HBD Electronics

- Preamp/cable driver on the detector.
 - Specification
 - Schematics
 - Test result
- Rest of the electronics chain located in the rack.
 - Cable
 - Block diagram
 - Individual components
- HBD LL1 trigger
- Outlook

Charge Preamp with On-Board Cable Driver (IO1195-1-REVA)

Features:

- 1) +/- 5V power supply.
- 2) 165 mW power dissipation.
- **3**) **Bipolar operation** (**Q_input = +/-**)
- 4) Differential outputs for driving 100 ohm twisted pair cable.
- 5) Large output voltage swing -- +/- 1.5V (cable terminated at both ends) (+/- 3V at driver output)
- 6) Low noise: Q_noise = 345e (C_external = 5pF, shaping = .25us)

$$(Cf = 1pF, Rf = 1meg)$$

- 7) Size = 1.04" x 0.775" 10pins
- 8) Preamp output (internal) will operate +/- 2.5V to handle large pile-up.

Test with GEM Detector

Use 2MM Hard Metric cable to move signals between preamp/FEM

2mm HM connector has 5 pins per row and 2mm spacing between pins and rows

There are two types of cable configuration:

*100 ohms parallel shielded cable

50 ohms coaxial cable

Signal arrangement

Our choice is

This gives us signal density 2mm x 10mm for every 2 signals. Same type of cables will be used for L1 trigger data.

HBD CDR Review

HBD FEM

- 48 channels per FEM
 - 12(11) bits 60MHz sampling per channel.
 - 3 bits LL1 data output per channel
 - 7 individual threshold levels per channel
 - Optical output to DCM, 6xbeam crossing rate(~60MHz).
 - Use commercial 8b/10b chip (TI) plus optical transceiver
 - 6UX220mm card size
- Interface module
 - GTM (clock, L1 trigger etc.), Ethernet interface for slow download.
 - Control test pulse.
- 6U x 220 mm card size
- HBD readout will fit into 3 6U crates
- HBD LL1 module potentially could fit into one 6U crate.

The differential receiver

Use Analog Device

AD8138 receiver

set up as unity gain

Simulation result For 16fc input charge

ADC has 1V range Max ADC range is about ~10 time of 16fc

The 8 channel 12 bits 65MHzADC

The ADC receives differential signals The V_{common} is 1.5V The +/- input can swing from 1V to 2V + side 2V, - side 1V -> highest count - side 2V, + side 1V -> lowest count Our +/- input will swing from 1.5 to 2V/ 1 to 1.5V we will only get 11 bits out of 12 bits 16fc will be roughly sitting 200 count We will run the ADC at 6X beam crossing clock 6X9.4 MHz = 56.4 MHz or ~17.7ns per samples

FPGA

- Receive ADC data, provide L1 delay, Multiple L1 triggered events, format data, generating L1 trigger primitives, transfer L1 trigger data ,manage clocks and test pattern etc.
- 48 channel of serial ADC => 48 *720 Mbits/sec or 34 Gbits/sec need to be received.
- We choice Altera Stratix II 90nm EP2S60 1020 pins to received the ADC data.

HBD data to DCM

- 12 samples per channel
 - Cover 2 beam crossing
- Assume the optical will run 6X beam crossing rate.
 - 48 channel will take ~16.6 ns*48*12=9.6 microsec.
- We will merge 4 FEMs' data into one optical link in un-multiplexed mode

HBD L1 trigger

- Each FEM output 3 bits per channel, 7 threshold setting.
 - Total bandwidth is 3*48 channel*9.6MHz ~1.4 GHz (~1.7 GHz optical bandwidth)
 - Multiplex FEM L1 data into 3 differential pairs + 1 clock pair cable
 - Use 4mm vertical space.
- The HBD LL1 crate could locate within the HBD FEM rack.
- Each arm of the HBD has 12 panels. Each panel has 96 channels. Each FEM cover 48 channels.
 - Each LL1 covers 24 FEM's data
 - Generic LL1 has 16 optical inputs
- The Stratix II EP2S60 chip can receive 8 FEM inputs. 3 chips could cover 24 FEM's data.
- We should have enough logic to deal with reasonable trigger algorisms.
- HBD LL1 decisions will be send to GL1 and LL1 calculation result will be send to DCM.

Outlook

- The prototype FEM layout will be done soon.
- We need to work on the interface board and dataway.
 - Test can be underway once these boards exist.
- Need to deal with how to receive optical data in the DCM end.

- Probably with a special daughter card