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1. Problem 1.4 of Polchinski, Vol. 1:

(a) Consider the states of the open string spectrum at level N = 2, all of which have masses given
by m2 = (N − 1)/α′ = 1/α′,

αi
−1α

j
−1|0〉, αi

−2|0〉, (1.1)

where i, j = 1, . . . , D − 2. Note that due to Bose symmetry, the first set of states makes up
a symmetric 2-tensor of SO(D − 2), which decomposes into a symmetric traceless 2-tensor
and a scalar of SO(D − 2). The second state is just a vector of SO(D − 2). Now, a traceless
symmetric 2-tensor eIJ = eJI , eI

I = 0, I, J = 1, . . . , D − 1 of SO(D − 1) transforms under an
SO(D − 2) subgroup as a traceless symmetric 2-tensor eij = eji, a vector ei(D−1) = e(D−1)i,
and a scalar e(D−1)(D−1). Thus, the states at level N = 2 of the open string sit nicely in the
traceless symmetric 2-tensor representation of SO(D − 1) as was required.
For N = 3, we have the states,

αi
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j
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k
−1|0〉, αi

−2α
j
−1|0〉, αi

−3|0〉, (1.2)

Again, by Bose symmetry, the first set of states is a traceless symmetric 3-tensor and a single
vector trace of SO(D − 2). However, the second set of states now includes an antisymmetric
part, and so consists of a traceless symmetric 2-tensor, an antisymmetric 2-tensor, and a
scalar of SO(D − 2), while the third set corresponds to a vector of SO(D − 2). Now, the
antisymmetric 2-tensor bIJ = −bJIof SO(D − 1) decomposes to an antisymmetric 2-tensor
bij = −bji and vector bi(D−1) = −b(D−1)i of SO(D − 2), while the traceless symmetric 3-
tensor eIJK = eJIK = · · · of SO(D− 1) decomposes into a traceless symmetric 3-tensor eijk,
a traceless symmetric 2-tensor eij(D−1) = ei(D−1)j = e(D−1)j = · · · , a vector ei(D−1)(D−1) =
e(D−1)i(D−1) = e(D−1)(D−1)i, and a scalar e(D−1)(D−1)(D−1) of SO(D−2). Thus, we find that
at level N = 3, the states of an open string combine to form an antisymmetric 2-tensor and
a symmetric traceless 3-tensor of SO(D − 1).

(b) Note that the closed string at some level N = Ñ is just the tensor product of two copies of
the open string at level N , so we find that the closed string at level N = 2 just consists of a
tensor product of two traceless symmetric 2-tensors eIJ ẽKL = (I ↔ J,K ↔ L), of SO(D−1).

2. We consider the twisted sector of an orientifold of closed oriented bosonic strings in flat R26. That
is, we impose the conditions that

Xµ(τ, σ + `) =Xµ(τ, ` − σ) (1.3)
Xµ(τ, σ − `) =Xµ(τ, ` − σ). (1.4)

We will work in light-cone gauge and look for a general solution to these boundary conditions. Note
that the combination of the two boundary conditions requires that Xµ(τ, σ + `) = Xµ(τ, σ − `) is
periodic in σ with period 2`. Thus, we start with the expansion (ignoring numerical factors),

Xi(τ, σ) = xi +
pi
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}
. (1.5)

Now, we impose the first condition, which we can think of as a Z2 orbifold of the worldsheet, with
two fixed points. This condition is satisfied by requiring that α̃i

n = −αi
−n. Note that as a result,

the second condition is automatically satisfied, and we are left with a single set of independent
oscillators, just as in the case of the open string,
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(1.6)
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In fact, we can interpret this twisted sector as unoriented open strings corresponding to fluctuations
of a space-filling D-brane. With this interpretation, we see that both conditions above are needed
to ensure that a pair of boundaries (the two fixed points) appear a finite length apart on the
worldsheet with Neumann-like boundary conditions.

3. Problem 1.9 of Polchinski, Vol 1: We consider closed oriented bosonic strings on R26/Z2, where
the orbifold acts by reflection in the X25 direction. The oscillator expansion is the same as in the
unwrapped closed string for Xi, i = 2, . . . , 24,
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However, X25 for a twisted sector state must be antiperiodic, which eliminates the constant modes
and requires that the oscillators be half-integrally moded,
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First note that the lack of zero modes corresponding to position and momentum in the x25 direction
implies that the twisted sector states are localized to the origin in x25. Second, note that reality
requires that
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(1.9)

From this expression we can guess that the appropriate commutation relation for the oscillators
must be
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More precisely, these commutation relations are precisely what are needed to reproduce the canon-
ical equal time commutation relations

[Π25(σ), X25(σ′)] = δ(σ − σ′), (1.11)

where Π25 = p+

` ∂τX25 is the momentum conjugate to X25 in light-cone gauge. Plugging the
oscillator expansions into the Hamiltonian in light-cone gauge given by,
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(1.12)

We have used, in the last line, the heuristic result from Polchinski Problem 1.5 (eq. 2.9.19 of
Polchinski Vol. 1)

∞∑
n=1

(n − θ) =
1
24

− 1
8
(2θ − 1)2, (1.13)

to evaluate the ordering constants. Note that the number operators are generally half-integral,
due to the half-integral moding of X25. This gives rise to the massive spectrum,

m2 = 2p+H − pipi =
2
α′

[
N + Ñ − 15

8

]
(1.14)
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Translational invariance on the worldsheet imposes the condition that

P = −
∫ `

0

dσΠi∂σXi =
2π

`
(N − Ñ) = 0. (1.15)

Thus, we find that the specrum is

m2 =
4
α′

[
N − 15

16

]
, (1.16)

where N = Ñ can be half-integral.
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