

AL 11 11 11 11 11

The University of Nottingham

DCIS Biology and Treatment

Ian Ellis

Molecular Medical Sciences, University of Nottingham

Departments of Histopathology, Nottingham City Hospital NHS Trust

Which in situ breast epithelial lesions are:

Hyperplastic

Neoplastic

- Benign "adenoma"
- Malignant "carcinoma in situ"

Which in situ breast epithelial lesions are:

Hyperplastic Usual Hyperplasia

Neoplastic

"Benign" - adenoma / microfocal neoplasia / low grade ? ADH / microfocal low grade DCIS ? Lob Neoplasia ? Columnar alteration

"Malignant" - carcinoma in situ ? "established" DCIS ? some forms of LCIS

Neoplastic insitu breast epithelial lesions

Challenges:

- Understanding molecular genetic pathogenesis
- Identification of clinical relevance
- Effective strategies for management
- Development of reproducible criteria for routine classification

Risk and Epithelial Prolif.

The University of

Nottingham

Lobular neoplasia risk most relevant in 5th decade Slight preponderance of cancer in the ipsilateral breast for LN

Which in situ breast epithelial lesions are:

Hyperplastic = heterogeneous

Neoplastic= homogeneous / clonalBenign- "adenoma"Malignant- "carcinoma in situ"

LOH Studies

UDH approx 10% (0-30%) usually one locus only

ADH approx 50% similar loci to low grade DCIS and similar alterations found in subsequent inv ca of same breast

DCIS 50 - 80% numerous sites (similar to inv ca)

".....it is very questionable whether ADH represents a true histopathological entity"

Marc van de Vijver. Biological variables and prognosis of DCIS. The Breast 2005;14; 509-19

Grade of Invasive Cancers Developing Within DCIS

	Histological grade of invasive carcinoma				
DCIS	I	Total			
Low grade	13	3	0	16	
	(81%)	(19%)			
Intermed g	22	63	5	90	
	(24%)	(70%)	(6%)		
High grade	3	90	119	212	
	(1%)	(42%)	(56%)		
Cadman et al. The Breast (1997)	318				

Relationship to invasive carcinoma

- Summary
- Morphological and molecular similarities
- Clonal process
- Analogous to epithelial in situ lesions elsewhere
- High frequency of progression to invasive
 - carcinoma if incompletely excised

invasi biops		The University of Nottingham	
	Ν	All	%
1938	(8)	6	75
1970	(25)	5	20
1971	(11)	8	73
1975	(8)	2	25
1980	(15)	8	53
1994	(80)	11	14
1995	(28)	9	32
	invasi biops 1938 1970 1971 1975 1980 1994 1995	invasive cancer biopsy alone N 1938 (8) 1970 (25) 1971 (11) 1975 (8) 1980 (15) 1994 (80) 1995 (28)	invasive cancer biopsy alone N All 1938 (8) 6 1970 (25) 5 1971 (11) 8 1975 (8) 2 1980 (15) 8 1994 (80) 11 1995 (28) 9

Mean = 28 %

Natural history of low grade DCIS

- 28 patients with low grade identified from 1950-1968
- 30 yrs follow up
- 11 (39%) invasive cancer
- 5 (18%) breast cancer deaths
- 4 of the 5 breast cancer deaths occurred within 15 years

M Sanders D Page et al Cancer 2005

Natural history of low grade DCIS

D Page et al 2002

- Studies around this time where the DCIS was recognised found that the lesion was completely excised in 40% when mastectomy was performed
- If this was the case in this series, 17 would have had residual DCIS

Natural history of low grade DCIS

D Page et al 2002

- Revised invasive risk 61%
- Revised breast cancer death rate 29%
- 24% breast cancer death rate within 15 years
- Probably still a conservative estimate as residual lesions had been debulked

Mastectomy for DCIS - Results Introversity of Nottingham

	N	Recurrence	Follow-up (yrs)
Farrow et al '70	(181)	1	5 - 20
Ashikari et al '77	(74)	0	11
Sunshine et al '85	(68)	3	> 10
Schuh et al '86	(52)	1	5.5
Fisher et al '86	(28)	1	3.2
Kinne et al '89	(101)	1	11
Arneson et al '89	(28)	0	6.4
Silverstein et al '95	(167)	2	6.5

% Local Recurrence / annum after WLE alone

	Ν	All	Invasive
NSABP	403	4.7	2.4
EORTC	500	4.2	2.0
Milan	74	4.4	2.7
Florence	106	1.9	1.0
Manchester	127	4.5	1.0
Edinburgh	67	3.5	1.2
Nottingham	97	1.9	1.0
Philadelphia	233	4.4	1.3
•	Mean =	3.9	1.7

Recurrence in remote quadrants - 5% (2/43)

Adesson Fisher Zafrani

DCIS

Definitions

Multicentric (>1 duct system)

Holland

DCIS

81 cases - 1 duct system 1 case - multiple ducts systems Unicentric process

Holland Lancet 335, 519, 1990

DCIS Grade and Recurrence

Definition

Recurrences

	Subtype	Nuclear grade	Necrosis	: Architecture	No	%
I	Comedo	High	+++	Solid	7/31	(23)
II	Crib/pap with necrosis Sub total	High	+++	Crib/pap	2/5 9/36	(40) (25)
III	Cribriform/intermediate	Intermediate	+/-	Crib	1/10	(10)
IV	Micropapillary/non necro cribriform	tic Low	0	Micropap/crib	0/33	(0)

Lagios Surg Clin North Am 70, 853, 1990

Score	1	2	3	
Size	<16mm	16 - 40mm	>40mm	
Margin width	>9mm	1 – 9mm	<1mm	
Pathology	Not high	Not high	High	
	No necrosis	+/- Necrosis	Necrosis	
Age	>60yr	40 - 60yr	<40yr	
Van Nuys Score	4 - 6	7 - 9	10 - 12	
10-year act LR free	96%	73%	37%	

Silverstein '99

Margin	N	Mean size	High grade	Comedo	LR at 8 yrs
10mm	93	9mm	46%	23%	2.2%
1 – 10mm	124	8mm	32%	32%	18.9%
< 1mm	39	19mm	67%	74%	33.3%

Factors Predicting Local Recurrence after WLE alone

Close / incomplete margins

High grade / Comedo necrosis

Young age

(Size)

Univariate analysis for ipsilateral recurrence

Grading System		n	N of events	H.R.	95 % C.I.
Nuclear Grade	1	86	6 (7.0%)	0.51	0.22 - 1.15
	2	225	13 (5.8%)	0.41	0.23 - 0.72
	3	913	135 (14.8%)	1.00*	
Van Nuys Grade	1	99	5	0.39	0.16 - 0.94
	2	212	14	0.45	0.26 - 0.78
	3	913	135	1.00*	
Differentiation	1	90	6	0.38	0.22 - 0.66
	2	248	14	0.47	0.21 - 1.07
	3	886	134	1.00*	

Classification of DCIS

- Low Nuclear Grade
- Intermediate Grade
- High Nuclear Grade
- Mixed Type
- Other (Rare) Variants

• RCPath, NHS BSP and EU Pathology Reporting Guidelines 2005

Allelic imbalance analysis suggests that low grade & high grade carcinomas follow different genetic pathways

Roylance et al. J Pathol 2002; 196:32-36

Classification of breast cancer

Distinct subgroups identified

Basal epithelial Luminal epithelial ER positive A & B HER amplified

Prognostic differences

Perou et al.,2000; Sorlie et al.,2001; van 't Veer 2002

Markers in DCIS

Gene expression patterns in DCIS & invasive & metastatic tumors with serial analysis of gene expression (SAGE) (8 DCIS cases grouped)
16,430 transcripts analyzed
mRNA ISH to examine gene expression (18 tumours) & IHC on TMAs (769 cases)
No universal "in situ" or "invasive" signature

Porter D. Mol Cancer Res. 2003;1:362-75

Translation of cDNA studies Nottingham

- Distinct sub classes of breast cancer can be identified by expression of proteins of known relevance in breast cancer
- These sub classes are comparable to those identified by cDNA expression array technology
- Molecular classification of breast cancer based on protein expression potentially offers further refinement of traditional methods of classification
- A modern clinically relevant breast cancer classification based on molecular genetic, phenotypic and morphological characteristics appears realistic

Abd El-Rehim DM etal Int J Cancer. 2005, 116:340-50.

NSABP P-1

- Women (No = 13,388) at increased risk for breast cancer as they
 - a) were 60 years or older
 - b) were 35-59 with a 5-year predicted risk of at least 1.66%
 - c) had a history of LCIS
- Received placebo or 20 mg/day tamoxifen for 5 years
- Tamoxifen reduced the risk of invasive breast cancer by 49%
- Decreased risk occurred in women aged 49 years or younger (44%), 50-59 years (51%) and 60 years or older (55%)
- Risk reduced in women with a history of LCIS (56%) or atypical hyperplasia (86%)
- Tamoxifen reduced the occurrence of ER-positive tumours by 69%, no difference in the occurrence of ER-negative tumours

Fisher B et al. J NCI. 1998; 90; 1371-1388

Future classifications systems

- Reflect underlying molecular genetics
- Based on objective morphological and/or protein expression criteria
- Take account of disease extent
- Take account of risk