

U.S. Department of Energy Energy Efficiency and Renewable Energy

biomass program

Process Monitoring Tools

DOE OBP Thermochemical Platform Review Meeting June 7-8, 2005

Vann Bush Gas Technology Institute

- Project Background and Objectives
- Pathways and Milestones
- Technical Feasibility and Risks
- Competitive Advantage
- Project Overview
- Accomplishments
- Plan/Schedule
- Critical Issues
- Progression to Next Stage
- Summary

- FY02 and FY03 Appropriated Funding
 DE-FC36-02GO12024, DE-FC36-03GO13175
- Focus on Syngas R&D Platform
 - Systems Integration Issues
 - Syngas Cleanup and Syngas Analysis
- Crosscutting Technology for Multiple Pathways
 - Stage Gate Research Track
 - Development Stage
- Project Scheduled Completion 1st Quarter FY06

- Produce and validate an innovative process diagnostic and monitoring system to quantify syngas composition in gasification and gas cleanup process streams.
- Evaluate gas cleanup and treatment technologies that are required, available, and proven for various syngas end uses.

Pathways and Milestones – C-level and Project Milestones

Ag Residues	Perennial Crops	Pulp and Paper	Forest Products			
	Validate Gasifi	cation Performance				
M 4.11.2 M 4.12.2	M 5.11.2 M 5.12.2	M 6.3.3	М 7.1.3			
Validate Gas Cleanup Performance						
M 4.11.3 M 4.12.3	M 5.11.3 M 5.12.2	M 6.3.4	M 7.1.4			
Validate Integrated Gasification and Gas Cleanup						
M 4.11.5 M 4.12.5	M 5.11.5 M 5.12.5	M 6.2.3 M 6.2.4	M 7.1.5 M 7.3.1			

Project Milestones	Туре	Performance Expectations	Due Date
Select and assemble analytical suite	D	Provide comprehensive analysis of syngas components from raw gas to ultra-clean gas purity	Feb. 2005
Complete analytical suite validation tests	D	Conduct syngas measurements at two test sites with multiple stages of syngas contaminant removal	Sept. 2005

The project will be successful because:

- Novel process interface strategy and technology meet prerequisite for accurate syngas sampling
- Selection and deployment of state-of-the-art commercial analyzers lowers technical risks
- Some **redundancy** available in suite to insure coverage of syngas components
- Standard QA/QC methods (reference batch methods, spike and recovery ,etc) can be used in assessing analytical accuracy
- Multiple test sites and multiple feedstocks permit validation of analytical system and methods

Advantages of Accurate On-Line Analytical Systems

- Key enabler for cost-effective technology development and systems integration work
- Required technology for process optimization (needed to meet economic performance goals)
- Essential capability for on-line production monitoring to meet syngas end-user specifications

Project Participants

biomass program

Technical Advisory Panel

Project Overview

biomass program

Comprehensive, continuous, sensitive and accurate measurements at key points in the process are essential to:

Varian

GC/PFPD

- Compare gasification conditions
- Quantify fuel-specific syngas components
- Characterize syngas quality for end uses
- Monitor gas conditioning and cleanup effectiveness in short-term tests

Agilent GC/MSD/FID/SCD

Contaminant		Turbine	SOFC	Chemicals
Sulfur	ppmv	20	1 - 0.05	0.2 - 0.01
Halides	ppmv	1	1 - 0.01	0.1 - 0.01
Ammonia	ppmv		5000	10 - 0.02
Sodium + Potassium	ppmw	0.08		0.01
Particles (total)	ppmw	3.0	?	0
Particles (5 -10 µm)	ppmw	0.15		
Particles > 10 µm	ppmw	0.03 - 0		
$C_2 - C_6$	ppmv		2000	? (low)

Optimize extraction and delivery of syngas samples

- use GTI interface technology to prevent losses and contamination of the syngas sample streams
- operate each analyzer at its upper temperature limit
- condition syngas streams only as much as required for each analyzer

Adapt state-of-the-art analytical instruments and methods to fully characterize syngas composition

- **Goal:** Introduce sample streams of syngas into a suite of analyzers without condensing vapor-phase hydrocarbon species
- **Approach:** Lower the partial pressures of the vapor-phase hydrocarbon species:
 - depressurize the syngas sample streams to 1 2 bar
 - operate each analyzer at its upper temperature limit
 - dilute syngas stream only as much as required for each analyzer
- **Tool:** Novel, cylindrical cooling chamber with nitrogen-wall dilution
- **Operation:** Minimize dilution by actively comparing measured concentrations (partial pressures) of vapor-phase species with their condensation thresholds

Advantage: Near-continuous measurement of unaltered syngas species

Dilution Cooler Sampling Interface

- Provides syngas interface to analytical instruments
- Delivers syngas to analyzers at precise temperatures
- Preserves syngas components as vapors to enable on-line, near real-time analyses of composition

Analytical Suite for Syngas

COMPONENT	INSTRUMENT / METHOD
H_2 , N_2 , Ar, CO, CO ₂ , H_2 S, COS, C ₁ to C_5	Micro Gas Chromatograph
H_2O , CO , CO_2 , NH_3 , HCN , H_2S , COS , HCI , CH_4	Fourier Transform-Infrared Spectroscopy
H ₂ , Ar, H ₂ O, CO ₂ , H ₂ S, COS, HCI, CH ₄	Mass Spectrometer
sulfur species	Gas Chromatograph / Sulfur Chemiluminescence Detector / Flame Photometric Detector / Pulsed Flame Photometric Detector
$C_1 - C_5$ hydrocarbons	Gas Chromatograph / Flame Ionization Detector
tar and oil species, aromatics	Gas Chromatograph / Mass Spectrometer

Sampling Manifold Concept

Analyzer Sampling Locations

program	Gasification	Power	Fuels / Chemicals		
Sampling Point	Raw Gas	Clean Gas	Ultra-Clean Gas		
Probable Samples for Specific Gas Analyzers					
GC/MS/FID/SCD	X	X	X		
GC/FPD/TCD	X				
FT-IR	X	X			
GC/PFPD		\boxtimes	\boxtimes		
MS	X				
μGC	X	\mathbf{X}			

 \mathbf{X} = primary location \mathbf{X} = secondary location \mathbf{X} = other location(s)

GTI Flex-Fuel Test Facility

- Coal 10 tpd w/air; 17 tpd w/oxygen
- Biomass 24 tpd w/air; 40 tpd w/oxygen
- Opportunity Fuels & Dual Fuel Operation
- Downstream Cleanup Systems
- Hydrogen Production
- CO₂ Removal Technologies
- Gas to Liquids
- Advanced Power Conversion Systems Tests (Fuel Cells, Small Turbines, Engines)
- Advanced Oxygen Production Systems

GTI Flex-Fuel Test Facility with SWPC Ultra-Clean Process Flow Diagram

Analytical Suite – Coordinated Sampling for Comprehensive Measurements

biomass program

Multiple analyzers connected through a sampling manifold.

Analytical Results – Sorbent Effect on COS Concentration

biomass program

GC/FPD (Agilent 5890) was used to monitor sulfur species including COS downstream of filter-reactor with halide control sorbent.

Mass spectrometer (SRS QMS300) monitoring major gas components.

Analytical Results – FTIR Rapid Process Monitoring

FTIR (IMAAC, 10-m cell) quantifies multiple species with very fast response time useful to identify fuel or process changes.

U.S. Department of Energy Energy Efficiency and Renewable Energy

Syngas Analysis: Chemrec Booster Gasifier at Weyerhaeuser's New Bern Mill

Testing at Weyerhaeuser New Bern Black Liquor Gasifier

biomass program

GTI testing focus

- major components
- sulfur species
- hydrocarbon species

Instruments

- FT-IR
- Mass Spec
- µGC
- GC/MS/FID/SCD

- Novel sampling interface developed
- Analytical instruments selected
- Sampling manifold designed and implemented
- Syngas measurements made in multiple gasification campaigns
- Measured raw gas to ppb-level halide and sulfur contaminants

- Plan called for tests at GTI Flex-Fuel Facility and DOE/Southern Company PSDF
 - GTI FFTF tests conducted in 2004, 2005
 - PSDF test delayed by Southern Company into 2006
- Upcoming tests at two sites
 - Chemrec black liquor gasifier at Weyerhaeuser's New Bern Mill, NC (June 2005)
 - Fluidized bed gasifier at GTI Flex-Fuel Test Facility in Des Plaines, IL (August 2005)
- Development Stage work completion by 2nd Q FY06
 - Document findings by October 2005

- Limited testing opportunities
 - Available biomass gasification and syngas cleanup sites
 - Multiple fuels, gasifiers, and gas cleanup systems improve validation of techniques
 - Hydrocarbon production
 - Contaminant level

Development Stage success will deliver specifications, protocols, and methods for the analysis of syngas quality from pilot, demonstration, and commercial thermochemical biomass conversion processes.

- FY05 expenditures approx. \$1.5 million
- Providing on-line monitoring and diagnostic measurements for gasification-based processes
 - Transportable capability
 - Full range of syngas major and minor species
- Evaluating syngas reforming and cleanup technologies
 - Raw syngas to ultra-clean levels
- Enables cost-effective process evaluation and process optimization