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Abstract: A procedure is presented to untangle unstructured 2D meshes
containing inverted elements by node repositioning. The inverted elements
may result from node movement in �ow simulations and in large deformation
problems such as metal forming. Meshes with inverted elements may also be
created due to the limitations of mesh generation algorithms particularly for
non-simplicial mesh generation. The untangling procedure uses a combination
of direct node placement based on geometric computation of the feasible set
and node repositioning driven by numerical optimization of an element area
based objective function. It is shown that a combination of the feasible set
based method and the optimization method achieves the best results in un-
tangling the mesh. Preliminary results are also presented for untangling of 3D
unstructured meshes by the same approach.
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Introduction

Arbitrary Lagrangian-Eulerian or ALE methods are a popular class of methods
for simulating �ow problems and large deformation problems [1, 2]. ALE meth-
ods consists of a Lagrangian step in which the mesh nodes move according to
the �ow of the material, a rezone step in which the mesh is modi�ed to improve
its quality and the remapping step in which the solution is transferred from the
old mesh to the new, improved mesh. In [3, 4, 5], methods were described to
improve quality of the mesh while keeping it close to the original mesh. How-
ever, in order to improve the meshes by the methods described in [3, 4, 5], all
elements of the starting mesh must be valid or non-inverted. Therefore, if the
Lagrangian step of an ALE simulation causes the mesh to become tangled (i.e.,
it has some elements that become inverted), the mesh must be untangled before
the mesh improvement procedures are applied to it.
The need for untangling meshes also exists when a mesh generation procedure is
unable to create all valid elements in a mesh. This situation may be encountered
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in the generation of all hexahedral meshes and or general polyhedral meshes
where there is no guaranteed method of directly generating a valid mesh [6]. It
may also be encountered in advancing front based mesh generation of tetrahedral
and hexahedral [7, 8, 9] where it is possible to generate small cavities that cannot
be �lled with all positive volume elements. In these cases, it is very useful to
have a tool that can untangle the mesh after the initial generation assuming
that the right mesh connectivity has been generated.
Several researchers have recently begun focusing on the problem of untangling
unstructured meshes by node repositioning [10, 11, 12, 13]. Freitag and Plass-
man [11, 14] untangle meshes by optimization of a local function based on max-
imizing the minimum element area at each mesh vertex. Knupp [12] performs
a global optimization of the di�erence between the absolute and signed values
of element volumes in order to optimize the mesh. Kovalev et.al. [13] visit each
vertex connected to at least one invalid element and reposition the vertex di-
rectly to a point in its feasible set (or �kernel�) to make all connected elements
valid. They de�ne the feasible set of a vertex to be the set of all locations of
the vertex for which all elements connected to the vertex will be valid. The new
location of the vertex in the feasible set is found by a clever use of the simplex
method to �nd three corners of the feasible set and taking their mean. Most
of these procedures are capable of successfully untangling many tangled mesh
con�gurations. However, there are conditions under which they may fail to un-
tangle the mesh or they may not be able to produce elements with su�cient
positive volume so as to provide a good starting point for mesh improvement
procedures.
In this paper, a method is presented for untangling unstructured 2D meshes
containing triangles and quadrilaterals. The method uses a multi-step approach
based on relocating vertices to points in its feasible set and on minimizing a
function to untangle the mesh elements. The approach adopted here focuses
only on ensuring that all elements of the mesh meet at least bare minimum
validity criteria as de�ned by the simulation procedures that will use them.
However, the methods can easily be combined with separate procedures for
improving the quality of the untangled mesh like the ones described in [4, 5].

1 De�nitions

In this study, an element is considered valid if each corner of the element is
considered valid. An element corner is valid if the Jacobian determinant of its
mapping to a right corner is positive.
The feasible set for a vertex can be de�ned as the set of all positions of the

vertex for which each connected element is valid at the corners a�ected by the

position of the vertex.
The feasible set for a vertex connected to a single triangle is a half-space as
shown in the 2D example in Figure 1a. For a vertex connected to a general
polygonal element, the feasible set of a vertex is de�ned by the intersection of
three half-spaces as shown in Figure 1b for a pentagon. Figure 1c shows the



feasible set for a vertex interior to a patch of elements. From the de�nition of
the feasible set, it is clear that the feasible set is a convex polygon in 2D while
it is a convex polyhedron in 3D. Note that the feasible set for a vertex can be
empty depending on the geometry and con�guration of the elements connected
to the vertex. This implies that given the positions of the boundary vertices of
the patch, there is no location for the vertex which will simultaneously make all
the elements valid.

2 Untangling by Finding the Feasible Set

The de�nition of a feasible set given above leads to a natural method of untan-
gling meshes in which the feasible set of a vertex is determined and the vertex
is positioned inside it. This is referred to here as thefeasible set method. In
this approach each vertex of the mesh is visited and its connected elements ex-
amined to see if any of them are invalid. If an invalid element exists among the
elements connected to the vertex, the feasible set of the vertex is computed and
the vertex is placed inside the feasible set. The method loops over the mesh
until all elements are valid or no invalid element can be �xed.
The feasible set of a vertex can be found by computing the intersection of half-
spaces representing the feasible region of the vertex with respect to each element.
In 2D, this is accomplished by the intersection of pairs of lines demarcating the
feasibility half-planes [15].
In Figure 2, an example of mesh untangling by the intersection based feasible
set method is illustrated step by step. In the �gure, the invalid quadrilaterals
are shown shaded and nodes connected to at least one invalid quadrilateral are
shown in black.
While the intersection based computation of the feasible set works well in 2D,
�nding the feasible set polyhedron by intersection of half-spaces is impractically
complex in 3D. Therefore, an alternate method for positioning the vertex inside
the feasible set is implemented based on the simplex method as described in
[13]. In [13] the idea is proposed that the boundary lines of the half-planes
forming the feasible set in 2D can be interpreted as inequality constraints on
the minimization of an arbitrary function. If the function is a linear function
then its minimum must occur at the intersection of two of these inequality
constraints or in other words the corner of the feasible set polygon. Therefore,
the corners of the feasible set polygon can be found by minimizing di�erent linear
functions along with the appropriate inequality constraints using the simplex
method [16, 17].
This idea is further simpli�ed by recognizing that for untangling, it is su�cient to
�nd any one position for the vertex inside its feasible set to make all connected
elements valid. This implies that it is unnecessary to �nd all corners of the
feasible set polygon. Therefore, for untangling a patch of elements in 2D, it
can be inferred that it is su�cient to �nd three distinct corners of the feasible
set polygon and reposition the vertex to the center of the triangle formed by
these corners. Therefore, the procedure minimizes simple linear functions such



Figure 1: Illustration of Feasible Sets (a) Feasible set for vertex connected to
single element (b) Feasible set for vertex connected to a pentagon (c) Polyg-
onal feasible set for vertex connected to patch of triangular and quadrilateral
elements.



Figure 2: Untangling of mesh by feasible set method (a) Initial mesh (b),(c)
Intermediate meshes (d) Final mesh. The shaded quadrilaterals indicate invalid
elements and vertices represented in black are connected to at least one invalid
quadrilateral.



as f(x, y) = x, f(x, y) = −x and f(x, y) = y to �nd three distinct corners of
the feasible set polygon. The vertex is then repositioned to the center of the
triangle formed by these corners.
The feasible set approach to untangling is very useful because it is a direct
way of �xing inverted elements a�ecting only those nodes connected to invalid
elements. However, the shortcoming of this approach is that some elements
cannot be �xed because the feasible set associated with each of their vertices is
empty.

3 Optimization Approach to Untangling

An alternative approach for untangling meshes is by minimizing an appropriate
objective function so as to make all the invalid elements valid [11, 12]. Knupp
[12] proposed optimization of a global objective function based on the diference
between signed volumes of elements and their corresponding absolute values. If
the area of the i’th element in a mesh isαi, then the function to be minimized
is

f(x) =
n∑
i

(| αi | −αi) (3.1)

Minimization of this function can only bring elements to a zero area (volume)
state which is still considered unusable in numerical simulations. Therefore,
Knupp suggested that a user controlled parameterβ be added to the function
modifying it to be

f(x) =
n∑
i

(| αi − β | −(αi − β)) (3.2)

The role of β is to force the function to reach a minimum when the elements
have a small positive volume instead of zero volume.
In this work, the objective function proposed by Knupp in [12] has been modi�ed
so that it is quadratic and smooth as shown in Eq. 3.3 below.

f(x) =
n∑
i

(| αi − β | −(αi − β))2 (3.3)

This smooth function can then be minimized using a numerical optimization
method such as the conjugate gradient method [16, 17]. It has been found
that, in pratice, minimization of the quadratic form of the objective function
untangles the mesh more reliably than the linear form.
The advantage of the optimization approach to untangling described above is
that is guaranteed to make all elements at least non-negative. However, the
method can have a non-local e�ect on the mesh since it may have to mean
several nodes in a local neighborhood in order to �x an invalid element.



Figure 3: Invalid mesh of Figure 2 optimized using optimization with quadratic
objective function (a) Without β (barely valid elements shown shaded) (b) With
β = 0.106 = 10% of bounding box diagonal normalized by number of elements
in x or y directions

Figure 3 shows example of the mesh shown in Figure 2, untangled by the opti-
mization procedure. Figure 3a shows the mesh optimized using the quadratic
objective function without the use of β or β = 0. The procedure untangles the
mesh but becauseβ is zero, some of the valid elements are barely valid. The
barely valid elements and the interior vertices connected to these elements are
shaded in the �gure. Figure 3b shows the same optimization but with a �nite β,
which is calculated as 10% of the problem size (diagonal of the bounding box)
normalized by the number of elements in either the x or y directions and has
the value of 0.106. As seen from the �gure, the mesh is better in this case since
all the elements are positively valid.

In using the optimization procedure for untangling meshes, the choice ofβ must
be made carefully. Without β (i.e., β = 0.0), the optimization procedure can
only make all the elements valid in the sense that the volume of every element
is positive or at least zero. On the other hand, using an indiscrimanetely large
β can be detrimental since the objective function minimum can become non-
zero. This implies that for the given boundary con�guration it is not possible
for all elements to achieve a volume equal to or greater thanβ. Therefore, the
approach adopted here is to setβ to the minimum acceptable area or volume
of the elements with respect to the mesh optimization procedures that will
subsequently improve the mesh.



4 Mesh Untangling by 3 Stage Procedure

In the previous sections, it was seen that the feasible set approach had a local
e�ect on the mesh but could not always �x the mesh. On the other hand,
the optimization approach, usually �xed the mesh by making all elements non-
negative but could a�ect a larger number of nodes and resulted in barely valid
elements. Therefore, the procedures have been combined here into a 3-step
procedure for maximizing the possibility of untangling the mesh with minimal
impact on the mesh.
The 3-step procedure for untangling the mesh �rst performs untangling by the
feasible set method so as to �x as many elements as possible with minimal
impact to the valid part of the mesh. The second step of the procedure performs
a minimization of the quadratic objective function described earlier in order to
�x any remaining invalid elements. The optimization procedure �rst performs a
local or vertex-by-vertex optimization loop over the boundary vertices in order
to try and �x as many elements as possible by their movement. The movement
of the boundary vertices is constrained to the original discrete boundary by a
local parameterization technique [5].
The third step of the procedure performs another round of untangling on barely
valid elements by the feasible set approach to try increase their volume. This
step requires rede�nition of the feasible set boundaries to account for the desired
element volumes. Once this is done, the mesh is usually suitable for use as input
to a mesh quality improvement procedure such as the one described in [4, 5].

5 Results

The �rst example shown in Figure 4 illustrates the untangling of a mesh arising
from a Rayleigh-Taylor simulation. The mesh is made invalid during the La-
grangian step of an ALE simulation of the problem and must be �xed before the
simulation can proceed. Figure 4a shows a part of the overall domain, Figures 4b
shows the tangled portion of the mesh (with squares marking nodes connected
to invalid elements). Figures 4c shows the untangled mesh corresponding to the
tangled meshes shown in Figures 4a,b. The stages of untangling of this mesh are
illustrated further in Figure 5. Figure 5a shows a zoom-in of the tangled portion
of the original mesh. Figure 5b shows the mesh after the �rst untangling step
by the feasible set method which is unable to �x all the elements. Figure 5c
shows the mesh after untangling by optimization during which all elements were
made at least barely valid. Finally, Figure 5d shows the mesh after the second
round of untangling by the feasible set method during which all elements were
brought to a positive volume state.
Figure 6 presents the example of untangling a mesh of the state of Texas. An
originally valid mesh shown in Figure 6a was tangled by a random perturbation
of a subset of the interior vertices to result in the mesh shown in Figure 6b.
The maximum perturbation was 20% of the domain size. This mesh was then
successfully untangled using the 3-step procedure to give the mesh shown in



Figure 4: Untangling of Lagrangian mesh from Rayleigh-Taylor Simulation (a)
Part of original tangled mesh (b) Zoom-in of tangled mesh (nodes shown by a
square are connected to at least one invalid element) (c) Zoom-in of untangled
mesh

Figure 6c. For this example the feasible set method alone left behind 17 patches
with negative area triangles and the optimization method alone left behind 6
zero area triangles. The value ofβ was zero for the optimization step. The
result of mesh improvement on the untangled mesh is presented in Figure 6d
to illustrate that good quality meshes can be obtained when the untangling
procedure is combined with mesh improvement procedures.

Conclusions

A multi-step method for successful untangling of unstructured 2D meshes has
been presented in this paper. The method uses a combination of the feasible
set method and optimization method to achieve the greatest degree of success
in untangling the mesh while keeping the mesh close to the original mesh as
required for remapping in ALE simulations. The methods have shown a high
degree of success in untangling complex 2D meshes. The formulation of the
procedures allows easy extension to 3D problems and preliminary results are
promising.



Figure 5: Stages of untangling of mesh from Rayleigh-Taylor simulation (a)
Zoom-in of original mesh (nodes connected to invalid elements shown as squares)
(b) Mesh after application of feasible set approach, some elements remain with
less than a minimum volume (c) Mesh after optimization, some elements remain
with zero volume (d) Mesh after second application of the feasible set approach,
all elements have volume greater than required minimum.



Figure 6: Untangling of triangular mesh of Texas outline (a) Original valid mesh
(b) Tangled Mesh (random movement of interior vertices) (c) Untangled mesh
with poor quality elements (d) Mesh improved based on optimization of element
condition numbers.
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