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Overview

• Pellet ablatant drifts in the major radius direction on a fast time scale
during redistribution process

• High field side (HFS) injection lines on DIII-D provide improved core
fueling with HFS injected pellets
– HFS pellets have efficient fueling with minimized particle loss

• PEP-mode internal transport barriers (ITB) are formed with HFS pellets
followed by central heating

– Ti ≈ Te and strong negative central shear
– Reduced transport is seen in both the ion and electron channels

• HFS pellets trigger L to H-mode transitions with a reduced power
threshold.
– Plasma parameters in PIH-mode transitions below theoretical predictions

• HFS injected pellets during H-mode trigger ELMs with reduced
magnitude and duration compared with LFS injected pellets.
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• Pellet ablation well understood with neutral gas shielding (NGS)
model (Parks, Milora, Pegourie, Kuteev)

–  Assumes pellet particles remain where ionized

• Pellet Deposition describes where the pellet mass is distributed in
the plasma.

–  Measured density profile before and after pellet ablation.

–  Data suggests it is vastly different from simple ablation model

Pellet Mass Deposition is Different
from Ablation Process
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Pellet Penetration is Well Characterized, but
Deposition Profile from LFS Injection is Anomalous

• Maximum Penetration depth agrees well with theory over a range of data
from many devices.   (Baylor, et al., Nucl. Fusion  37, 445 (1997) )

• Mass deposition implies fast radial transport during the ablation process.
• ASDEX Upgrade first experiment to try HFS injection to test this hypothesis.

(Lang, et al., Phys. Rev. Lett. 79, 1478 (1997.)
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DIII-D Pellet Injection Locations - 1999

• 3-D view showing curved guide tubes
that the pellets traverse

• Elevation view of
pellet trajectory
in the plasma

V+1  vertical
guide tubes

HFS
guide tubes

LFS
guide tubes

LFS

V+1

HFS 45°

HFS mid
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Pellet Injection Program on DIII-D

• Modifications to injector (that was
installed on JET 1987-91):

– All three guns fire 2.7 mm pellets

– Punch mechanism to generate slower
pellets ( < 300 m/s)

– Enabling Technology

• 2 independent guide tubes on inner
wall (HFS) - midplane, 45° and
vertical V+1

– Can be connected to any of the pellet
guns or a gas valve

• Curved guide tube limits speed to
250 m/s for intact pellets 
(Combs, SOFE Proceedings, 1999)
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Direct Comparison in L-mode  -
HFS Pellets Show Less Particle Loss

• Pellet comparison from LFS, V+1 and HFS45

• The density perturbation is larger for the HFS pellet

• Divertor Dα shows fewer particles leaving the plasma from the HFS pellet
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High Field Side (HFS 45°) Pellet Injection on DIII-D
Yields Deeper Particle Deposition than LFS Injection

• Net deposition is much deeper for HFS pellet in spite of the lower velocity

• Pellets injected into the same discharge and conditions 
(ELMing H-mode, 4.5 MW NBI, Te(0) = 3 keV)
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DIII-D HFS 45° Pellet Injection Deposition
Suggests Major Radius Drift of Ablatant

• The deposition shows deeper fueling than predicted

• Pellet Dα emission agrees with ablation model (PELLET code)

• A radial drift of 20 cm is inferred from the data - for comparison with detailed
drift model  by  Parks (UI1.05)

NGS
Model
(x 0.4)

2.7 mm Pellet  -  HFS 45°

ρ =0.4
ρ =0.8

0

5

10

0.0 0.2 0.4 0.6 0.8 1.0 1.2ρ

∆n
e 

(1
01

9  
m

-3
) DIII-D 99477

H-mode 7MW NBI

Measured ∆ne

∆t = 0.25 ms

HFS 45°
vp = 153 m/s
λ = 17cm

Pellet
Dα



10APS DPP-1999  - LRB

HFS Pellet Injection on DIII-D Yields Deeper
Particle Deposition than Predicted by Ablation Model

• HFS and Vertical injection show deeper than expected deposition of
pellet mass from simple ablation model

• LFS pellet maximum deposition depth agrees with simple model
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ExB Polarization Drift Model
of Pellet Mass Deposition
(Rozhansky,   Parks)

• The velocity of ablatant ≈ cs(2L/R)0.5. For
DIII-D this is ≈ 2 km/s, i.e. faster than the
pellet  (deKloe, Mueller, Phys.Rev.Lett.  (1999))

•  ∆R stronger at higher plasma β

• Detailed model by P.B. Parks (UI1.05)
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Application of High Field Side
Injected Pellets

• PEP-mode - overview and transport summary

• PIH-mode - pellet induced H-mode overview

– Pellets enable test of transition theory

• Pellet induced ELMs  - edge localized modes

– HFS/LFS pellet comparison
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HFS Pellets During Current Rise Lead to
Internal Transport Barrier - PEP mode

• HFS 2.7mm pellets injected during current rise produce highly
peaked density profiles that develop PEP ITB with Ti ≈ Te

• PEP survives transition to H-mode and can persist for > 1s

• Core collapse occurs as qmin reaches 3/2

• Steepest ne, Te, Ti gradients occur inside ρqmin
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• Bootstrap current from NCLASS shows strong off-axis contribution in the
PEP-mode

• Safety factor (q) profile determined with MSE data has stronger negative
central shear in PEP than non-PEP ITB comparison

Strong Off-Axis Bootstrap Current Drives
Negative Central Shear in PEP ITB
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PEP-mode has thermal diffusivity in the core
approaching neoclassical levels
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• TRANSP calculation of thermal diffusivities shows ITB in core region out to
ρ = 0.4 as expected from the strong gradients in the kinetic profiles.

• ITB  in PEP case is comparable to non-PEP ITB, both approach
neoclassical levels.
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• TRANSP calculation of electron particle diffusivity shows reduced
core particle transport in PEP just inside the barrier region (ρ=0.4)

• Both PEP and non-PEP ITBs show strong increase toward axis as
profiles become flat
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Toroidal Rotation Profile Shows Strong Difference
between co-NBI and counter-NBI  PEP-mode

• Toroidal carbon rotation in PEP-mode shows a “notch” with co-NBI
similar to that seen on TFTR supershots due to neoclassical parallel
momentum exchange.   (D. Ernst, et al. Phys. Plasmas 1998.)

• NCLASS calculated deuterium rotation profile is monotonic.
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Radial Electric Field has a Well at PEP ITB Location
that is Deeper for Counter-NBI

• Radial force balance calculation of Er has well at ITB and notch location.

• Toroidal rotation is dominant term:     Er = (Zen)-1 ∇P + vφBθ - vθBφ
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ITG Modes are Stabilized in PEP-mode
ITB Core Region

• The ExB shearing rate exceeds the ITG growth rate inside the ITB

• Edge shearing rate is strong due to H-mode edge barrier
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HFS Pellets have induced H-mode Transitions

• HFS pellet induces H-mode transition that is maintained

• H-mode power threshold reduced by 2.4MW (up to 33%)  using
pellet injection  (P. Gohil  CP1.62 - Mon. PM)
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Pellet Induced H-mode Transition
Occurs at Lower Edge Temperature

• A critical edge temperature is not indicated in these H–mode
transitions

– Edge Te and Ti are reduced following pellet injection

• Pellet induced H–modes have L-H transitions at plasma parameters
far below  theoretical predictions
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Pellet Induced H-modes have Transitions at Plasma
Parameters  far Below Theoretical Predictions

Rogers et al. Proc. 17th IAEA
Fusion Energy Conf. Yokohama, 
Japan 1998, IAEA-CN-69/THP2/01

Wilson et al. Proc. 17th IAEA
Fusion Energy Conf. Yokohama, 
Japan 1998, IAEA-F1-CN-69/TH3/2

Pogutse et al. Proc. 24th 
EPS Conf. 1997 (P3-1041)

•  For more details see poster by P. Gohil et al (CP1.62 - Mon. PM)
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Direct Comparison in H-mode  -
HFS Pellets Trigger Smaller ELMs

• 2.7mm pellets injected into the same 9.5 MW NBI  DN H-mode plasma from
HFS45, LFS, and V+1

• ELMs are triggered by the pellets, but are much smaller for the HFS pellets
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HFS Pellets produce different ELM
characteristics than LFS pellets.

• HFS pellet induced ELMs are small like background ELMs

• LFS pellets induce large ELMs much longer lasting than background ELMs.
ExB drift loss of particles may be responsible.

• P´ modification at edge may be different for HFS and LFS pellets  
(J.R. Ferron, UI1.01)
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Summary of Observations

• The pellet mass drifts in the plasma major radius direction on a
fast (<100 µs) time scale during the redistribution process

– ExB polarization drift model is proposed as explanation

• HFS injection ports installed on DIII-D take advantage of the
radial drift and lead to improved core fueling with HFS injected
pellets

• The new HFS pellet injection tool has been applied successfully
for:

– PEP-mode ITB formation with Ti ≈ Te,  (unlike other  ITB regimes)

– Triggers for L to H-mode transitions for reduced power threshold

– HFS pellets trigger ELMs with reduced magnitude and duration
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Summary of Observations - continued

• First PEP-mode experiments with Er determined
– Strong off-axis JBS and negative central shear

– The PEP-mode ITB shows  reduced transport in ions and electrons

– ExB shear plays a critical role in ITG stabilization and density peaking
affects the ETG stability

• HFS pellets can trigger L to H-mode transitions with a reduced
power threshold

– Transition occurs without critical edge temperature

–  Plasma parameters below theoretical predictions for transition

• HFS injected pellets during H-mode trigger ELMs with reduced
magnitude and duration compared to LFS injected pellets

• HFS pellet injection is unique enabling technology  that has led
to several areas of new physics understanding on DIII-D


