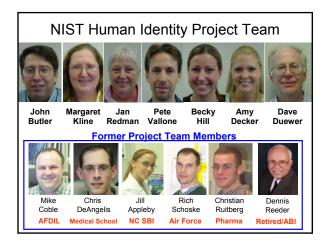
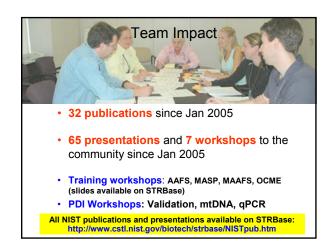


Update

John Butler

Margaret Kline, Pete Vallone, Jan Redman, Amy Decker, Becky Hill, Dave Duewer (NIST Analytical Chemistry Division)


SWGDAM Meeting - July 13, 2006


Disclaimers and Collaborations

Funding: Interagency Agreement 2003-IJ-R-029 between the National Institute of Justice and NIST Office of Law Enforcement Standards

Points of view are those of the authors and do not necessarily represent the official position or policies of the US Department of Justice. Certain commercial equipment, instruments and materials are identified in order to specify experimental procedures as completely as possible. In no case does such identification imply a recommendation or endorsement by the National Institute of Standards and Technology nor does it imply that any of the materials, instruments or equipment identified are necessarily the best available for the purpose.

Our publications and presentations are made available at: http://www.cstl.nist.gov/biotech/strbase/NISTpub.htm

Presentation Outline Overview of Research Efforts New miniSTR Loci Characterized STR Allele Sequencing Training Information Validation Information DNA Quantitation (qPCR)

National Institute of Justice

Current Areas of NIST Effort with Forensic DNA

Standards

- Standard Reference Materials
- Standard Information Resources (STRBase website)
- Interlaboratory Studies
- Technology
 - Research programs in SNPs, miniSTRs, Y-STRs, mtDNA, qPCR
 - Assay and software development
- Training Materials
 - Review articles and workshops on STRs, CE, validation
 - PowerPoint and pdf files available for download

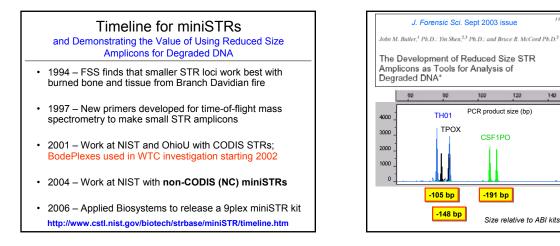
Sci, September 2008, Vol. 48, No. 5 Paper ID JFS2003043_485 Available caline at: www.satur.org

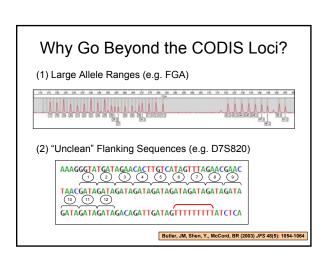
180

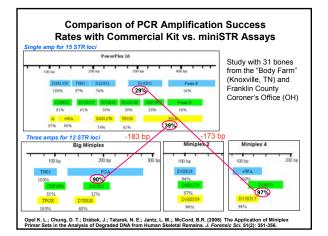
D21S11

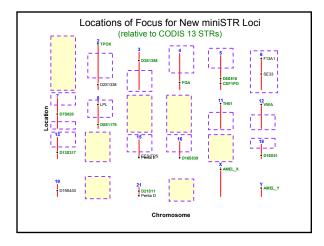
-33 bp

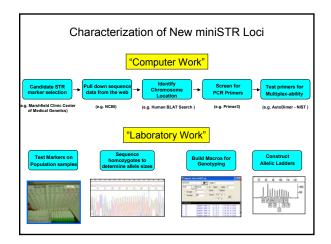
Availab

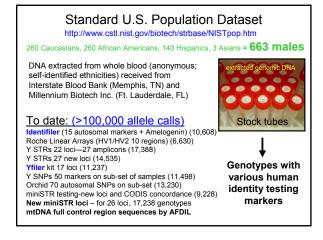

160

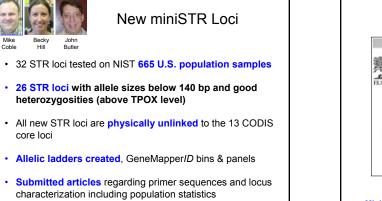

FGA

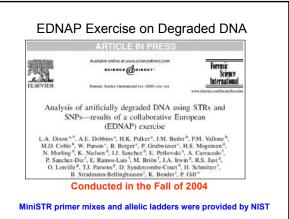

D7S820

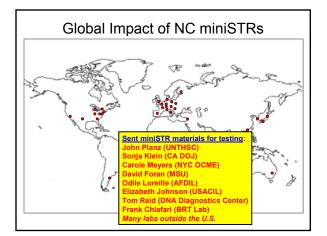

-117 bp

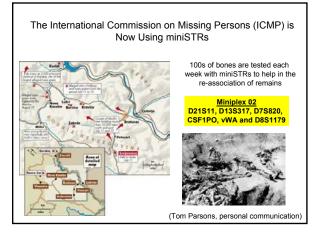

-71 bp

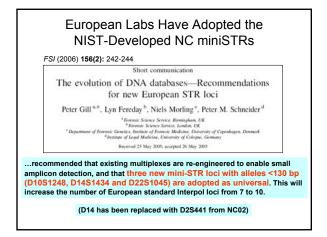


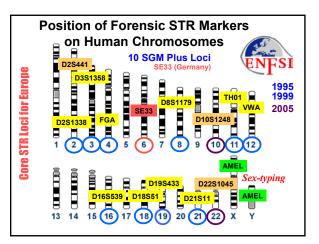


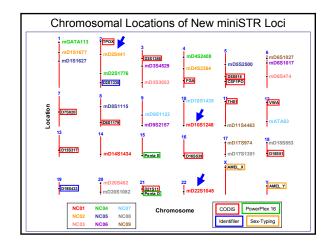

SWGDAM NIST Update


+900 characterized STR markers for screening -900 107 poortial loci 61 markers with "clear" flanking regions	26 new miniSTRs (NC01-NC09)
47 markers with amolicon size < 125 bp 18 markers for initial teeling Two Bree fact minigleses NCO1 Miniplexe1 D165128 D165128 D155107 D255115 Miniplexe2	29 additional markes 11 marken 12 additional loci characterized across U.S. population groups Coble and Butler (2005) J. Forensic Sci. 50(1): 43-53





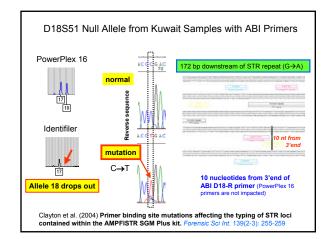

http://www.cstl.nist.gov/biotech/strbase/newSTRs.htm



Locus	N	Heterozygosity	Rank	African	Caucasian	Hispanic
		(Overall)		American		
D9S2157	661	0.844	1	0.884	0.840	0.779
ATA63 (D12)	659	0.829	2	0.788	0.842	0.879
D10S1248 (NC01)	663	0.792	3	0.825	0.785	0.743
D22S1045 (NC01)	663	0.784	4	0.817	0.785	0.721
D2S441 (NC02)	660	0.774	5	0.798	0.780	0.721
D10S1435	663	0.766	6	0.798	0.770	0.700
D2S1776	654	0.763	7	0.740	0.801	0.734
D3S4529	660	0.761	8	0.752	0.723	0.829
D6S474	648	0.761	9	0.765	0.802	0.679
D5S2500	664	0.747	10	0.757	0.747	0.729
D1S1627	660	0.746	11	0.783	0.737	0.693
D1S1677 (NC02)	660	0.746	12	0.743	0.749	0.743
D6S1017	664	0.740	13	0.807	0.698	0.693
D3S3053	648	0.739	14	0.713	0.724	0.814
D9S1122	659	0.734	15	0.753	0.742	0.686
D17S974	664	0.732	16	0.757	0.702	0.743
D11S4463	664	0.730	17	0.780	0.676	0.743
D4S2408	654	0.722	18	0.752	0.709	0.691
D18S853	664	0.711	19	0.772	0.645	0.721
D20S1082	664	0.696	20	0.792	0.653	0.600
D14S1434 (NC01)	663	0.696	21	0.685	0.721	0.650
D20S482	648	0.691	22	0.673	0.689	0.729
GATA113 (D1)	654	0.668	23	0.673	0.632	0.727
D8S1115	664	0.663	24	0.629	0.660	0.729
D17S1301	664	0.649	25	0.626	0.717	0.564
D4S2364 (NC02)	660	0.511	26	0.385	0.551	0.664

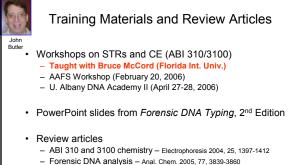
Past/Future Publications on New miniSTR Loci
Coble, M.D. and Butler, J.M. (2005) Characterization of new miniSTR loci to aid analysis of degraded DNA. J. Forensic Sci. 50(1):43-53
Coble, M.D., Hill, C.R., Vallone, P.M., Butler, J.M. (2006) Characterization and performance of new miniSTR loci for typing degraded samples. Progress in Forensic Genetics 11, Elsevier Science: Amsterdam, The Netherlands, International Congress Series 1288, 504-506.
Dixon, L.A., Dobbins, A.E., Pulker, H., Butler, J.M., Vallone, P.M., Coble, M.D., et al. (2006) Analysis of artificially degraded DNA using STRs and SNPs--results of a collaborative European (EDNAP) exercise. Forensic Sci. Int., in press.
Yong, R.Y.Y., Gan, L.S.H., Coble, M.D., Yap, E.P.H. (2006) Allele frequencies of six miniSTR loci of three ethnic populations in Singapore. Forensic Sci. Int., in press.
Hill, C.R., Butler, J.M., Coble, M.D. (2006) Allele frequencies for 27 new miniSTR loci with U.S. Caucasian, African American, and Hispanic populations. J. Forensic Sci. In press.

 Hill, C.R., Coble, M.D., Butler, J.M. (2006) Development of additional new miniSTR loci for improved analysis of degraded DNA samples. *submitted*.

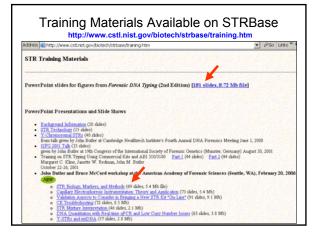

STR Allele Sequencing and Characterization

Margaret John Kline Butler

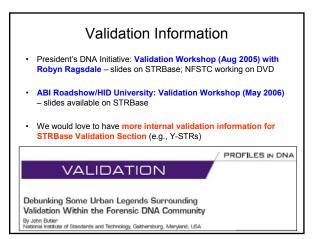
- · Variant characterization
 - TPOX 10.3 (Maryland State Police)
 - D18S51 null alleles (FSS and Kuwait govt)
 - D18S51 allele 40 (Nebraska State Crime Lab)
 - D18S51 allele 5.3 (DNA Solutions)
 - FGA allele 46.2 (Denver Crime Lab)
 DYS392 allele "10.3" (AFDIL)
- Locus duplication or deletion
 DYS390 (CFS Toronto)
 - DYS392 (MN BCA)
- Send us your unusual STR alleles for sequence characterization

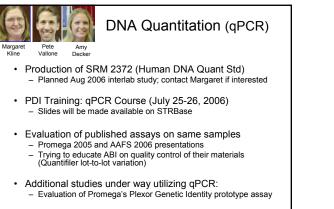

http://www.cstl.nist.gov/biotech/strbase/STRseq.htm

SWGDAM NIST Update

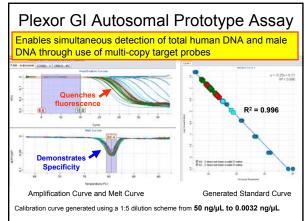

Sequencing Summaries of Unusual STR Alleles

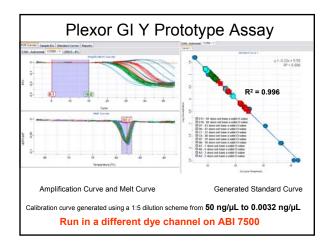
ariant allele characterization						
Locus	Variant Allele	Sample Source	Comments			
трох	10.3	Maryland State Police	Deletion of a "G" that is 157 bp from the repeat region unde PowerPlex 1 1 and Identifier primers does not affect prime bunding or allele sizing. However, PowerPlex 2.1 and PowerPlex 16 products are 1 bp smaller because they are farther away from the repeat and encompass the deletion.			
FGA	46.2	Denver Crime Laboratory	Checked with Identifiler allelic ladder			
D18551	null allele 18	FSS and Kuwait government lab	Base change was a C-to-T transition 172 bp downstream of the repeat region which impacts the ABI D18S51 reverse primer but not the PowerPlex 16 D18S51 reverse primer that is internal to this mutation			
D18S51	40	Nebraska State Crime Lab	DNA sequence analysis showed 40 GAAA repeats			
D18851	*5.3*	DNA Solutions	DNA sequence analysis revealed a 9 bp deletion beyond th end of the 8th repeat unit to produce a *5.3* allele			
DYS392	*10.2*	AFDIL	DNA sequence analysis revealed a C-to-O transversion bp upstream of the STR repeat region, the mutation caus an apparent mobility shift of approximately 0.75 bp such t the allele falls outside of the +/-0.5 bp genotyping bin			
DYS635	21.3		DNA sequence analysis revealed a deletion of a "T" in the repeat region; full repeat was [TCTA],(TGTA),[TCTA],(TGTA), [TCTA],(TGTA), [TCTA], TC-A [TCTA],			
Penta D	18	DNA Solutions	DNA sequence analysis confirmed 18 repeats			
Penta D	*8.2*	University	DNA sequence analysis revealed a 13 bp deletion prior to a [AAAGA]++ repeat			
Penta D	6	Peter de Knijff's lab at Leiden University	DNA sequence analysis confirmed 6 repeats			

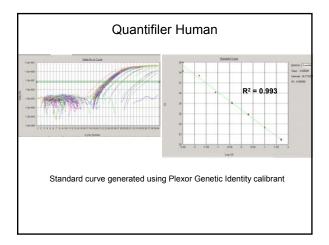


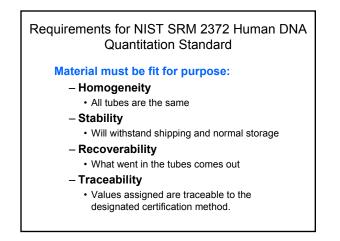

- STR core loci - J. Forensic Sci. 2006, 51(2): 253-265

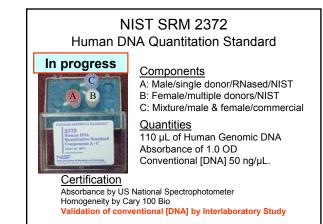
http://www.cstl.nist.gov/biotech/strbase/training.htm http://www.cstl.nist.gov/biotech/strbase/NISTpub.htm










http://www.cstl.nist.gov/biotech/strbase/DNAquant.htm

SWGDAM NIST Update

What is Delaying Release?

- Need to extract more DNA in order to reach goal of producing >1,500 units (there is a great deal of interest in SRM 2372 outside of the forensic community—e.g., pharmaceutical industry)
 - ~30 units (3 mL) are required by the NIST National-Reference Spectrophotometer for its measurements
- Additional studies to be performed: interlaboratory (performed by multiple forensic labs), homogeneity (monitored by NIST statisticians), and continual stability testing for the life of the product

An Interlaboratory Study Will Be Performed to Demonstrate Commutability of SRM 2372

You will have 3 weeks to return your data once we ship the final packaged material (\approx August 2006).

Any Volunteers?

Contact: margaret.kline@nist.gov

