MEMORANDUM FOR:	Marti Ikehra California State Advisor Hector Mine Earthquake Survey Project Coordinator
FROM:	Charles W. Challstrom Director, National Geodetic Survey
SUBJECT:	<u>INSTRUCTIONS</u> : California FBN/CBN Re-observations as a Result of the Hector Mine Earthquake of 1999 (GPS-1460) Task Number: 8K6D2000

<u>GENERAL</u>:

On October 16, 1999, a 7.1 magnitude earthquake, designated the Hector Mine Earthquake, occurred in the Mojave Desert. The National Geodetic Survey (NGS), in cooperation with the California Department of Transportation (CALTRANS) Districts 8 and 11, Riverside County, San Bernadino County, U.S. Geological Survey, Las Vegas Valley Water District, and Mohave County, Arizona, will re-observe the portion of the California Federal Base Network (FBN) and Cooperative Base Network (CBN) that was affected by this earthquake: 12 FBN and 18 CBN stations in California and one CBN station in Nevada that were affected will be re-observed. One FBN station in Arizona and one FBN and one CBN station in Nevada will also be occupied as ties.

<u>PURPOSE</u>:

In order to meet America's accelerating positioning and navigation needs, the existing coordinate reference system must be continually enhanced to provide the accessibility and high accuracy required for use with GPS. The digital revolution in mapping, charting, and surveying requires a National Spatial Reference System (NSRS) consisting of, among other components, a network of monumented points having fourdimensional positions. NGS is tasked with the responsibility of maintaining the FBN component of the NSRS, as the user community involved is tasked with maintaining the CBN.

N/NGS21:CSCraig:713-3194:amg:05-05-00 A:\HECTORMINE_INST This GPS project will provide new coordinates for the affected FBN/CBN relative to the portion of FBN/CBN that was unaffected by the earthquake.

SPECIFICATIONS:

Project requirements for the observations are to ensure 2-centimeter local accuracy in the horizontal component, as well as 2-centimeter local accuracy for the ellipsoid heights.

General specifications for the project are as follows. At each site, three sessions of 5½ hours duration shall be observed. The observing scheme shall be arranged so that for each station, the start time of one of the observing sessions shall be at least 4 hours different than the other two. The observing scheme shall be arranged to ensure that adjacent stations are directly connected in at least one observing session, and at least half of all base lines are repeated.

In general, station occupation and observing procedures must be carried out according to appropriate sections of the "NGS Operations Handbook" and the current applicable GPS receiver field manuals. Data formats and digital file definitions are given in "Input Formats and Specifications of the National Geodetic Survey Data Base," Volume I. Horizontal Control Data, Federal Geodetic Control Subcommittee, September 1994, revised and reprinted November 1998. Success in meeting the accuracy standards will be based on repeatability of measurements, analysis of loop misclosures, and adjustment residuals.

General specifications for the project are given in "Geometric Geodetic Accuracy Standards and Specifications for Using GPS Relative Positioning Techniques," Version 5.0: dated May 11, 1988, reprinted with corrections August 1, 1989. Specific project criteria are given in the following sections.

Data from all CORS within the project area are to be used in processing. The CORS information is included in the attached Table 2. Further, the CORS of the Southern California Integrated GPS Network (SCIGN) are also to be used in processing. The SCIGN information will be found in Table 3.

PROJECT NETWORK:

A list of stations has been provided in the attached Table 1. A sketch of stations has also been provided.

DATA ACQUISITION:

Data collection must be accomplished as specified in the appropriate dual-frequency receiver field manuals in the compressed mode at a 15-second epoch collection interval. The GPS receivers must be dual-frequency and full-wavelength. Track satellites down to a 10-degree elevation angle. Vectors between the project stations shall be measured by single sessions consisting of continuously and simultaneously tracking for 5½ hours.

Each station must be occupied at least three times - twice at one observing window and once at the other. Adjacent stations must be directly connected in at least one observing session, and at least one-half of all base lines must be repeated. All available CORS data will be used throughout the project.

Record weather data just before, immediately after, and at the mid-point of each session. Meteorological data shall also be collected immediately after an obvious weather front passes during a session and immediately before it passes, if possible. Pressure and relative humidity measurements must be made near and at about the height of the GPS antenna phase center. Indicate in the log the location of the barometer and psychrometer.

Survey operations shall be conducted with due regard to the safety of personnel and equipment.

VECTOR COMPUTATIONS:

Data management, quality review of collected data, and final vector processing for the survey will be accomplished by the Spatial Reference System Division (SRSD) using PAGES. Vectors shall be computed in the International Terrestrial Reference Frame (ITRF) system, using the most current epoch and precise IGS ephemerides. Use 30-second epoch intervals for data processing. For stations where weather data are not available, or are suspect, predicted values computed based on the station's latitude, height above mean sea level, and time and day of year will be used. Use 15 degrees as the cutoff elevation angle in data processing. A cutoff angle of 10 degrees may be used when necessary to improve results. The data will be processed in 24-hour sessions (or slightly longer if the observation session crosses 0000 UTC) in order to utilize the 24-hour data sets collected at the CORS. The "fixed baseline" option in PAGES will be used to compute the baseline between the CORS. The final ITRF vectors will be assessed and transformed to the NAD 83 coordinate system using program ADJUST.

The type of final solution, L1 versus ion-free, will depend on the length of the vectors. For vectors less than 10 km in length, the final reduction will consist of a L1 fixed solution. Compute vectors greater than 10 km in length in a separate processing session from the short (less than 10 km) vectors. In all cases, integer ambiguities will be fixed for each vector whenever possible.

The quality of collected data shall be determined from the plots generated from PAGES and by analysis of repeated vectors and free adjustment residuals and/or loop misclosures.

The data and results will be submitted to the Global Positioning System Branch of SRSD. All B-files and G-files must be complete, including *25* and *27* records.

STATION DESCRIPTIONS:

Station recovery notes must be submitted in computer-readable form using DDPROC software. Include the name, address, and, if public ownership, telephone number of the responsible party. Do not include the telephone numbers of private property owners. The California Geodetic Advisor will be responsible for all quality checks for conformance with NGS format standards as pertains to descriptions and recoveries.

SPECIAL REQUIREMENTS:

Antenna set-up is critical to the success of this project. Fixed-height tripods are preferred for all receivers. the plumbing bubbles on the antenna pole of the fixed-height tripod must be shaded when plumbing is performed. They must be shaded for 3 minutes before checking and/or re-plumbing. Also, the perpendicularity of the poles must be checked at the beginning of the project and any other time there is a suspicion of a problem. When a fixed-height tripod is not used, the height of the antenna must be carefully measured to prevent station set-up blunders from occurring. Tribrachs used for these set-ups must be checked and adjusted when necessary. Totally independent measurements of the antenna height above the mark in both metric units and English units must be made before and after each session. Someone other than the observer must check the measurement computations by carefully comparing measurements and then entering his/her initials on the log.

A rubbing of the stamping of the mark must be made at each visit to a station. If it is impossible to make a rubbing of the mark, a plan sketch of the mark must be substituted, accurately recording all markings.

For each station visited, a visibility obstruction diagram must be prepared and the TO-REACH description carefully checked for errors or omissions.

The following must be recorded at <u>each</u> occupation of a station:

- 1) receiver manufacturer,
- 2) antenna manufacturer,
- 3) receiver model number (part number),
- 4) antenna model number (part number),
- 5) the complete serial number of the receiver, and
- 6) the complete serial number of the antenna.

Success of this project requires that the highest quality GPS data be collected. Therefore, during each station occupation, the operators shall carefully monitor the operation of the receivers. Any irregularities in the data due to equipment malfunction, DOD adjustment of the satellite orbit, obstructions, etc., must be reported to the Project Development Branch, N/NGS21, as soon as possible and noted on the observing log. If the quality of observations for an observing session is questionable, notify the Project Development Branch immediately.

The survey team shall not depart the project area until they have quality reviewed all data and advised N/NGS21.

<u>GPS DATA</u>:

Project report and data listed in Annex L of "Input Formats and Specifications of the NGS Data Base" and in the attached addendum for the adjustment portion must be transmitted. Any data considered suspect as to quality in achieving accuracy standards should be sent via FedEx immediately for office review. Backup of transmitted data must be held until notified by the Project Development Branch, N/NGS21.

The data set collected during the project shall be named "caro040d.746". All records in connection with this project shall be titled "CALIFORNIA FBN/CBN RE-OBSERVATIONS, 2000". The project number (accession number) is GPS-1460.

LIAISON:

Liaison must be maintained with designated offices at the National Geodetic Survey headquarters located at:

1315 East-West Highway Silver Spring, MD 20910-3282

The Arizona Geodetic Advisor is:

CDR Dave Minkel, NOAA Office of the State Cartographer 1616 W. Adams St. Phoenix, AZ 85007 Telephone: 602-542-1569 Cellular: 602-549-4744 FAX: 602-542-2600 e-Mail: Dave.Minkel@noaa.gov

The Nevada contact is:

Timothy J. Wolf District Surveyor 1001 South Valley View Boulevard Las Vegas, NV 89153 Telephone: 702-258-7163 Mobile: 702-375-9430 FAX: 702-258-3811 e-Mail: timothy.wolf@lvvwd.com Questions and problems which could affect the technical adequacy of the project should be directed to:

Steven J. Frakes
Project Development Branch
Spatial Reference System Division
SSMC3 -- N/NGS21, Station 8853
Telephone: 301-713-3194, ext. 111
FAX: 301-713-4316
e-Mail: Steve.Frakes@noaa.gov

Questions and problems concerning adjustment processing should be directed to:

Maralyn L. Vorhauer Observation and Analysis Division N/NGS4, SSMC III, Station 8562 Telephone: 301-713-3176, ext. 104 FAX: 301-713-4327 e-Mail: Maralyn.Vorhauer@noaa.gov

Questions and problems concerning using CORS data in processing should be directed to:

Neil Weston Geosciences Research Division N/NGS6, SSMC III, Station 9830 Telephone: 301-713-2847, ext. 202 FAX: 301-713-4475 e-Mail: Neil.D.Weston@noaa.gov

PUBLICITY:

See "NGS Operations Handbook," Section 1.4.1.

EXPENSES:

Expenses for this project will be charged to Task Number 8K6D2000.

TRAVEL:

Travel and per diem are authorized in accordance with Federal Travel Regulations, Part 301-11, Per Diem allowances. Current per diem rates were effective January 1, 2000. Attachments

```
cc: N/NGS - D.Zilkoski
    N/NGS - S. Misenheimer*
    N/NGS1 - G. Mitchell
    N/NGS1x1 - Dave Minkel
    N/NGS21 - S. Frakes
    N/NGS22 - D. Pursell
    N/NGS4 - E. Wade
    N/NGS4 - M. Vorhauer
    N/NGS4 - D. Hoar
    N/NGS41 - W. McLemore
    N/NGS41 - J. Blackwell
    N/NGS413 - G. Sowell
    N/NGS5 - R. Snay
    N/NGS6 - N. Weston
    FGCS Members*
    T. Wolf, District Surveyor, Las Vegas, Nevada
    W. Young, CSRC
    G. Helmer, CSRC
    M. Duffy, CSRC
    D. D'Onofrio, CSRC
```

*First page only

HECTOR MINE EARTHQUAKE RE-OBSERVATIONS STATION LISTING Table 1

DESIGNATION	<u>pid</u> St	<u>TATE VDA</u>	TUM	ELEV MT	ELEV SOURCE	LATITUDE	LONGITUDE	ID
11 AAR	DX0471 CA	A NAV	D 88	188.052	READJUSTED	33 17 44.46821	116 17 54.77341	11AA
435	DX5442 CA	a nav	D 88	461.811	ADJUSTED	33 49 49.64856	117 14 59.26107	0435
2680	CA	A				33 42 40	117 21 40	2680
603 51	DX0107 CA	a nav	D 88	340.590	ADJUSTED	33 53 57.62568	116 21 12.64329	6351
603 58	DX0122 CA	a nav	D 88	278.290	ADJUSTED	33 55 30.41766	116 28 28.48613	6358
603 86	DX1078 CA	a nav	D 88	548.276	ADJUSTED	33 54 58.58327	116 47 00.79301	6386
AMBOY	EU0492 CA	a nav	D 88	195.363	ADJUSTED	34 33 31.04969	115 44 32.90846	AMBO
BLCK BUTTE NCMN 726	9DW9002 CA	a nav	D 88	522.8	GPS OBS	33 39 49.47507	115 43 11.28045	BLAC
C 391	EU0063 A2	Z NAV	D 88	426.809	ADJUSTED	34 46 28.	114 11 25.	C391
CAJON	EV3699 CA	a nav	D 88	1342.1	GPS OBS	34 20 49.92686	117 27 03.88485	CAJO
CRISS	EU1138 CA	a nav	D 88	456.9	GPS OBS	34 02 39.00777	115 13 05.65925	CRIS
D 368	GR1237 N\	V NAV	D 88	989.6	GPS OBS	36 09 16.91262	115 21 47.19854	D368
DASH	DX3756 CA	a nav	D 88	462.113	ADJUSTED	33 38 08.41318	117 05 10.36999	DASH
DESERT CENTER	AH5231 CA	a nav	D 88	269.1	GPS OBS	33 42 54.45482	115 24 01.26945	DESO
END	EU0986 CA	a nav	D 88	134.1	GPS OBS	34 02 38.61871	114 28 53.10497	ENDD
FRINK	DW0033 CA	a nav	D 88	-51.316	ADJUSTED	33 21 37.10323	115 38 49.15205	FRIN
GODWIN	EU0440 CA	a nav	D 88	537.338	ADJUSTED	34 08 11.07471	115 55 53.54320	GODW
H 8 2 RESET	DX5396 CA	a nav	D 88	468.738	ADJUSTED	33 46 23.052	116 58 20.784	H82R
HAVASU	EU1257 A2	Z NAV	D 88	212.5	GPS OBS	34 33 58.2732	114 21 41.5296	HAVA
HECTOR 2	EV3968 CA	a nav	D 88	629.69	LEVELING	34 47 05.89055	116 25 14.48003	HECT
HOKUS	EU1007 CA	a nav	D 88	398.0	GPS OBS	34 28 35.30540	114 39 02.36672	HOKU
HPGN CA 07 05	EV9240 CA	a nav	D 88	1061.83	LEVELING	34 29 33.79376	117 45 54.28743	0705
HPGN CA 08 01	FS1409 CA	a nav	D 88	806.7	GPS OBS	35 32 27.71714	115 25 22.12070	0801
HPGN CA 08 02	FS1410 CA	a nav	D 88	917.3	GPS OBS	35 22 16.73512	115 53 21.84327	0802
HPGN CA 08 03	FT1609 CA	a nav	D 88	543.5	GPS OBS	35 04 18.56660	116 24 52.48852	0803
HPGN CA 08 04	EV9241 CA	a nav	D 88	693.4	GPS OBS	34 54 13.84000	116 58 50.72661	0804
HPGN CA 08 05	FT1610 CA	a nav	D 88	754.98	LEVELING	35 00 25.74113	117 31 44.97690	0805
HPGN CA 08 06	FT1611 CA	a nav	D 88	1102.6	GPS OBS	35 21 58.14991	117 36 51.08340	0806
HPGN CA 08 08	EU1246 CA	a nav	D 88	760.9	GPS OBS	34 43 40.08863	115 55 59.32703	0808
HPGN CA 08 09	EU1247 CA	a nav	D 88	626.6	GPS OBS	34 48 22.65158	115 19 37.20615	0809
HPGN CA 08 18	EV9242 CA	a nav	D 88	637.2	GPS OBS	34 01 20.00882	117 06 14.77835	0818
HPGN CA 08 21	DX5290 CA	a nav	D 88	1519.1	GPS OBS	33 33 40.54016	116 34 14.20654	0821
HPGN CA 11 08	DX5292 CA	a nav	D 88	873.6	GPS OBS	33 14 01.57873	116 41 35.95582	1108
HPGN CA 11 09	DX5293 CA	a nav	D 88	234.44	LEVELING	33 09 35.32860	116 14 49.23085	1109
HPGN CA 11 10	DW9074 CA	a nav	D 88	4.4	GPS OBS	33 10 36.47656	115 53 16.26925	1110
HPGN CA 11 13	DW9077 CA	a nav	D 88	506.8	GPS OBS	33 40 37.86616	115 57 49.94991	1113
HPGN CA 11 14	DW9078 CA	a nav	D 88	215.7	GPS OBS	33 40 50.48185	115 14 35.09150	1114
INYOKERN	FT0930 CA	A NAV	D 88	742.452	ADJUSTED	35 38 50.54938	117 48 42.42842	INYO
JUNCTION	GS0410 CA	A NAV	D 88	623.440	ADJUSTED	36 18 15.93545	116 24 59.26184	JUNT
K 526	EV0899 CA	A NAV	D 88	371.817	ADJUSTED	34 06 27.90873	117 12 11.04692	K526
L 290	FT0373 CA	A NAV	D 88	628.484	ADJUSTED	35 58 40.51303	117 19 43.09267	L290

LAST	DX3832 CA	NAVD 88	498.449	ADJUSTED	33 50 14.49728	117 18 33.22685	LAST
LAZY	EV9188 CA	NAVD 88	1059.1	GPS OBS	34 20 38.02719	116 30 49.94512	LAZY
NEEDLES	EU0749 CA	NAVD 88	216.304	ADJUSTED	34 48 23.91676	114 36 14.28592	NEED

DESIGNATION	<u>PID</u> ST	STATE VI	ATUM	ELEV MT	ELEV SOURCE	LATITUDE	LONGITUDE	ID	
OAK DAM	AH5244 CA	CA NA	VD 88	315.8	GPS OBS	33 50 50.271	59 117	35 52.91663 OA	KD
PARK 2	FT1190 C	CA NA	VD 88	439.169	ADJUSTED	35 52 01.268	48 116	18 00.96375 PA	RK
PEARBLOSSOM NCMN	7254DZ1220 C	CA NA	VD 88	923.56	LEVELING	34 30 43.653	49 117	55 20.56889 PE	AR
PORT	FU3349 CA	CA NA	VD 88	892.6	GPS OBS	35 05 13.673	48 118	09 25.95340 PO	RT
R 119	FS0394 A	AZ NA	VD 88	544.612	POSTED	35 55 10.	114	29 38. R1	19
S 364	FS0115 N	IV NA	VD 88	521.919	POSTED	35 52 18.819	27 114	55 42.07939 S3	64
SAND HILL RESET	EV4004 CA	CA NA	VD 88	865.3	GPS OBS	34 15 17.959	75 116	16 43.90036 SA	ND
SAN DIEGO GPS 03	DX5297 C	CA NA	VD 88	93.958	ADJUSTED	33 19 54.311	29 117	09 31.67229 SD	03
SAN DIEGO GPS 34	DX5303 C.	CA NA	VD 88	823.42	GPS OBS	33 17 36.858	66 116	53 54.65934 SD	34
SANDY	ET1100 A:	AZ NA	VD 88	771.7	VERTCON	34 41 05.833	16 113	37 11.30053 SA	NY
STIM	EV2861 CA	CA NA	VD 88	888.6	GPS OBS	34 32 12.050	35 117	14 30.43797 ST	MI
T 448 RESET	DX2369 C	CA NA	VD 88	752.747	ADJUSTED	33 56 32.373	78 117	00 08.71774 т4	48
TABLE	FS1223 N	IV NA	VD 88	1571.3	GPS OBS	35 48 19.642	89 115	29 10.36109 ТВ	LE
TOMTIT 2	DX5133 C	CA NA	VD 88	416.8	GPS OBS	33 55 29.456	27 116	38 30.96840 TO	MT
YUNG	DX5304 C	CA NA	VD 88	352.094	ADJUSTED	33 25 48.760	91 117	08 40.74744 YU	ING
Z 38 RESET	EV1120 C	CA NA	VD 88	289.961	ADJUSTED	34 00 54.599	73 117	20 02.09111 Z3	8R

HECTOR MINE EARTHQUAKE RE-OBSERVATIONS CORS LISTING Table 2

DESIGNATION	<u>PID</u> <u>STATE</u>	HDATUM VDATUM	POS SOURCE	<u>ELEV MT</u>	ELEV SOURCE LATITUDE	LONGITUDE
BLYTHE PGGA STA CORS ARP	AF9486 CA	NAD 83 NAVD 88	ADJUSTED	119.56	GPS OBS 33 36 37.47848	114 42 53.41657
CHINA LAKE CORS ARP	AF9693 CA	NAD 83	ADJUSTED		35 58 56.41606	117 48 31.95282
DURMID HILL PGGA CORS ARP	AF9696 CA	NAD 83	ADJUSTED		33 23 23.28429	115 47 16.85128
GOLDSTONE DS STA CORS ARP	AF9648 CA	NAD 83	ADJUSTED		35 25 30.54416	116 53 21.25076
LAKE SKINNER CORS ARP	AF9684 CA	NAD 83	ADJUSTED		33 34 41.65190	117 03 52.50227
MONUMENT PEAK CORS ARP	AF9705 CA	NAD 83	ADJUSTED		32 53 30.96051	116 25 20.39881
PINON 1 PGGA CORS ARP	AF9708 CA	NAD 83	ADJUSTED		33 36 43.74137	116 27 29.32367
POINT LOMA 3 CORS ARP	AF9569 CA	NAD 83 NAVD 88	ADJUSTED	13.63	GPS OBS 32 39 55.49055	117 14 34.84564
TORRANCE AIRPORT CORS ARP	AF9714 CA	NAD 83	ADJUSTED		33 47 52.04873	118 19 50.11159

Southern California Integrated GPS Network Table 3

SITE	ID	LATITUDE	LONGITUDE	ELEVATION
Anza Gravel Excavation Site	AZRY	33.54	116.63	1265.71
Apple Valley Road Yard	AVRY	34.47	117.15	888.91
Argos Mountain Firing Area	AGMT	34.59	116.43	1337.84
Barstow Rd. Yd.	BSRY	34.92	117.01	613.5
BEARMAT Hill	BMHL	34.25	116.05	722.64
Beaumont Road Yard	BMRY	33.96	116.98	787.26
Big Bear Rd. Yd.	BBRY	34.26	116.88	2051.06
Cajon Maintenance Statio	CJMS	34.31	117.48	933.36
Challenger Middle School	CHMS	34.64	117.83	760.33
College of the Desert	COTD	33.73	116.39	27.79
Desert Sun Science Center	DSSC	33.73	116.71	1660.87
Devil's Punchbowl Park	DVPB	34.41	117.86	1430.85
Diamond Valley Lake West Dam	ESRW	33.68	117.07	548.53
Diamond Valley Lake East Dam	ESRE	33.67	116.99	538.16
Glen Helen Regional Park	GHRP	34.2	117.4	628.62
Hector Mine	HCMN	34.75	116.43	568.76
High Vista Communications Facility	HIVI	34.76	117.8	930.88
Hinds Pumping Station	HNPS	33.71	115.64	393.96
Holcomb Ridge	HOLC	34.46	117.85	1238.17
Iron Mountain Pumping Station	IMPS	34.16	115.15	563.26
La Contenta Middle School	CTMS	34.12	116.37	966.47
Lake Mathews	MATH	33.86	117.44	396.89
Lake Los Angeles School	LLAS	34.59	117.84	812.5
Landers Elementary School	LDES	34.27	116.43	978.04
Ludlow Southwest	LDSW	34.7	116.21	640.93
Mills Filtration Plant	MLFP	33.92	117.32	472.99
Montezuma Valley Fire Dept.	MVFD	33.21	116.53	1190.1
Mountain Skies Observatory	MSOB	34.23	117.21	1733.15
Noble Pass Firing Area	NBPS	34.51	116.15	1098.79
Oasis Elementary School	OAES	34.14	116.07	604.78
Observation Point Creole	OPCL	34.43	116.31	1312.89
Observation Point Bullion	OPBL	34.37	115.92	1226.55
Observation Point Cross	OPCX	34.43	116.15	1133.82
Observation Point Crampto	OPCP	34.37	116.08	1096.67
Observation Point Round	OPRD	34.53	116.29	1400.22
Palm Springs Airport	PSAP	33.82	116.49	86.75
Palomar Observatory	PMOB	33.36	116.86	1662.53
Perris Pump Back Facility	PPBF	33.84	117.18	428.11

SITE	ID	LATITUDE	LONGITUDE	ELEVATION
Philips Lab	PHLB	34.93	117.69	886.17
Pinemeadon	ROCH	33.61	116.61	1393.73
Rialto High School	RTHS	34.09	117.35	328.7
Rodman Mountain	RDMT	34.64	116.62	1782.99
Salton City Maintenance Station	SLMS	33.29	115.98	-45.93
San Gorgonio Pass 1	SGPS	33.91	116.7	476.72
Siberia	SIBE	34.62	116.02	362.51
Southern California Intl. Apt.	SCIA	34.61	117.39	831.45
Sweeney Granite Mountains Research Ctr	GMRC	34.78	115.66	1298.21
Table Mountain	TABL	34.38	117.68	2228.02
Troy	TROY	34.84	116.53	613.57
West Ord Mtn. Communications Facility	WOMT	34.67	116.93	1353.04
Wide Canyon	WIDC	33.93	116.39	445.02
Yucaipa	CRFP	34.04	117.1	688.81