AIPL Centennial – Research Priority Discussion

Dr. George Seidel, Colorado State University, Moderator

Summarized by S.M. Hubbard, AIPL

- Heterosis crossbreeding and genomics (Seidel)
 - Long-term, high-risk, high-return research appropriate for ARS (Van Tassell)
 - Will be considered for future genomic evaluations (VanRaden)
 - Logistic challenges have been somewhat alleviated because of technology changes (Weigel)
 - o Genomics can be used to determine additive (easiest), dominance, and epistatic effects (Garrick)
 - \circ $\,$ Low-cost SNP effective for full-sib analysis of dominance and epistatic effects (Van Tassell) $\,$
 - Ongoing additive improvement in seedstock animals must also be considered (Garrick)
 - Nicking (Misztal)
 - Profitability not obvious (Misztal)
 - Traits other than production (Seidel)
- Milking speed (Flatness)
 - Brown Swiss collects data through type program; Holstein data available from automatic milk systems? (Wiggans)
 - $_{\odot}$ What is measured flow rate vs. milking speed (Cassell)
 - On-farm software changes (Cole)
 - Value to producer from supplying extra data (LaCroix)
 - Parlor type (management) affects importance to producer (Huffard)
- Prioritizing traits for data collection (Huffard)
 - Collect as much health trait data as economically feasible and determine importance from data (Norman)
 - $_{\odot}$ $\,$ Amount of data drives research possible (Van Tassell, Cole) $\,$
 - \circ $\,$ Technical and social issues involved in getting results to producers (Ehrlich) $\,$
 - Core herds (Seidel)
- Economic impact of fertility (Seidel)
 - Herd bull use (Seidel, Cassell)
 - Pregnancy without fetus (Seidel, Cassell)
 - Sexed semen (Seidel)
 - Impact of longevity (Van Tassell)
- bST and lack of consumer acceptance (Van Tassell)
- Health data enhancement in national database (Ferris)
 - Connection with genomics (Seidel)
 - Research dependent on data availability (Pearson)
 - European bull information can't be accessed (Flatness)
 - \circ Work with available data can improve quality of future data (Norman)
 - \circ $\,$ Data collection issues with on-farm systems (Van Tassell, Norman, Cole) $\,$
 - Prior experience with producer-collected data on calving ease (Van Tassell)
 - Massive amounts of data compared with European data (Van Tassell)
 - Treatment records
 - May improve data available (Ehrlich)
 - Political and legal ramifications due to FOIA and other issues (Cole, Van Tassell, Norman)
 - Individual producer release of data to AIPL (Clay)
 - Pre-processing at DRPC to avoid compromise of producer privacy (Van Tassell)

- Data accuracy kudo for AIPL and DRMS (Flatness)
- Economic benefit to industry from genomics (Lawlor)
 - Bull sampling (Seidel)
 - Genotyping a necessity by AI organizations (Cassell)
 - Cost passed on to producers?
 - Reduced progeny-test program
 - Extra expense could be offset by reduced progeny-test costs (Seidel)
 - Too early to determine market acceptance but will sample fewer bulls to offset genomics cost (Sattler, Meland, Zwald, and Starkenburg)
 - Greatest benefit to consumer (Sattler et al.)
 - Younger bulls can be marketed (Meland)
 - Not lower but maintained price; somewhat lower price for untested younger bulls (Zwald)
 - Fewer animals through traditional progeny test will offset genotyping costs (Van Tassell)
 - More efficiently supplied food source (Starkenburg)
 - Ratio of genotyped bulls to progeny-tested bulls (Wiggans)
 - More bulls considered than in past for same number tested (Starkenburg)
 - Use of technology to intensify selection (Van Tassell)
 - Diversity management at population level (Van Tassell)
 - Narrowing of genetic base, but diversity must be maintained (Starkenburg)
 - Amount of increase in bulls considered as related to parent average (Wiggans)
 - Not yet quantifiable (Starkenburg)
 - Different impact on small AI organizations (Flatness)
 - Embryo transfer (VanRaden)
 - Opportunity to increase selection intensity on female side (Seidel)
 - Flushes on genomically tested animals, particularly young virgin heifers (Lamb)
 - Low-density chip important for cow selection (Van Tassell)
 - Value of testing for deleterious recessives (Lamb)
 - Commercialization issues (Munson, Van Tassell)
- Dairy beef (Seidel)
 - No return for investment (Pearson)
 - Bull/breed selection (Seidel)
 - Low-density SNP to identify animals with merit (Van Tassell)
 - o AI-sired beef currently low; opportunity to improve consistency (N. Smith)
 - Sexed semen (Seidel)
 - Genomics can aid in determining which animals to raise dairy or beef (Sheldon)
 - Injection site locations (Sheldon)
- Genomics larger paradigm shift than was AI (Garrick)