PHY 250 (P. Horava) Homework Assignment 1 Solutions

Grader: Uday Varadarajan

1. Problem 1.4 of Polchinski, Vol. 1:
(a) Consider the states of the open string spectrum at level $N=2$, all of which have masses given by $m^{2}=(N-1) / \alpha^{\prime}=1 / \alpha^{\prime}$,

$$
\begin{equation*}
\alpha_{-1}^{i} \alpha_{-1}^{j}|0\rangle, \quad \alpha_{-2}^{i}|0\rangle \tag{1.1}
\end{equation*}
$$

where $i, j=1, \ldots, D-2$. Note that due to Bose symmetry, the first set of states makes up a symmetric 2 -tensor of $S O(D-2)$, which decomposes into a symmetric traceless 2 -tensor and a scalar of $S O(D-2)$. The second state is just a vector of $S O(D-2)$. Now, a traceless symmetric 2-tensor $e^{I J}=e^{J I}, e_{I}^{I}=0, I, J=1, \ldots, D-1$ of $S O(D-1)$ transforms under an $S O(D-2)$ subgroup as a traceless symmetric 2 -tensor $e^{i j}=e^{j i}$, a vector $e^{i(D-1)}=e^{(D-1) i}$, and a scalar $e^{(D-1)(D-1)}$. Thus, the states at level $N=2$ of the open string sit nicely in the traceless symmetric 2-tensor representation of $S O(D-1)$ as was required.
For $N=3$, we have the states,

$$
\begin{equation*}
\alpha_{-1}^{i} \alpha_{-1}^{j} \alpha_{-1}^{k}|0\rangle, \quad \alpha_{-2}^{i} \alpha_{-1}^{j}|0\rangle, \quad \alpha_{-3}^{i}|0\rangle \tag{1.2}
\end{equation*}
$$

Again, by Bose symmetry, the first set of states is a traceless symmetric 3 -tensor and a single vector trace of $S O(D-2)$. However, the second set of states now includes an antisymmetric part, and so consists of a traceless symmetric 2 -tensor, an antisymmetric 2 -tensor, and a scalar of $S O(D-2)$, while the third set corresponds to a vector of $S O(D-2)$. Now, the antisymmetric 2-tensor $b^{I J}=-b^{J I}$ of $S O(D-1)$ decomposes to an antisymmetric 2-tensor $b^{i j}=-b^{j i}$ and vector $b^{i(D-1)}=-b^{(D-1) i}$ of $S O(D-2)$, while the traceless symmetric 3 tensor $e^{I J K}=e^{J I K}=\cdots$ of $S O(D-1)$ decomposes into a traceless symmetric 3 -tensor $e^{i j k}$, a traceless symmetric 2-tensor $e^{i j(D-1)}=e^{i(D-1) j}=e^{(D-1) j}=\cdots$, a vector $e^{i(D-1)(D-1)}=$ $e^{(D-1) i(D-1)}=e^{(D-1)(D-1) i}$, and a scalar $e^{(D-1)(D-1)(D-1)}$ of $S O(D-2)$. Thus, we find that at level $N=3$, the states of an open string combine to form an antisymmetric 2-tensor and a symmetric traceless 3 -tensor of $S O(D-1)$.
(b) Note that the closed string at some level $N=\tilde{N}$ is just the tensor product of two copies of the open string at level N, so we find that the closed string at level $N=2$ just consists of a tensor product of two traceless symmetric 2-tensors $e^{I J} \tilde{e}^{K L}=(I \leftrightarrow J, K \leftrightarrow L)$, of $S O(D-1)$.
2. We consider the twisted sector of an orientifold of closed oriented bosonic strings in flat \mathbb{R}^{26}. That is, we impose the conditions that

$$
\begin{align*}
& X^{\mu}(\tau, \sigma+\ell)=X^{\mu}(\tau, \ell-\sigma) \tag{1.3}\\
& X^{\mu}(\tau, \sigma-\ell)=X^{\mu}(\tau, \ell-\sigma) \tag{1.4}
\end{align*}
$$

We will work in light-cone gauge and look for a general solution to these boundary conditions. Note that the combination of the two boundary conditions requires that $X^{\mu}(\tau, \sigma+\ell)=X^{\mu}(\tau, \sigma-\ell)$ is periodic in σ with period 2ℓ. Thus, we start with the expansion (ignoring numerical factors),

$$
\begin{equation*}
X^{i}(\tau, \sigma)=x^{i}+\frac{p^{i}}{p^{+}} \tau+C \sum_{n \neq 0}\left\{\frac{\alpha_{n}^{i}}{n} e^{-\frac{\pi i n}{\ell}(\sigma+c \tau)}+\frac{\tilde{\alpha}_{n}^{i}}{n} e^{-\frac{\pi i n}{\ell}(\sigma-c \tau)}\right\} \tag{1.5}
\end{equation*}
$$

Now, we impose the first condition, which we can think of as a \mathbb{Z}_{2} orbifold of the worldsheet, with two fixed points. This condition is satisfied by requiring that $\tilde{\alpha}_{n}^{i}=-\alpha_{-n}^{i}$. Note that as a result, the second condition is automatically satisfied, and we are left with a single set of independent oscillators, just as in the case of the open string,

$$
\begin{align*}
X^{i}(\tau, \sigma) & =x^{i}+\frac{p^{i}}{p^{+}} \tau+C \sum_{n \neq 0}\left\{\frac{\alpha_{n}^{i}}{n} e^{-\frac{\pi i n}{\ell}(\sigma+c \tau)}+\frac{\alpha_{n}^{i}}{n} e^{\frac{\pi i n}{\ell}(\sigma-c \tau)}\right\} \\
& =x^{i}+\frac{p^{i}}{p^{+}} \tau+C \sum_{n \neq 0} \frac{\alpha_{n}^{i}}{n} e^{-\frac{\pi i n c \tau}{\ell}} \cos \frac{\pi i n \sigma}{\ell} \tag{1.6}
\end{align*}
$$

In fact, we can interpret this twisted sector as unoriented open strings corresponding to fluctuations of a space-filling D-brane. With this interpretation, we see that both conditions above are needed to ensure that a pair of boundaries (the two fixed points) appear a finite length apart on the worldsheet with Neumann-like boundary conditions.
3. Problem 1.9 of Polchinski, Vol 1: We consider closed oriented bosonic strings on $\mathbb{R}^{26} / \mathbb{Z}_{2}$, where the orbifold acts by reflection in the X^{25} direction. The oscillator expansion is the same as in the unwrapped closed string for $X^{i}, i=2, \ldots, 24$,

$$
\begin{equation*}
X^{i}(\tau, \sigma)=x^{i}+\frac{p^{i}}{p^{+}} \tau+i\left(\frac{\alpha^{\prime}}{2}\right)^{\frac{1}{2}} \sum_{n \neq 0}\left\{\frac{\alpha_{n}^{i}}{n} e^{-\frac{2 \pi i n}{\ell}(\sigma+c \tau)}+\frac{\tilde{\alpha}_{n}^{i}}{n} e^{-\frac{2 \pi i n}{\ell}(\sigma-c \tau)}\right\} \tag{1.7}
\end{equation*}
$$

However, X^{25} for a twisted sector state must be antiperiodic, which eliminates the constant modes and requires that the oscillators be half-integrally moded,

$$
\begin{equation*}
X^{25}(\tau, \sigma)=i\left(\frac{\alpha^{\prime}}{2}\right)^{\frac{1}{2}} \sum_{n=-\infty}^{\infty}\left\{\frac{\alpha_{n+\frac{1}{2}}^{25}}{n+\frac{1}{2}} e^{-\frac{2 \pi i\left(n+\frac{1}{2}\right)}{\ell}(\sigma+c \tau)}+\frac{\tilde{\alpha}_{n+\frac{1}{2}}^{25}}{n+\frac{1}{2}} e^{-\frac{2 \pi i\left(n+\frac{1}{2}\right)}{\ell}(\sigma-c \tau)}\right\} \tag{1.8}
\end{equation*}
$$

First note that the lack of zero modes corresponding to position and momentum in the x^{25} direction implies that the twisted sector states are localized to the origin in x^{25}. Second, note that reality requires that

$$
\begin{equation*}
\left(\alpha_{n+\frac{1}{2}}^{25}\right)^{\dagger}=\alpha_{-n-\frac{1}{2}}^{25} \quad\left(\tilde{\alpha}_{n+\frac{1}{2}}^{25}\right)^{\dagger}=\tilde{\alpha}_{-n-\frac{1}{2}}^{25} \tag{1.9}
\end{equation*}
$$

From this expression we can guess that the appropriate commutation relation for the oscillators must be

$$
\begin{equation*}
\left[\alpha_{n+\frac{1}{2}}^{25}, \alpha_{-m-\frac{1}{2}}^{25}\right]=\left(n+\frac{1}{2}\right) \delta_{n m} \quad\left[\tilde{\alpha}_{n+\frac{1}{2}}^{25}, \tilde{\alpha}_{-m-\frac{1}{2}}^{25}\right]=\left(n+\frac{1}{2}\right) \delta_{n m} \tag{1.10}
\end{equation*}
$$

More precisely, these commutation relations are precisely what are needed to reproduce the canonical equal time commutation relations

$$
\begin{equation*}
\left[\Pi^{25}(\sigma), X^{25}\left(\sigma^{\prime}\right)\right]=\delta\left(\sigma-\sigma^{\prime}\right) \tag{1.11}
\end{equation*}
$$

where $\Pi^{25}=\frac{p^{+}}{\ell} \partial_{\tau} X^{25}$ is the momentum conjugate to X^{25} in light-cone gauge. Plugging the oscillator expansions into the Hamiltonian in light-cone gauge given by,

$$
\begin{align*}
H & =\frac{\ell}{4 \pi \alpha^{\prime} p^{+}} \int_{0}^{\ell} d \sigma\left(2 \pi \alpha^{\prime} \Pi^{i} \Pi^{i}+\frac{1}{2 \pi \alpha^{\prime}} \partial_{\sigma} X^{i} \partial_{\sigma} X^{i}\right) \\
& =\frac{p^{i} p^{i}}{2 p^{+}}+\frac{1}{2 \alpha^{\prime} p^{+}} \sum_{n \neq 0, i \neq 25}\left(\alpha_{n}^{i} \alpha_{-n}^{i}+\tilde{\alpha}_{n}^{i} \tilde{\alpha}_{-n}^{i}\right)+\frac{1}{2 \alpha^{\prime} p^{+}} \sum_{n=-\infty}^{\infty}\left(\alpha_{n+\frac{1}{2}}^{25} \alpha_{-n-\frac{1}{2}}^{25}+\tilde{\alpha}_{n+\frac{1}{2}}^{25} \tilde{\alpha}_{-n-\frac{1}{2}}^{25}\right) \\
& =\frac{p^{i} p^{i}}{2 p^{+}}+\frac{1}{\alpha^{\prime} p^{+}} \sum_{n=1}^{\infty}\left(\alpha_{-n}^{i} \alpha_{n}^{i}+\tilde{\alpha}_{-n}^{i} \tilde{\alpha}_{n}^{i}+\alpha_{-n+\frac{1}{2}}^{25} \alpha_{n-\frac{1}{2}}^{25}+\tilde{\alpha}_{-n+\frac{1}{2}}^{25} \tilde{\alpha}_{n-\frac{1}{2}}^{25}+(D-3) n+(n-1 / 2)\right) \\
& =\frac{p^{i} p^{i}}{2 p^{+}}+\frac{1}{\alpha^{\prime} p^{+}} \sum_{n=1}^{\infty}\left[N+\tilde{N}-\frac{D-3}{12}+\frac{1}{24}-\frac{1}{8}\left(2\left(\frac{1}{2}\right)-1\right)^{2}\right] \tag{1.12}
\end{align*}
$$

We have used, in the last line, the heuristic result from Polchinski Problem 1.5 (eq. 2.9.19 of Polchinski Vol. 1)

$$
\begin{equation*}
\sum_{n=1}^{\infty}(n-\theta)=\frac{1}{24}-\frac{1}{8}(2 \theta-1)^{2} \tag{1.13}
\end{equation*}
$$

to evaluate the ordering constants. Note that the number operators are generally half-integral, due to the half-integral moding of X^{25}. This gives rise to the massive spectrum,

$$
\begin{equation*}
m^{2}=2 p^{+} H-p^{i} p^{i}=\frac{2}{\alpha^{\prime}}\left[N+\tilde{N}-\frac{15}{8}\right] \tag{1.14}
\end{equation*}
$$

Translational invariance on the worldsheet imposes the condition that

$$
\begin{equation*}
P=-\int_{0}^{\ell} d \sigma \Pi^{i} \partial_{\sigma} X^{i}=\frac{2 \pi}{\ell}(N-\tilde{N})=0 . \tag{1.15}
\end{equation*}
$$

Thus, we find that the specrum is

$$
\begin{equation*}
m^{2}=\frac{4}{\alpha^{\prime}}\left[N-\frac{15}{16}\right] \tag{1.16}
\end{equation*}
$$

where $N=\tilde{N}$ can be half-integral.

