

TPF-C University Contracts Poster Overview

Terrestrial Planet Finder Mission

Contracts

- Eight institutions
- Development of coronagraph technologies
- Three versions of coronagraph:"Classical", Pupil Remapping, Visible Nulling
- Selected performance parameters
 - Contrast 10⁻¹⁰ @ 4 lambda/d IWA (where d is the mirror major axis, assumed to be 8 m, here)
 - Throughput $\geq 25\%$
 - Bandwidth 500 800+ nm
 - Number of rolls ≤ 3
- Information contact: Allan Eisenman

Coronagraph and Masks

- Princeton: Shaped Pupil Coronagraph
- UC Berkeley: Vector Wavefront Simulation with affiliations
 - Princeton: Mask fabrication and test
 - Ball Aerospace: System simulation
- NASA GSFC: Vector Optical Modeling
- SAO: Wavefront Sensing and Control with DM
- Pupil Mapping
 - NOAO/U of Hawaii (Subaru): Pupil Remapping using aspheric optics
 - SAO: Hybrid Pupil Mapping with Princeton subcontract
- Visible Nulling
 - Boston U: MEMS Segmented Deformable Mirror
 - Penn State/U of Florida: Extremely Coherent Single Mode Fiber Optic Arrays

BOSTON **Boston University**

Fabricate a segmented MEMS deformable mirror array with tip/tilt and piston motion to control wavefront amplitude and phase in the TPF nulling coronagraph architecture

• Co-I:

UNIVERSITY

• **PI**: **Dr. Thomas Bifano Boston University** Tel: (617) 353-5619 Email: tgb@bu.edu • Co-I: **Paul Bierden Boston Micromachines Corporation (BMC)**

> **Dr. Timothy Cook Boston University**

Objective

Develop a silicon fabrication process to manufacture reliable, lightweight, low-power, robust DMs with thousands of degrees of freedom, sub-nanometer positioning resolution and optical quality.

- Use silicon foundry micromachining for • production
- **Employ successful BMC designs for** actuation
- **Produce unprecedented pixel flatness** • using Epi-poly process

Silicon microfabrication process and prototype device

- Segmented DM with 11mm clear aperture
- 600µm pitch, 329 elements, 99.2 % fill factor
- 987 electro-static actuators, 3 per micromirror
- < 1nm RMS flatness, 1µm stroke, 3mrad tilt
- Motion resolution = 0.1nm piston, 0.06arcsec tilt
- Suitable for TPF-C flight

QuickTime™ and a TIFF (Uncompressed) decompressor are needed to see this picture.

Stephen Ridgway (NOAO) - PI Olivier Guyon (Subaru Telescope) - Co-PI

Goals of the project:

- Design and fabricate aspheric optics
- Validate the Pupil Remapping Coronagraph concept in the lab:
 - demonstrate lossless apodization of a beam
 - achieve 10e-6 PSF contrast at 31/d
- Simulate in the computer a pupil remapping coronagraph
 - use the simulation to reproduce lab results
 - demonstrate in the simulation performance to the level required for TPF

Schedule :

- Lab experiment
 - $2003 \rightarrow$ end 2004 : preliminary lab demonstration with lenses
 - end 2004 / early 2005 : delivery of high quality pupil remapping mirrors
 - 2005 -> early 2006 : demonstration of high contrast imaging

Simulations

- 2003 -> end 2004 : scalar propagation simulations
- 2005 -> 2006 : vector propagation simulations

A Coherent Single Mode Fiber Optic Array for Rejecting Scattered Light

Schedule & Milestones

- Development of V Grooves 4/04
- Preliminary single mode fiber array 5/04
- 10x10 single mode fiber array 12/04
- 32x32 single mode final fiber array 10/06

Principal Investigator: Jian Ge Staff: Shane Miller & Dan McDavitt

Preliminary Fiber Array with 42 single mode fibers in May 2004

Note: Contract transferred From Penn State to University of Florida

Vector Wavefront Simulation University of California Berkeley

♦Goal

Model pupil filter vector effects
Assess impact on coronograph
UC Berkeley (PI Andy Neureuther, Dan Ceperley and Ta-Ming Shih)
Vector scattering from filters
FDTD analysis via TEMPEST
Ball Aerospace (Mike Lieber)
End-to-end modeling
Fresnel propagation with vectors
Princeton (Jeremy Kasdin)
Pupil filter design
Pupil filter physical structure

Design and Control of Shaped Pupil Coronagraphs Princeton University

N. Jeremy Kasdin (PI), Robert J. Vanderbei, Michael G. Littman, David N. Spergel

July, 2004

Laboratory Testing

Vector Optical Modeling Goddard Space Flight Center

Products:

- 1. 3D Vector Model
- 2. Accurace of Scalar vs Vector Diffraction
- 3. Sensitivity analysis & Error Budgets

Participants

PI: Richard Lyon

NASA/GSFC Code 935 301-286-4302 Richard.G.Lyon@nasa.gov Co-I's: Ron Shiri - GST Robert Woodruff - Lockheed-Martin Roman Antosik - CUNY

Objectives

Scalar vs Vector Diffraction Theory

- Develop Scalar & Vector propagation model of HCIT/TPF
- Component transfer functions for s3D components
- Multiple plane diffraction w/ both models
- Sensitivities and Error Budgets w/Scalar & Vector models

Parallel Vector Optical Modeling

- 3D Tetrahedral Mesh FEM Vector Diffraction Code
- Evaluate Occulters and Pupil Plane Masks
- Develop component transfer functions

Fiber Corrector Modeling

• Modeling of fiber bundles

Amplitude and Phase Rectification

• Couple fiber model with DM models

rectification

Rectification

• Evaluation wavefront, amplitude and polarization correction

Schedule Task Year 1 - Milestone Year 2 - Milestone Scalar Import HCIT & TPF Models Suite of parametric cases, sensitivities & error budgets Diffraction to OSCAR 3D tetrahedral input Couple transfer functions Vector w/OSCAR, parametric geometries for occulters, Modeling finish parallelizing code studies OSCAR Model of fiber Fiber Integrate OSCAR w/VPI, bundle, VPI model of fiber Corrector full systems simulations bundle Phase & System simulation, OSCAR Model of phase/amp Amplitude performance assessment

and error budgeting

Pupil Mapping, Wavefront Sensing and Control

Smithsonian Astrophysical Observatory

Team

- **PI:** Wesley Traub SAO
- Pascal Borde SAO
- Robert Vanderbei Princeton University

Pupil Mapping

- Derive 2D mirror shapes
- Rearrange pupil intensity distribution
- Gaussian-like pupil amplitude profile
- Focus for Gaussian-like star image and block with mask
- Detect surrounding planetary system without loss

Wavefront Sensing and Control Algorithms

- Speckle pattern sensing
- Reduce speckle background < 10 exp 10</p>
- Implement with a deformable mirror
- Test Algorithms on JPL Hugh Contrast Imaging Testbed

