qPCR at AFDIL: Our Experiences Quantitating mtDNA & More

Toni M. Diegoli

Part of the American Academy of Forensic Sciences 2008 Annual Meeting Workshop: "Human DNA Quantification Using Real-Time PCR Assays"

Details of the Assay

Internal PCR Control – IPC

- >plasmid amplified simultaneously with mtDNA fragment
- ➤used to detect inhibition
- >detected using a FAM-labeled probe
- ≻results in 156bp IPC amplicon

Primer	Sequence (5' \rightarrow 3')
mt8294F1	CCACTGTAAAGCTAACTTAGCATTAACC
mt8154F	GGGTATACTACGGTCAATGCTCTGA
mt8395R	GGGCCATACGGTAGTATTTAGTTGG
mt8436R1	GTGATGAGGAATAGTGTAAGGAGTATGG
IPC R	TCGTTTCGGAGCGTTGGTTAG
IPC F	AGGTTGCTAACTATGAAACACTGGC
1. As described in And	reasson, et al. (2002).
Probe	Sequence (5' \rightarrow 3')
mtDNA	VIC-CCAACACCTCTTTACAGTGAA-MGB/NFQ
IPC	6FAM-CAGCACTTCTTTTGAGCAC-MGB/NFQ

Details of the Assay

Primer Storage •200µl aliquots of each 10µM primer •polyallomer tubes •-20 degrees •stock concentration: 100µM

DNA Storage •standards, IPC

•4 degrees •polyallomer tubes

Probe Storage

•40µl aliquots of each 10µM probe (single-use) •protected from light • -20 degrees •stock concentration: 100µM

Master Mix Storage •working stock: 4 degrees •stock bottles: -20 degrees •original container

Volume	Stock		Final
(µI)	Concentration	Reagent	Concentration
2	2.5mg/ml	BSA	0.25mg/ml
0.3	10µM	mtDNA Forward Primer	0.15µM
0.3	10µM	mtDNA Reverse Primer	0.15µM
0.4	10µM	mtDNA Probe (VIC)	0.2µM
0.4	10µM	IPC Probe (FAM)	0.2µM
0.6	10µM	IPC Forward Primer	0.3µM
0.6	10µM	IPC Reverse Primer	0.3µM
0.4	5000/µl	IPC	100/µl
10	2x 🤇	Taqman® Universal PCR Master Mix (Applied Biosystems)	1x
Optional			
0.4	5 units/µl	TaqGold (2 additional units)	0.1 units/µl
0.6		water	

Reaction Set-Up Considerations

Adjustments to make:

- Run samples in duplicate or triplicate
- Dilute samples
- Prepare in plastic tubes with low DNA-binding capacity
- •Be certain to saturate pipette tip by pipetting up and down before distributing to tube/well
- Alter the sample input volume
- Add additional Taq

```
Downischeinsendingde asogie hund de derucht achte symples.
```


and a line		a la			Ava		(dates		Ava
Standard	N	o Extra	Taq Go	ld	No	1.25U E	Extra Ta	iq Gold	1.25
1000pg/ul	32.73	32.25	31.74	30.70	31.86	28.45	28.29	28.33	28.3
100pg/ul	29.35	29.25	29.43	29.14	29.29	28.72	28.86	27.91	28.5
10pg/ul	28.80	28.67	28.93	28.90	28.82	29.06	29.05	29.04	29.0
1pg/ul	28.93	28.88	28.79	29.01	28.90	29.03	28.97	29.12	29.0
0.1pg/ul	28.68	28.88	28.91	28.85	28.83	29.23	29.14	29.26	29.2
0.01pg/ul	27.99	28.94	28.68	28.65	28.65	29.26	29.29	28.47	29.0
Negative	28.91	28.66	28.68	28.82	28.77	29.20	29.18	n/a	29.1
	A	verage	Ct: 29 eviation	.30]	A	verage dard D	Ct: 28. eviation	.91

React	ion Set-Up:
Thermal Cy	cling Parameters
Initial Hold 95°C, 10 min.	Cycling 95°C 10 sec.
	* 65°C, 1 min.
	A TO CYCLES

son of Some qPCR As
Dynamic Range
1ng/µl – 0.00001ng/µl
10ng/µl – 0.000075ng/µl
50ng/µl – 0.023ng/µl
50ng/µl – 0.0032ng/µl
20ng/µl – 0.00128ng/µl

Standard Concentration (pg/µl)	Average Ct	Standard Deviation	Percent Variance
1000	19.67	0.53	2.69%
100	22.85	0.49	2.15%
10	26.22	0.58	2.21%
1	29.62	0.72	2.42%
0.1	33.11	0.90	2.73%
0.01	36.60	1.42	3.88%

http://www.cstl.nist.gov/biotech/strbase/training/AAFS2008_qPCRworkshop.htm

Why do we need to know the quantity of mtDNA databasing samples?

•as a quality control measure when receiving samples from collaborators

- >extracts that arrive with quantitation information
- >extracts that arrive without quantitation information
- Samples extracted in-house
- ≻storage conditions?
- allow uniform, high-throughput treatment of samples

Quant Results	Sample Treatment
>50pg/µl	Aggressive amplification strategy
<50pg/µl >1pg/µl	Consider modifications in amplification strategy and/or concentration
<1pg/µl	Unlikely to yield useful results

4	Amplification Strategy		
1000000000000000	-inplification Strategy	Size Range (bp)	
the second se	Entire Control Region	1197	
H	Hypervariable Regions	366-469	
F	Primer Sets	210-287	
I	Mini-Primer Sets	125-178	

	mt-qPCF	R Assay Result	ts (pg/ul)
Sample	283bp amplicon	143bp amplicon	102bp amplicon
А	NR	0.059*	0.11
в	NR	0.22	1.12
С	NR	0.15	0.89
D	NR	0.079*	0.21

Lessons Learned

> Take steps to ensure regularity of runs with low copy number samples:

- •polyallomer tubes
- •pipette sample up and down
- •run multiple replicates of both samples and standards
- •dilute samples and standards in TLE/TE
- •consider using additional Taq (up to 2 units)

>Use knowledge of the sample to conserve extract and avoid repeat quantitation runs.

CONSISTENCY IS KEY!!

Summary

•The AFDIL Research Section was interested in quantitating mtDNA in order to aid:

- mtDNA databasing efforts
- development and validation of novel extraction protocols
 understanding of the best approach to deal with difficult samples

•The chosen assay answered these needs in different ways:

- a means to quantitate mtDNA in an extract
- an indicator of inhibition in an extract
- an assessment of the level of degradation of an extract

Component	Target Location	Amplicon Length	
Autosomal	Chromosome 17	99bp	multicopy
Y	Short arm	133bp	multicopy
IPC	Novel sequence	150bp	
and the second	of standard surve		
variable ir	nput volume possib	ls 3.2pg/µl (6.4p le (2-9µl)	og input,
variable ir valternate s	put volume possib standard curve (0.0	is 3.2pg/µi (6.4µ le (2-9µl))0128ng/µl – 20i	ng/µl)

References Mentioned During Presentation

Alonso A, Martín P, Albarrán C, García P, García O, de Simón LF, García-Hirschfeld J, Sancho M, de la Rúa C, Fernández-Piqueras J (2004) Real-time PCR designs to estimate nuclear and mitochondrial DNA copy number in forensic and ancient DNA studies. Forensic Sci Int 139: 141-149.

Andréasson H, Gyllensten U, Allen M (2002) Real-time DNA quantification of nuclear and mitochondrial DNA in forensic analysis. Biotechniques 33:402-411.

Gaillard C, Strauss F (2001) Eliminating DNA loss and denaturation during storage in plastic microtubes. Available online at: http://www.axygen.com/Products/Literature/AN/index.jsp

Niederstätter H, Köchl S, Grubwieser P, Pavlic M, Steinlechner M, Parson W (2007) A modular real-time PCR concept for determining the quantity and quality of human nuclear and mitochondrial DNA. Forensic Sci Int: Genetics 1:29:34.

Timken MD, Swango KL, Orrego C, Buoncristiani MR (2005) A duplex real-time qPCR assay for the wuantification of human nuclear and mitochondrial DNA in forensic samples: implication for quantifying DNA in degraded samples. J Forensic Sci 50:1044-1060.

Walker JA, Hedges DJ, Perdeau BP, Landry KE, Stoilova N, Laborde ME, Shewale J, Sinha SK, Batzer MA (2005) Multiplex polymerase chain reaction for simultaneous quantitation of human nuclear, mitochondrial, and male V-chromosome DNA: application in human identification. Anal. Biochem. 337:89-97.