

• The number of cycles needed to setup a key for encryption;
• The number of cycles needed to setup a key for decryption;
• The number of cycles needed to encrypt block(s) of data; and,
• The number of cycles needed to decrypt block(s) of data.

These values were measured by placing the CPUID and RDTSC assembly language instructions
around the NIST API. These instructions were called twice before the cryptographic operation
to “flush” the instruction cache (see [3, §3.1]). Additionally, the CLI and STI instructions were
used to switch interrupts off before the test and back on after the test. This eliminates extraneous
interrupts that would skew results. Analysis of this data was performed in the same way as the
timing program listed above in Section 3.1 (calculation of standard deviation, median, etc.)
Results for the Cycle Counting Program can be found in Appendix A.2. Pseudo code for the
generation of cycle counting information for the blockEncrypt() operation is included in
Figure 2.

The Cycle Counting Program was run several times with different lengths of data for encryption
and decryption to determine if size had any effect on the blockEncrypt() and
blockDecrypt() speeds.

4. Observations

4.1 General

Some of the algorithms use flags to determine which compiler is used. By checking which
compiler is used, an algorithm may substitute commands that direct the compiler to insert code to
make use of instructions available on the CPU. The most common example of this is the use of
the ROTL and ROTR instructions to perform left and right logical rotations, respectively. Using
the machine instruction to perform these rotations is two cycles faster than performing the
equivalent sequence of using a pair of shifts and an OR operation. This can provide a
performance enhancement on various compilers that other algorithms do not enjoy because they
do not perform this type of compiler dependent compilation. The Borland compiler does not

(r=0; r<1000; r++) {
makeKey();
cipherInit();
cli; /* Clear Interrupt Flag */
cpuid; /* Clears instruction cache */
rdtsc; /* Read Time Stamp Counter */
save counter;
blockEncrypt(); /* Perform operation being timed */
cpuid;
rdtsc; /* Read Time Stamp Counter */
subtract counter;
save counter
sti; /* Set Interrupt Flag */
}

Fig. 2: Pseudo Code for Cycle Counting for blockEncrypt()

5

make use of the machine instructions of ROTL and ROTR. The Visual C compiler can make use
of the machine instructions by using the routines _rotl() and _rotr() to perform the
rotation. The DJGPP compiler will detect that the two shift operations and the OR are being
used and will automatically substitute the ROTL or ROTR machine instructions during
compilation.

The Timing Tests Program was not used to perform a timing test on the cipherInit()
function. The only performance evaluation of this function was performed with the Cycle Count
Program on the reference platform. None of the algorithms perform pre-computation in the
cipherInit()function except LOKI97 and MAGENTA. Additionally, performance
measurements for all algorithms were done using the Electronic Codebook (ECB) mode. In this
mode, some algorithms convert the Initialization Vector (IV) from ASCII to binary even though
the IV will not be used6. This makes the timing test for cipherInit() extremely variable,
based on whether the conversion was performed or not. The timing test for cipherInit()
essentially becomes a test of the API overhead instead of the cryptographic algorithm. As a
result, cycle counts for cipherInit() are only included for the reference platform.

The blockEncrypt() and blockDecrypt() times improved as the numbers of blocks
passed to the algorithm at the same time increased, because the API overhead is averaged over
more blocks, and more data is available in the cache. The larger amounts of data are still
encrypted and decrypted in ECB mode; however, in operational use, Cipher-Block Chaining
(CBC) mode would likely be used. Efficiency testing was not performed in CBC mode because
this would add another layer of data processing that has no real impact on the performance of the
algorithm. This data processing would be similar across the algorithms and would involve pre-
and post-processing the data before calling the algorithms’ internal ciphering routines. In
addition, there may be some performance characteristics from one algorithm to another, based on
whether data is treated as two 64-bit chunks or four 32-bit chunks, but this effect should be
marginal.

The algorithm software was used as it was submitted with the following exceptions:

i) The CRYPTON algorithm did not follow the API correctly with regard to the
input of keyMaterial to the makeKey() function and the IV (Initialization
Vector) to the cipherInit() function. The CRYPTON algorithm provided a
binary stream instead of an ASCII stream. Since all other algorithms would have
to do a conversion from ASCII to binary, the CRYPTON code for makeKey()
and cipherInit() was altered to accept an ASCII stream and convert the
stream to binary. Testing was performed using the altered code.

ii) The FROG algorithm would only handle lower case hex characters in its ASCII to
binary conversion routine. This routine was altered to handle both upper and
lower case hex characters.

6 The IV would be used in Cipher-Block Chaining mode.

6

These changes were made in order to maintain consistency across the algorithms. The same test
programs were used for all algorithms; therefore, all algorithms needed to accept inputs in the
same manner.

4.2 Algorithm Specific

Rijndael uses sscanf() to convert from ASCII to binary. This is a very slow method of
performing the conversion and results in inefficient makeKey() and cipherInit().

Values for the FROG algorithm in the cycle count tables are copies of the “one block” times.
FROG can only handle one 128-bit block at a time. This is not a deficiency, since the API only
requires handling one block at a time.

On systems where a “long long” data type (a 64-bit integer) was available, the DFC and HPC
algorithms were run in 64-bit mode. These algorithms are inherently 64-bit algorithms and
should run much more efficiently in 64-bit mode. On the PC, with its 32-bit processor, using
Linux and the GCC compiler, the 64-bit math is simulated in software. However, on the Sun
and SGI systems, which have 64-bit processors, the math operations are performed as 64-bit
hardware instructions. NIST is aware that these 64-bit implementations do not meet the API
since they are not ANSI C compliant. Because these two candidate algorithms are inherently 64-
bit in nature, NIST felt it was appropriate to consider the performance of this non-compliant code
in addition to the performance of the compliant code provided by the submitters.

5. Conclusions

5.1 PC

Due to the testing mechanisms used in obtaining data, the most reliable and accurate values
obtained for performance measurement of the candidate algorithms are the cycle counting
measurements on the PC, which focus on the 128-bit key length. Additionally, cycle count
values for encryption and decryption were obtained for various message block lengths. These
values provide interesting results. For the most part, once the message length was greater than
one block (128 bits), the encryption and decryption speeds were consistent within each
algorithm. For this reason, NIST focused on the message block length of 128 blocks (2046
bytes), which is a typical size for an electronic mail message. The graph in Figure 37 shows the
encryption speed average of the Borland and Visual C compiled executables (see the tables in
Appendix A). There appears to be a clear separation in the performance of the top six algorithms
from the rest. Please note that the chart has two algorithms omitted. These omitted algorithms,
HPC and Magenta, have encryption speeds that are over 3 times longer than the slowest
algorithm included on the chart. The fastest six algorithms on the Pentium Pro are RC6,
CRYPTON, Twofish, MARS, E2, and Rijndael. For the Pentium II and Pentium III, the same
six algorithms are re-ordered as RC6, CRYPTON, E2, Twofish, Rijndael, and MARS.

7 The relative uncertainty for values in all graphs and tables is ≤ 1%.

7

Brian Gladman [4] has performed similar efficiency experiments, the results of which were
submitted during the Round1 public comment period. The tests that Gladman conducted used a
200 MHz Pentium Pro, and code that he developed independently from the submitters’ code
compiled with Visual C. Gladman omitted any data conversion or byte-ordering that the
algorithms may have required to make them portable to other platforms. In spite of these
significant differences, the overall outcome in terms of relative speed is similar to the NIST
values detailed in Figure 3. Gladman’s fastest seven algorithms (as determined by the first
natural break in his values) are RC6, Rijndael, MARS, Twofish, CRYPTON, CAST-256, and
E2. This set includes the fastest algorithms from the testing performed by NIST on the Pentium
processor, with the addition of CAST-256.

Since key-dependent mixing can be performed in many ways, key setup on some algorithms may
be much simpler than for other algorithms. For example, RC6 has a simpler key setup design.
On the other hand, the FROG algorithm has a very complicated key setup design. In order to
incorporate all key-mixing into one metric, the key setup time and encryption speed were
combined into one value for each algorithm. The values must be normalized to provide equal
weight to each component (average key setup time and average encryption speed). To normalize
the values, each value was divided by the smallest in the category. That is, all key setup times
were divided by the smallest key setup time, and all encryption speeds were divided by the
lowest encryption speed. The two normalized values for each algorithm were then added
together. The top six algorithms for this metric are CRYPTON, RC6, E2, SAFER+, MARS, and
Rijndael. This is the same set of six algorithms shown to be the fastest when encryption speed

Average Encryption Speed Using
Borland and Visual C Compiler

(Pentium Pro 200MHz)

0.0

500.0

1000.0

1500.0

2000.0

2500.0

3000.0

3500.0

4000.0

4500.0

RC6

CRYPTON

TW
OFIS

H

M
ARS E2

RIJN
DAEL

SAFER+

SERPENT

CAST-2
56

FROG
DEAL

LO
KI9

7
DFC

Algorithm

S
p

ee
d

 (
cl

o
ck

 c
yc

le
s)

Encrypt1

Encrypt16

Encrypt128

Encrypt1024

Encrypt32768

Fig. 3 Average Encryption Speed on Reference Platform

8

alone was considered, with the substitution of SAFER+ for Twofish. It can be noted that
Twofish is the seventh algorithm by this metric. The graph in Figure 4 has three algorithms
missing: DEAL, HPC, and FROG. The value of this metric for DEAL is approximately twice
the value of the largest value charted, and HPC and FROG have values that are orders of
magnitude larger.

5.2 Sun

The UltraSPARC CPU found in the Sun systems on which testing was performed did not allow
access to a cycle count mechanism. Performance numbers on these systems are based on the
Timing Test Program. Additionally, the Sun systems have 64-bit processors. Therefore, two of
the algorithms, DFC and HPC, that included code for 64-bit math operations, were run in both
64-bit mode (listed as DFC-64 and HPC-64) and 32-bit mode (listed as DFC and HPC). Two
different compilers were used on the Sun, and the results from these were averaged. The graph
in Figure 5 shows three separate groups of algorithms: the fastest six (CRYPTON, Rijndael,
Twofish, Serpent, MARS, and CAST-256) processed at speeds approaching or exceeding 30
Mbits/s, HPC-64 and RC6 represent the next fastest group, followed by the rest of the
algorithms. The E2 results are not an accurate reflection of the algorithm’s true potential
performance on this system. The code provided for the E2 algorithm by the submitter was not
designed to be executed on big endian systems. E2 compiles but terminates abnormally when
executed.

Average Key Setup + Encryption Speed
Using Borland and Visual C Compilers

(Pentium Pro 200MHz)

0.00

5.00

10.00

15.00

20.00

25.00

30.00

35.00

40.00

CRYPTON
RC6 E2

SAFER+

M
ARS

Rijn
da

el

Twof
ish

Ser
pe

nt

LO
KI9

7

CAST-2
56

DFC

M
AGENTA

Algorithm

S
p

ee
d

 F
ac

to
r

Key+Encrypt

Fig. 4 Average Key Setup + Encryption Speed on Reference Platform

9

Louis Granboulan of ENS, France found very similar results on an UltraSPARC platform [5].
His fastest six algorithms are CRYPTON, Rijndael, Twofish, Serpent, CAST-256, and RC6.
These six algorithms are a subset of the fastest eight algorithms listed above, with the following
exception. Granboulan was unable to compile MARS, and he did not compile HPC in 64-bit
mode. Therefore, these algorithms dropped out of the list of fastest performers. Compared with
NIST’s results, his fastest six algorithms were more closely grouped and had a much larger
separation between the sixth and seventh algorithms.

Average Encryption Speed Using
GCC and Sun WorkShop Compiler

(Sun UltraSPARC II - 300MHZ)

0.0

10000.0

20000.0

30000.0

40000.0

50000.0

60000.0

CRYPTON

Rijn
da

el

Twof
ish

Ser
pe

nt

M
ARS

CAST-2
56

HPC-6
4

RC6

FROG
DEAL

SAFER+

DFC-6
4

LO
KI9

7
DFC

HPC

M
AGENTA E2

Algorithm

S
p

ee
d

 (
K

b
it

s/
se

c)

SunAvg

Fig. 5 Average Encryption Speed on Sun Platform

10

5.3 SGI

The SGI system provides another 64-bit processor running the same version of the GCC
compiler used for the Sun testing described in Section 5.2. Again, HPC and DFC were run in
both 64-bit mode and 32-bit mode. The graph in Figure 6 shows that the top six algorithms in
this environment were RC6, CRYPTON, MARS, Twofish, Rijndael, and HPC. As before, the
E2 algorithm code compiled on this system, but did not execute properly.

5.4 Overall Performance

The consistent top performers on all platforms tested are CRYPTON, RC6, Rijndael, Twofish,
and MARS. Because E2 did not compile on the Sun and SGI platforms, the overall performance
of E2 is difficult to assess. However, the analysis of Gladman and Granboulan indicate that E2
will consistently perform in the sixth or seventh position. Therefore, the five algorithms listed
above should be categorized as the most consistent “top performers” across the platforms tested
with E2, Serpent, and CAST-256 as the next three. HPC in 64-bit mode does provide sufficient
encryption performance to place it in the second group of three, but this is only on 64-bit
machines, and key setup speed remains poor. All other algorithms have consistently slow
performance.

Encryption Speed
Using GCC Compiler

(SGI Octane)

0.0

10000.0

20000.0

30000.0

40000.0

50000.0

60000.0

70000.0

RC6

CRYPTON

M
ARS

Twof
ish

Rijn
da

el

HPC-6
4

Ser
pe

nt

CAST-2
56

DFC-6
4

FROG
DEAL

SAFER+
DFC

LO
KI9

7

M
AGENTA

HPC E2

Algorithm

S
p

ee
d

 (
K

B
it

s/
se

c)

SGI-GCC

Fig. 6 Encryption Speed on SGI Platform

11

6. References

[1] “Request for Comments on Candidate Algorithms for the Advanced Encryption Standard
(AES)”, Federal Register, Volume 63, Number 177, pp. 49091-49093, Sept 14, 1998.

[2] “Announcing Request for Candidate Algorithm Nominations for the Advanced Encryption
Standard (AES)”, Federal Register, Volume 62, Number 177, pp. 48051-48058, Sept 12, 1997.

[3] “Using the RDTSC Instruction for performance monitoring”,
http://developer.intel.com/drg/pentiumII/appnotes/RDTSCPM1.HTM, Intel Corporation, 1997.

[4] Brian Gladman, “Implementation Experience with AES Candidate Algorithms”, Proceedings
of the Second Advanced Encryption Standard Candidate Conference, March 1999.

[5] Louis Granboulan, “AES: Analysis of the RefCode, OptCCode, and AddCode submissions”,
http://www.dmi.ens.fr/~granboul/recherche/AES/analysis.html, 1999.

Sun, Solaris, Java, Sun WorkShop Compiler C, and Sun WorkShop Professional C are trademarks or registered trademarks of Sun Microsystems,
Inc. in the United States and other countries. All SPARC trademarks are used under license and are trademarks or registered trademarks of
SPARC International, Inc. in the United States and other countries.

Silicon Graphics and IRIX are trademarks or registered trademarks of Silicon Graphics, Inc.

R10000 is a registered trademark of MIPS Technologies, Inc.

12

Appendix A – Timing and Cycle Count Tables

A.1 Timing Tables

Values in the tables are as follow:

• Enc128 (Encryption using 128-bit key), Enc192 (Encryption using 192-bit key), and
Enc256 (Encryption using 256-bit key) are in Kbits/sec

• Dec128 (Decryption using 128-bit key), Dec192 (Decryption using 192-bit key), and
Dec256 (Decryption using 256-bit key) are in Kbits/sec

• Key128 (Setup a 128-bit key), Key192 (Setup a 192-bit key), and Key256 (Setup a
256-bit key) are in Keys/sec. This “Key” is the average time to setup an encryption
key and a decryption key.

Some tables in this section contain values for DFC and HPC compiled using 64-bit integers (see
Section 4). These additional values are listed in the tables as DFC-64 and HPC-64. The original
values, using 32-bit integers, are listed as DFC and HPC.

Borland C++ 5.01 – 200 MHz Pentium Pro, 64MB RAM, Windows95

Algorithm Enc128 Dec128 Key128 Enc192 Dec192 Key192 Enc256 Dec256 Key256
CAST-256 8490.5 8490.5 13157.8 8490.5 8490.5 12903.1 8490.5 8490.5 12658.6
CRYPTON 40524.7 39756.4 333332.8 40329.8 40136.9 333333.3 40329.8 39945.8 333333.6
DEAL 6864.7 6864.7 4048.4 6864.7 6864.7 3960.4 5275.9 5282.5 3025.8
DFC 5817.3 5874.4 10581.3 5853.9 5858 10256.3 5809.3 5817.3 9900.8
E2 28630.1 27324.5 48781.3 29852.7 27060.0 43478.1 30954.3 27869.1 40000.0
FROG 7936.2 14899.8 73.4 7936.2 14794.7 74.0 7936.2 14794.7 74.2
HPC 1743.6 1524.4 270.3 1769.4 1537.2 260.4 1736.8 1528.5 260.2
LOKI97 6186.3 6369.5 12578.1 6154.5 6297.8 12421.9 6190.9 6283.6 12195.3
Magenta 1368.0 1349.5 111110.9 1366.2 1352.1 74074.0 1025 1016.1 51282.0
MARS 25970.9 26800.7 26315.6 26214.4 26886.6 25640.6 26051.6 26886.6 25316.4
RC6 30283.8 31775 39215.6 30283.8 31775 38461.5 30283.8 31775 38461.7
Rijndael 31895.8 32263.9 27396.9 27235.7 28055.5 17699.0 23967.5 24745.2 13422.7
SAFER+ 10631.9 10908.5 48781.3 7275.5 7503.2 29411.5 5537.0 5710.4 19230.5
Serpent 7307.1 7774.4 17093.8 7307.1 7774.4 14599.0 7307.1 7774.4 12422.7
Twofish 27324.5 29228.6 15384.4 26800.7 29228.6 12987.5 27324.5 29537.4 9661.7

13

Borland C++ 5.01 – 450 MHz Pentium II, 128MB RAM, Windows98

Algorithm Enc128 Dec128 Key128 Enc192 Dec192 Key192 Enc256 Dec256 Key256
CAST-256 19239.9 19225.2 30303.1 19239.9 19239.9 29851.0 19254.6 19239.9 29411.7
CRYPTON 91429 92691.8 754717.2 89003.8 92691.8 701754.2 91180.5 91429 666666.4
DEAL 15635.8 15679.6 15151.6 15635.8 15679.6 14925.0 12035.3 12104.8 11235.9
DFC 13231.2 13189.6 24096.9 13325.8 13168.9 23256.3 13231.2 13294.1 22221.9
E2 77314.4 78398.2 129870.3 75403.2 78398.2 119047.9 77314.4 77852.5 109889.8
FROG 17635.5 33112.9 164.1 17647.8 33332.2 165.6 17647.8 33420.7 164.1
HPC 3729.9 3153.6 640.6 3684.1 3133.6 614.6 3692.2 3145.3 608.6
LOKI97 14218.0 14463.1 29850.0 14205.9 14794.7 29411.5 14500.6 14550.9 28985.2
Magenta 3078.4 3033.9 222221.9 3076.1 3035.0 151515.6 2313.5 2289.5 113960.2
MARS 58867.4 60677.1 58823.4 59705.4 60897.3 57970.8 59178.9 61008.1 56338.3
RC6 68061.7 71240.8 89285.9 68200.1 71240.8 87719.8 68200.1 71240.8 86956.3
Rijndael 72005.2 73423.3 57142.2 62601.6 63310.2 35714.6 55553.7 55553.7 26666.4
SAFER+ 23876.5 24409.1 111110.9 16341.4 16732.6 62500.0 12421.4 12729.3 40000.0
Serpent 19988.7 21345.1 39215.6 19988.7 21327.0 31250.0 19988.7 21345.1 25974.2
Twofish 61008.1 65793.0 35087.5 60025.8 65664.3 30303.1 60241.4 66974.9 21978.1

Visual C 6.0 – 200 MHz Pentium Pro, 64MB RAM, Windows95

Algorithm Enc128 Dec128 Key128 Enc192 Dec192 Key192 Enc256 Dec256 Key256
CAST-256 11618.6 11748.8 18348.4 11602.5 11748.8 18349.0 11602.5 11491.2 18348.4
CRYPTON 43690.7 43464.3 298507.8 43690.7 43919.4 281690.6 43464.3 43464.3 273972.7
DEAL 8120.6 8120.6 7273.4 8097.1 8128.5 7272.9 6246.2 6241.5 5449.2
DFC 7269.2 7275.5 14184.4 7175.9 7332.7 13699.0 7313.5 7275.5 13245.3
E2 26630.5 29026.3 52631.3 26630.5 29433.7 37037.5 26800.7 29026.3 32786.7
FROG 15709.0 19108.4 121.9 15917.7 18682.9 122.9 15391.9 19108.4 122.7
HPC 3062.7 2720.0 379.7 3097.7 2683.5 361.5 3101.1 2698.2 357.0
LOKI97 8338.6 8914.6 18348.4 8405.4 8811.6 18349.0 8208.0 8848.7 18348.4
Magenta 2730.7 2730.7 135134.4 2730.7 2730.7 91742.7 2056.0 2052.0 68493.0
MARS 30615.4 34952.5 37037.5 30615.4 34379.5 36363.5 30615.4 34521 37036.7
RC6 39756.4 40721.4 86956.3 39945.8 40920.0 74074.0 39016.8 40721.4 74074.2
Rijndael 22250.9 21845.3 22221.9 19108.4 18558.9 15625.0 16611.1 16131.9 12195.3
SAFER+ 12000.9 11748.8 66667.2 8184.0 7898.9 37037.5 6181.7 5991.9 24691.4
Serpent 17810.2 20068.4 28571.9 17772.5 20068.4 22988.5 17772.5 20116.6 18348.4
Twofish 21845.3 28826.8 20407.8 21845.3 28728.1 15266.7 21845.3 28728.1 10989.1

14

Visual C 6.0 - 450 MHz Pentium II, 128MB RAM, Windows98

Algorithm Enc128 Dec128 Key128 Enc192 Dec192 Key192 Enc256 Dec256 Key256
CAST-256 28149.7 28244.5 46510.9 28055.5 28244.5 45454.2 28244.5 28149.7 44444.5
CRYPTON 97542 98689.5 740740.6 98689.5 98689.5 655737.5 98689.5 98689.5 740740.6
DEAL 18315.7 18396.1 16393.8 18355.8 18355.8 15747.9 14122.2 14146.1 12195.3
DFC 16513.0 16480.6 32257.8 16352.1 16578.3 31250.0 16257.0 16480.6 30303.1
E2 76959.7 76959.7 142857.8 76959.7 76959.7 111111.5 76959.7 76959.7 90909.4
FROG 35246.3 42799.0 275.0 35098.8 42799 278.1 34952.5 43690.7 276.6
HPC 7109.0 6379.2 892.2 7133.2 6227.6 797.9 7067.1 6250.8 763.3
LOKI97 19784.5 20262.3 44443.8 19831.2 20460.0 44444.8 19831.2 20460.0 42553.1
Magenta 6181.7 6172.6 305343.8 6195.4 6181.7 222221.9 4655.2 4644.9 153846.1
MARS 66576.3 76959.7 100000.0 68759.1 76959.7 80000.0 68200.1 76959.7 80000.0
RC6 90200.1 93206.8 222221.9 91180.5 93206.8 200000.0 91180.5 93206.8 181818.0
Rijndael 76959.7 74235.5 48781.3 60787.0 62137.8 37037.5 53092.5 55553.7 27778.1
SAFER+ 27147.6 26379.3 153846.9 18436.5 17924.4 86956.3 13888.4 13573.8 57143.0
Serpent 40136.9 45343.8 66667.2 40136.9 45343.8 54054.2 40136.9 45343.8 44444.5
Twofish 67650.1 76959.7 51282.8 68759.1 76959.7 37037.5 68200.1 76959.7 25974.2

DJGPP, gcc version pgcc 2.90.23 980102 (ecgs-1.0.1) –
200 MHz Pentium Pro, 64MB RAM, Windows95

Algorithm Enc128 Dec128 Key128 Enc192 Dec192 Key192 Enc256 Dec256 Key256
CAST-256 21810.4 21810.4 22750.0 21810.4 21810.4 22750.0 21810.4 21810.4 22750.0
CRYPTON 30534.5 30534.5 303332.8 30534.5 30534.5 303333.3 30534.5 30534.5 260000.0
DEAL 7484.0 7484.0 7279.7 7484.0 7484.0 7000.0 5739.6 5783.1 5353.1
DFC 6206.2 6257.1 14000.0 6206.2 6206.2 14000.0 6257.1 6257.1 14000.0
E2 21810.4 23132.2 60667.2 23132.2 21810.4 36400.0 23855.1 23132.2 30333.6
FROG 7951.7 11744.1 87.5 7951.7 11744.1 87.5 7951.7 11744.1 87.5
HPC 107.9 107.2 700.0 91.8 91.3 758.3 91.8 91.3 758.6
LOKI97 5783.1 6010.7 12132.8 5739.6 6010.7 12133.3 5872.0 6058.4 12133.6
Magenta 875.4 874.4 364000.0 875.4 874.4 182000.0 656.9 656.4 182000.0
MARS 63613.6 63613.6 36400.0 63613.6 63613.6 36400.0 63613.6 63613.6 36400.0
RC6 42409.1 44903.7 91000.0 42409.1 44903.7 60666.7 42409.1 44903.7 60666.4
Rijndael 14680.1 14403.1 18200.0 12514.2 12312.3 12133.3 10751.6 10751.6 9100.0
SAFER+ 4516.9 4989.3 91000.0 3041.3 3348.1 36400.0 2285.5 2519.4 26000.0
Serpent 16963.6 21810.4 26000.0 16963.6 21810.4 18200.0 16963.6 21810.4 15166.4
Twofish 14967.9 15267.3 7279.7 14967.9 15267.3 6066.7 14967.9 15267.3 4044.5

15

DJGPP, gcc version pgcc 2.90.23 980102 (ecgs-1.0.1) -
450 MHz Pentium II, 128MB RAM, Windows98

Algorithm Enc128 Dec128 Key128 Enc192 Dec192 Key192 Enc256 Dec256 Key256
CAST-256 49784.6 49784.6 60667.2 49784.6 49784.6 60666.7 49784.6 49784.6 60666.4
CRYPTON 67854.5 67854.5 728000.0 67854.5 67854.5 606666.7 67854.5 67854.5 606666.4
DEAL 16963.6 16777.2 16545.3 16963.6 16777.2 16545.8 12938.4 13048.9 12133.6
DFC 14006.7 14136.4 36400.0 13879.3 14136.4 36400.0 14136.4 14136.4 30333.6
E2 61069.1 59871.6 151667.2 61069.1 59871.6 91000.0 61069.1 59871.6 82727.3
FROG 18032.2 26322.9 223.4 18032.2 26629.0 225.0 17891.3 26629.0 224.2
HPC 290.1 285.5 1517.2 201.3 199.0 1625.0 201.3 199.1 1610.9
HPC-64 29360.1 30534.5 3640.6 29360.1 30534.5 3639.6 29360.1 29360.1 3639.8
LOKI97 13392.3 14006.7 30332.8 13631.5 14136.4 30333.3 13275.9 14268.5 30333.6
Magenta 1982.8 1977.6 606667.2 1982.8 1977.6 364000.0 1488.0 1485.1 303333.6
MARS 138793.3 138793.3 121332.8 138793.3 138793.3 91000.0 138793.3 138793.3 91000.0
RC6 95420.4 98498.5 151667.2 95420.4 98498.5 151666.7 95420.4 98498.5 130000.0
Rijndael 33189.7 32832.8 36400.0 28013.3 27758.7 30333.3 24427.6 24427.6 20221.9
SAFER+ 10223.6 11225.9 182000.0 6877.1 7583.1 91000.0 5169.5 5710.9 60666.4
Serpent 47710.2 50890.9 60667.2 47710.2 50890.9 45500.0 47710.2 50890.9 36400.0
Twofish 33927.3 34698.3 18200.0 33927.3 34698.3 14000.0 33927.3 34698.3 9100.0

Linux - 200 MHz Pentium Pro, 64MB RAM, Windows95

Algorithm Enc128 Dec128 Key128 Enc192 Dec192 Key192 Enc256 Dec256 Key256
CAST-256 23301.7 23453.7 21978 23301.7 23453.7 21505.4 23301.7 23431.9 20833.3
CRYPTON 36684.9 36262.0 333333.3 35295.7 35797.8 285714.3 36105.9 36472.2 285714.3
DEAL 6601.7 6657.6 6968.6 6601.7 6657.6 6802.7 5049.3 5075.8 5194.8
DFC 7976.5 7703.0 14285.7 8047.9 7700.7 14084.5 7908.8 7707.8 13513.5
DFC-64 9241.9 9252.1 18867.9 9241.9 9252.1 18518.5 9245.3 9252.1 18018.0
FROG 10459.6 18752.5 90.0 10459.6 18696.7 89.6 10459.6 18369.2 89.3
HPC 5622.4 5033.2 787.4 5757.5 5007.1 787.4 5647.6 4975.4 793.7
HPC-64 10010.3 9397.2 1600.0 10192.7 9296.6 1538.5 10180.3 9303.4 1538.5
LOKI97 6035.0 6318.3 12422.4 6009.0 6288.3 12345.7 5999.0 6353.4 12345.7
Magenta 864.8 864.8 285714.3 864.8 865.0 181818.2 649.1 649.4 133333.3
MARS 38479.9 36792.1 40000.0 38362.5 36419.4 38461.5 38245.9 36792.1 37735.8
RC6 29262.6 37282.7 60606.1 29262.6 37282.7 58823.5 29262.6 37282.7 57142.9
Rijndael 36900.0 35951.2 9708.7 31695.0 31184.4 6410.3 28212.8 27413.8 4739.3
SAFER+ 11224.7 10609.5 66666.7 7644.5 7217.0 40000.0 5794.6 5468.5 27777.8
Serpent 12684.4 15563.3 16528.9 12684.4 15563.3 12738.9 12684.4 15563.3 10256.4
Twofish 18236.1 19493.3 14492.8 18196.5 19478.2 11111.1 18236.1 19508.4 8333.3

16

GCC 2.8.1 - SGI 250 MHz R10000 w/2MB Cache, 512 MB RAM

Algorithm Enc128 Dec128 Key128 Enc192 Dec192 Key192 Enc256 Dec256 Key256
CAST-256 29537.4 29746.8 46511.6 29537.4 29746.8 44444.4 29537.4 29746.8 42553.2
CRYPTON 53204.7 52538.3 500000.0 53773.1 53430.6 500000.0 52869.4 53204.7 400000.0
DEAL 11081.4 10894.3 8130.1 11076.5 10894.3 7936.5 8522.1 8366.3 6079.0
DFC 10284.4 10123.0 19607.8 10284.4 10176.2 19230.8 10267.6 10082.5 18691.6
DFC-64 20610.8 20594.0 37735.8 20610.8 20594.0 36363.6 20610.8 20594.0 35087.7
FROG 20476.7 19493.3 157.7 20476.7 19433.1 157.0 20443.4 19463.1 156.5
HPC 2171.3 1830.4 388.4 2180.9 1835.7 387.3 2163.3 1836.7 385.2
HPC-64 43389.4 44073.2 9174.3 43240.2 44228.2 9009.0 43389.4 44150.6 8849.6
LOKI97 6714.5 6768.6 13422.8 6716.3 6741.4 13245 6741.4 6748.7 13071.9
Magenta 3198.9 3456.8 333333.3 3213.2 3464.9 250000.0 2420.7 2606.8 181818.2
MARS 47843.8 51150.0 48780.5 47843.8 51150.0 47619.0 47843.8 51150.0 46511.6
RC6 57852.5 62601.6 125000.0 57852.5 62601.6 117647.1 57852.5 62601.6 117647.1
Rijndael 43766.7 41323.2 25316.5 36525.1 35746.9 17391.3 32598.2 31536.1 13071.9
SAFER+ 11076.5 11165.0 90909.1 7485.4 7552.8 50000.0 5664.2 5702.7 32786.9
Serpent 32017.6 35746.9 38461.5 32017.6 35746.9 30769.2 32017.6 35746.9 25000.0
Twofish 43919.4 46007 26666.7 44073.2 46776.6 19230.8 43842.9 46345.9 13333.3

GCC 2.8.1 – 300 MHz UltraSPARC-II w/ 2MB Cache, 128 MB RAM

Algorithm Enc128 Dec128 Key128 Enc192 Dec192 Key192 Enc256 Dec256 Key256
CAST-256 30840.5 30840.5 47619 30878.3 30878.3 46511.6 30840.5 30878.3 44444.4
CRYPTON 49441.7 45100.0 400000.0 49441.7 45100.0 400000.0 49539.0 45100.0 333333.3
DEAL 9872.8 9919.5 9302.3 9872.8 9923.4 9090.9 7550.5 7580.1 6968.6
DFC 5317.1 5323.8 10362.7 5340.8 5347.6 10309.3 5321.6 5327.2 10204.1
DFC-64 4634.6 4630.3 10695.2 4640.6 4635.4 10638.3 4638.9 4633.7 10582.0
FROG 13329.4 13610.5 109.1 13329.4 13617.9 108.5 13329.4 13759.3 108.2
HPC 8234.9 6703.7 251.4 8300.1 6693.0 242.1 8261.9 6661.1 233.8
HPC-64 13479.3 8487.6 2057.6 13472.1 8473.3 1586.0 13493.7 8467.6 1296.2
LOKI97 7265.0 7330.6 15384.6 7215.0 7300.8 15267.2 7231.6 7356.3 15384.6
Magenta 2481.8 2466.8 400000.0 2481.8 2466.5 285714.3 1865.1 1856.8 200000.0
MARS 27838.3 28181.2 47619.0 27838.3 28181.2 46511.6 27838.3 28181.2 45454.5
RC6 18275.8 18302.4 111111.1 18275.8 18302.4 111111.1 18275.8 18302.4 100000.0
Rijndael 37505.0 31378.8 27027.0 32768 27354.2 19047.6 28992.9 23497.5 14705.9
SAFER+ 10551.7 10596.1 76923.1 7163.6 7196.4 43478.3 5422.5 5448.3 28169.0
Serpent 28826.8 30320.3 37037.0 28826.8 30320.3 29850.7 28826.8 30320.3 24390.2
Twofish 36002.6 37393.5 17391.3 36002.6 37393.5 13513.5 36002.6 37393.5 10000.0

17

Sun Workshop Compiler 4.2 – 300 MHz UltraSPARC-II w/ 2MB Cache, 128 MB RAM

Algorithm Enc128 Dec128 Key128 Enc192 Dec192 Key192 Enc256 Dec256 Key256
CAST-256 25394.4 23431.9 40000.0 25394.4 23453.7 40000.0 25394.4 23453.7 38461.5
CRYPTON 59493.7 59918.6 400000.0 59634.7 59918.6 333333.3 59634.7 59918.6 333333.3
DEAL 13647.4 13654.8 10256.4 13647.4 13654.8 10000.0 10490.1 10507.7 7662.8
DFC 5224.4 5254.9 10362.7 5252.7 5206.0 10256.4 5234.2 5220.0 10256.4
DFC-64 15261.3 15233.5 32258.1 15317.0 15289.1 31746.0 15298.4 15279.8 30769.2
FROG 10259.2 15958 129.3 10284.4 16059.9 128.8 10242.5 15947.9 128.5
HPC 2251.8 1871.8 357.5 2244.3 1874.1 340.8 2240.3 1868.7 325.1
HPC-64 25471.5 23453.7 Inf 25627.1 23301.7 Inf 25653.2 23388.3 Inf
LOKI97 10677.1 10498.9 22222.2 10503.3 10507.7 22222.2 10468.3 10591.7 21978
Magenta 2462.4 2431.5 400000.0 2461.4 2429.6 250000.0 1849.2 1829.0 200000.0
MARS 29537.4 30174.8 66666.7 29676.7 30174.8 66666.7 29923.7 30030.8 64516.1
RC6 18822.6 18275.8 117647.1 18822.6 18289.1 111111.1 18822.6 18275.8 100000.0
Rijndael 43539.5 30504.0 26666.7 38014.8 26490.3 18181.8 34521.0 21883.3 14084.5
SAFER+ 9841.9 9761.8 80000.0 6673.5 6627.8 46511.6 5049.3 5017.1 29850.7
Serpent 31936.3 33069.4 37735.8 31936.3 33069.4 29850.7 31936.3 33069.4 24691.4
Twofish 37282.7 37673.4 19230.8 37282.7 37673.4 14814.8 37282.7 37673.4 11363.6

Sun Workshop Compiler 4.2 – 2*360 MHz UltraSPARC-II w/ 4MB Cache, 256 MB RAM

Algorithm Enc128 Dec128 Key128 Enc192 Dec192 Key192 Enc256 Dec256 Key256
CAST-256 30992.4 28597.5 50000.0 30992.4 28597.5 48780.5 30992.4 28597.5 46511.6
CRYPTON 72733.6 73156.5 500000.0 72733.6 73156.5 400000.0 72733.6 73156.5 400000.0
DEAL 16633.1 16644.1 12500.0 16644.1 16644.1 12195.1 12787.5 12807.0 9345.8
DFC 6218.4 6213.8 12345.7 6258.6 6255.5 12269.9 6219.9 6227.6 12121.2
DFC-64 18613.8 18586.3 40000.0 18669.0 18627.6 39215.7 18655.2 18627.6 37735.8
FROG 12507.9 19448.1 157.6 12539.0 19569.1 157.0 12489.2 19448.1 156.6
HPC 2764.3 2307.3 451.5 2755.2 2306.7 447.4 2744.4 2294.1 444.4
HPC-64 31378.8 28597.5 Inf 31339.8 28532.7 Inf 31418.0 28500.4 Inf
LOKI97 12905.6 12833.2 27027.0 12716.4 12794.0 27027 12710.0 12879.1 27027.0
Magenta 3005.2 2955.8 500000.0 3004.5 2956.2 285714.3 2258.6 2228.8 200000.0
MARS 36002.6 36792.1 83333.3 36157.8 36792.1 80000.0 36472.2 36631.5 80000.0
RC6 22940.6 22270.6 142857.1 22940.6 22270.6 133333.3 22940.6 22270.6 125000.0
Rijndael 53092.5 39444.9 33333.3 46345.9 32140.3 22988.5 42083.3 26715.3 17543.9
SAFER+ 11995.1 11898.7 100000.0 8133.8 8078.9 55555.6 6153.0 6115.6 36363.6
Serpent 38956.4 40265.3 45454.5 38956.4 40329.8 36363.6 38956.4 40329.8 29850.7
Twofish 45507.8 45923.0 23529.4 45507.8 45923.0 18018.0 45507.8 46007.0 13888.9

18

A.2 Cycle Count Tables

The values in Ekey, Dkey, Encrypt-n, Decrypt-n, and Init are all in clock cycles. These values
refer to:

• Ekey - The number of cycles needed to setup a 128-bit key for encryption;
• Dkey - The number of cycles needed to setup a 128-bit key for decryption;
• Encrypt-n - The number of cycles per block needed to encrypt n blocks of data using a

128-bit key;
• Decrypt-n - The number of cycles per block needed to decrypt n blocks of data using a

128-bit key; and,
• Init - The number of cycles needed to initialize the cipher (only included for the reference

platform).

Values in the cycle count tables are sorted on the Encrypt-128 values. This length message is
comparable to a typical electronic mail message. The values for Encrypt-n and Decrypt-n for the
FROG algorithm are all duplicates of the value for Encrypt-1 and Decrypt-1. The
blockEncrypt() function provided for the FROG algorithm can only accept one block at a
time. In addition, the data encrypted and decrypted in the cycle count measurements was
random data (as opposed to using all zero data blocks).

19

Cycles – Borland C++ 5.01 – 200 MHz Pentium Pro, 64MB RAM, Windows95

Algorithm EKey DKey Encrypt1 Decrypt1 Encrypt16 Decrypt16
CRYPTON 689 768 753 912 492 500
RC6 5005 5006 840 787 518 462
TWOFISH 12950 12789 1000 967 622 571
RIJNDAEL 7667 8354 830 862 628 606
E2 4445 4386 1539 1599 850 844
MARS 7592 7592 993 970 834 809
SAFER+ 4158 4158 2452 2341 2245 2219
CAST-256 15111 15108 3003 2983 2812 2812
SERPENT 11762 11786 3376 3185 3210 3012
FROG 2664417 2677195 3266 1818 3266 1818
DEAL 51311 51280 3845 3794 3547 3533
LOKI97 15507 15499 4177 4136 3997 3999
DFC 18926 19243 4460 4484 4315 4295
HPC 676803 676901 15736 17862 14356 16624
MAGENTA 2144 2148 18772 19014 18603 18859

Algorithm Encrypt-
128

 Decrypt-
128

 Encrypt-
1024

 Decrypt-
1024

 Encrypt-
32768

 Decrypt-
32768

Init

CRYPTON 479 480 505 505 523 523 7
RC6 497 446 498 445 520 460 220
TWOFISH 593 547 593 548 634 588 9
RIJNDAEL 610 592 627 603 621 593 5049
E2 795 778 789 775 814 797 7
MARS 823 797 827 800 847 820 16
SAFER+ 2235 2211 2251 2231 2272 2252 27
CAST-256 2803 2802 2805 2807 2831 2833 447
SERPENT 3201 3006 3209 3013 3237 3053 9
FROG 3266 1818 3266 1818 3266 1818 1044
DEAL 3521 3509 3530 3514 3546 3543 923
LOKI97 3986 4019 3976 3991 4002 4022 1072
DFC 4324 4333 4312 4314 4338 4341 897
HPC 14297 16545 14299 16540 14309 16568 3804
MAGENTA 18589 18855 18607 18854 18627 18869 359

20

Cycles – Visual C 6.0 – 200 MHz Pentium Pro, 64MB RAM, Windows95

Algorithm EKey DKey Encrypt1 Decrypt1 Encrypt16 Decrypt16
RC6 2272 2273 638 624 350 343
CRYPTON 734 807 659 691 442 446
MARS 5443 5443 838 729 685 597
TWOFISH 10206 10090 1106 1226 717 836
E2 4027 3978 1614 1624 788 792
RIJNDAEL 7488 7970 1326 1334 1103 1081
SERPENT 6963 6969 1675 1534 1298 1147
FROG 1611467 1622021 1662 1395 1662 1395
SAFER+ 3094 3096 2098 2107 1953 1981
CAST-256 10568 10568 2196 2195 2049 2049
LOKI97 10844 10831 3157 2955 2930 2747
DEAL 28535 28232 3162 3184 2993 2986
DFC 13910 14568 3492 3583 3421 3409
HPC 473229 473437 9491 10636 8168 9573
MAGENTA 1465 1467 9259 9295 9120 9142

Algorithm Encrypt-
128

 Decrypt-
128

 Encrypt-
1024

 Decrypt-
1024

 Encrypt-
32768

 Decrypt-
32768

Init

RC6 336 326 335 329 376 347 138
CRYPTON 431 432 455 456 451 453 6
MARS 673 587 676 588 712 622 10
TWOFISH 690 811 693 813 726 825 12
E2 737 736 727 728 756 756 8
RIJNDAEL 1084 1064 1087 1064 1083 1063 7249
SERPENT 1279 1122 1278 1122 1317 1169 8
FROG 1662 1395 1662 1395 1662 1395 659
SAFER+ 1949 1995 1974 2007 1977 2011 21
CAST-256 2041 2042 2051 2048 2075 2073 426
LOKI97 2920 2736 2905 2729 2940 2761 672
DEAL 2983 2979 2983 2979 3010 3007 778
DFC 3405 3411 3410 3407 3415 3414 549
HPC 8119 9391 8130 9403 8141 9427 2461
MAGENTA 9110 9128 9135 9145 9138 9163 103

21

Cycles – Borland C++ 5.01 – 450 MHz Pentium II, 128MB RAM, Windows98

Algorithm EKey DKey Encrypt1 Decrypt1 Encrypt16 Decrypt16
CRYPTON 690 779 649 637 463 463
RC6 5009 5010 852 797 493 442
E2 3881 3865 900 871 573 572
TWOFISH 12692 12607 927 893 588 541
RIJNDAEL 7552 8216 805 852 604 582
MARS 7677 7677 973 961 809 781
SAFER+ 4155 4153 2381 2338 2216 2198
SERPENT 10766 10760 6191 6433 2914 2596
CAST-256 15094 15091 2988 2991 2788 2791
FROG 2674949 2687678 3242 1816 3242 1816
DEAL 31155 31153 3673 3701 3510 3499
LOKI97 15497 15505 4051 4023 3811 3785
DFC 18916 19241 4458 4485 4292 4272
HPC 678651 679677 18521 20921 14736 17865
MAGENTA 2047 2050 18582 18836 18418 18665

Algorithm Encrypt-
128

 Decrypt-
128

 Encrypt-
1024

 Decrypt-
1024

 Encrypt-
32768

 Decrypt-
32768

CRYPTON 452 452 480 480 524 524
RC6 472 423 488 437 535 482
E2 556 553 568 566 600 599
TWOFISH 567 521 573 525 619 570
RIJNDAEL 586 567 584 566 582 567
MARS 798 772 813 786 862 836
SAFER+ 2207 2189 2225 2207 2264 2246
SERPENT 2728 2375 2711 2350 2733 2385
CAST-256 2777 2779 2781 2782 2818 2818
FROG 3242 1816 3242 1816 3242 1816
DEAL 3502 3485 3506 3496 3548 3540
LOKI97 3786 3806 3798 3794 3850 3852
DFC 4299 4309 4288 4290 4306 4309
HPC 14600 17784 14605 17780 14663 17807
MAGENTA 18405 18655 18418 18660 18453 18708

22

Cycles – Visual C 6.0 - 450 MHz Pentium II, 128MB RAM, Windows98

Algorithm EKey DKey Encrypt1 Decrypt1 Encrypt16 Decrypt16
RC6 2274 2275 642 616 329 321
CRYPTON 732 800 581 581 413 416
E2 3495 3455 1132 831 594 573
TWOFISH 8650 8575 909 760 587 443
RIJNDAEL 7497 7947 800 842 609 605
MARS 5423 5423 809 723 659 572
SERPENT 6808 6809 1709 1456 1279 1117
FROG 1611793 1622266 1654 1309 1654 1309
CAST-256 10051 10050 2031 2030 1872 1869
SAFER+ 3085 3088 2093 2098 1928 1960
LOKI97 10402 10405 2976 2879 2720 2627
DEAL 28267 28267 3126 3130 2967 2962
DFC 13904 14563 3480 3563 3396 3384
HPC 474279 474464 9566 10671 7856 9204
MAGENTA 1463 1465 9248 9273 9096 9119

Algorithm Encrypt-
128

 Decrypt-
128

 Encrypt-
1024

 Decrypt-
1024

 Encrypt-
32768

 Decrypt-
32768

RC6 303 302 321 309 371 345
CRYPTON 403 405 434 433 491 492
E2 560 557 575 573 611 610
TWOFISH 567 421 582 429 626 468
RIJNDAEL 593 589 596 597 579 593
MARS 649 563 659 573 708 621
SERPENT 1257 1097 1273 1114 1311 1154
FROG 1654 1309 1654 1309 1654 1309
CAST-256 1861 1859 1879 1878 1921 1918
SAFER+ 1923 1969 1961 1992 2008 2034
LOKI97 2711 2614 2726 2629 2761 2669
DEAL 2957 2952 2969 2964 3015 3011
DFC 3380 3386 3383 3381 3388 3386
HPC 7750 8999 7765 9007 7789 9039
MAGENTA 9087 9104 9114 9125 9168 9197

23

Cycles – Borland C++ 5.01 – 500 MHz Pentium III, 128MB RAM, Windows98

Algorithm EKey DKey Encrypt1 Decrypt1 Encrypt16 Decrypt16
CRYPTON 656 745 646 637 430 430
RC6 4974 4975 849 794 461 414
E2 3842 3817 880 867 540 536
TWOFISH 12661 12601 924 890 554 506
RIJNDAEL 7519 8201 802 820 572 549
MARS 7546 7546 970 959 776 750
SAFER+ 4110 4112 2388 2308 2183 2162
SERPENT 10726 10725 6188 6423 2882 2564
CAST-256 15050 15047 2990 2988 2754 2753
FROG 2674924 2687634 3182 1756 3182 1756
DEAL 31129 31122 3676 3697 3479 3464
LOKI97 15459 15499 4055 3967 3764 3746
DFC 18901 19211 4459 4498 4260 4240
HPC 677312 677366 17496 19682 14712 17832
MAGENTA 2015 2020 18579 18833 18386 18632

Algorithm Encrypt-
128

 Decrypt-
128

 Encrypt-
1024

 Decrypt-
1024

 Encrypt-
32768

 Decrypt-
32768

CRYPTON 418 418 455 455 527 527
RC6 438 389 446 390 487 425
E2 524 521 544 542 608 607
TWOFISH 534 487 546 502 597 551
RIJNDAEL 552 534 550 532 548 532
MARS 764 738 770 746 818 792
SAFER+ 2173 2153 2204 2182 2266 2244
SERPENT 2693 2341 2687 2328 2733 2369
CAST-256 2741 2740 2753 2753 2796 2798
FROG 3182 1756 3182 1756 3182 1756
DEAL 3470 3453 3477 3465 3512 3500
LOKI97 3762 3776 3766 3758 3812 3810
DFC 4266 4275 4263 4265 4304 4307
HPC 14579 17739 14588 17734 14592 17771
MAGENTA 18370 18621 18394 18626 18450 18680

24

Cycles – Visual C 6.0 - 500 MHz Pentium III, 128MB RAM, Windows98

Algorithm EKey DKey Encrypt1 Decrypt1 Encrypt16 Decrypt16
RC6 2238 2239 633 613 298 289
CRYPTON 698 766 578 578 381 384
E2 3463 3422 1127 833 563 541
TWOFISH 8655 8668 905 755 554 412
RIJNDAEL 7480 7929 796 837 577 573
MARS 5402 5402 804 718 627 540
SERPENT 6776 6776 1698 1452 1247 1085
FROG 1611678 1622175 1593 1240 1593 1240
CAST-256 10017 10014 2027 2026 1839 1837
SAFER+ 3059 3060 2058 2067 1894 1926
LOKI97 10332 10344 2973 2852 2686 2592
DEAL 2857 2857 3123 3127 2934 2929
DFC 13881 14527 3476 3557 3364 3352
HPC 473937 474319 9566 10680 7823 9173
MAGENTA 1429 1431 9245 9270 9064 9087

Algorithm Encrypt-
128

 Decrypt-
128

 Encrypt-
1024

 Decrypt-
1024

 Encrypt-
32768

 Decrypt-
32768

RC6 269 269 284 276 340 314
CRYPTON 370 371 400 399 457 459
E2 527 523 540 538 579 578
TWOFISH 534 387 547 395 591 439
RIJNDAEL 559 555 562 563 545 559
MARS 616 529 639 543 684 589
SERPENT 1223 1063 1238 1079 1281 1125
FROG 1593 1240 1593 1240 1593 1240
CAST-256 1828 1826 1843 1842 1884 1881
SAFER+ 1889 1935 1926 1957 1983 2013
LOKI97 2677 2580 2693 2595 2728 2636
DEAL 2923 2918 2934 2929 2964 2958
DFC 3346 3352 3351 3349 3353 3352
HPC 7719 8962 7738 8970 7762 9005
MAGENTA 9054 9070 9082 9091 9145 9172

25

Appendix B - Compiling Information

B.1 PC

On the three PCs used during testing, all algorithms were compiled using the same compiler
options. Those options and their effect are:

• Borland:
Ø -Oi Expand common intrinsic functions
Ø –6 Generate Pentium Pro instructions
Ø –v Source level debugging (does not effect speed)
Ø –A Use only ANSI keywords
Ø –a4 Align on 4 bytes
Ø –O2 Generate fastest possible code

• Visual C:
Ø /G6 Pentium Pro instructions
Ø /Ox Best optimization for speed

• DJGPP:
Ø –mcpu=pentiumpro Pentium Pro instructions and registers
Ø –pedantic Warnings generated if non-ANSI
Ø –fomit-frame-pointer If frame pointer is not need, it’s not stored – frees a register

• Linux/GCC:
Ø -O3 Best optimization for speed

The Borland programs were compiled on the 200 MHz Pentium Pro Reference machine. The
Visual C and DJGPP programs were compiled on the 450 MHz Pentium II machine. The Linux
operating system was installed on a Jaz drive attached to the 200 MHz Pentium Pro Reference
machine. Compilations for GCC under Linux were performed on this machine.

B.2 Sun

All algorithms were compiled using the same compiler options. Those options and their effect
are:

• GCC: -O3 Best optimization for speed
• Workshop: -xO5 Best optimization for speed

The compilations for the Sun systems were performed on the 300 MHz UltraSPARC II system.
The Optimized C code for E2 appears to be designed in such a way that it only works on a little
endian machine. The program compiled, but it resulted in a Bus Error and dumped core on
execution.

B.3 SGI

All algorithms were compiled using the same compiler option. That option and its result is:

26

• GCC: -O3 Best optimization for speed

The compilations for the SGI were performed on the 250 MHz R10000 system. The Optimized
C code for the E2 algorithm appears to be designed in such a way that it only works on a little
endian machine. The program compiled, but it resulted in a Bus Error and dumped core on
execution.

