Experimental SUSY Program at Linear e^+e^- Colliders

Klaus Desch Univ. Hamburg Snowmass01 - E3 11/07/2001

- Introduction
- Experimental Aspects of LC's for SUSY
- Measurement of Masses, Cross Sections, Properties
- Alternative SSB signatures
- Extrapolation to high scales
- Conclusion

Introduction

- Low scale supersymmetry gold plated candidate for new physics
- ullet ightarrow hierarchy problem solved
- ullet ightarrow clear path to grand unification
- ullet ightarrow Planck scale models naturally are suspersymmetric

Excellent chance to see SUSY partners at early (500 GeV) stage of LC project

K. Desch New Physics at Linear Colliders , Snowmass01 - P3, 02/07/2001 Page 2

- Precision measurement of the properties of the
 - accessible part of spectrum:
 - \rightarrow Sleptons
 - $\rightarrow {\rm Gauginos}$
 - \rightarrow Scalar top quarks
 - \rightarrow SUSY nature of Higgs(es)
- Ensure sensitivity in various SSB scenarios (mSUGRA,GMBS,AMSB)
 - \rightarrow lifetime, kinks, long-lived particles, non-pointing photons
- Finally: what's going on at the GUT scale?
 - \rightarrow SUSY-RGE's tell the truth!

Experimental Aspects

- Beam Polarisation: (→ G. Moortgat-Pick)
 - control large WW background
 - distentangle states
- mass measurement from spectra
 - excellent tracking/calorimeter resolution
- threshold scans
 - control beam energy/spread, beamstrahlung
- Missing energy signals
 - hermeticity down to low angles
- lifetime:
 - charged secondaries: secondary vertices, energy loss measurement
 - neutral secondaries: highly granular calorimeter as 'photon vertex detector'

Sleptons

K. Desch New Physics at Linear Colliders , Snowmass01 - P3, 02/07/2001 Page 5

Gauginos - Mass

Gauginos - Mass Scan

 $50 \frac{\chi_2^0 \chi_2^0}{100}$ $200 \int_{1}^{\chi_1^* \chi_1^-}$ [fb]• $L = 10 \text{ fb}^{-1}/\text{point}$ • $L = 10 \text{ fb}^{-1}/\text{point}$ σ_{vis} 40 150 30 100 threshold scan: 20 50 10 $ilde{\chi}^0_2 ilde{\chi}^0_2$ $ilde{\chi}_1^+ ilde{\chi}_1^-$ 0 256 260 264 268 265 270 E_{cms} [GeV] E_{ems} [GeV]

275

or from

gaugino	m	Δ m $_c$	$\Delta{\sf m}_s$
	GeV	GeV	GeV
$ ilde{\chi}_1^\pm$	127.7	0.2	0.04
$ ilde{\chi}_2^\pm$	345.8		0.25
$ ilde{\chi}_1^0$	71.9	0.1	0.05
$ ilde{\chi}^0_2$	130.3	0.3	0.07
$ ilde{\chi}^0_3$	319.8		0.30
$ ilde{\chi}_4^0$	348.2		0.52

New Physics at Linear Colliders , Snowmass01 - P3, 02/07/2001 Page 7 K. Desch

Disentangle Wino/Higgsino admixture of Charginos:

$$\mathcal{M}_C = \begin{pmatrix} M_2 & \sqrt{2} m_W \cos \beta \\ \sqrt{2} m_W \sin \beta & \mu \end{pmatrix} \Rightarrow 2 \text{ mixing angles } \Phi_R, \Phi_L$$

 μ , M_2 and (moderate) aneta can be uniquely determined with polarisation:

K. Desch New Physics at Linear Colliders , Snowmass01 - P3, 02/07/2001 Page 8

Neutralino - Properties

Neutralino system depends also on M_1 (in addition to M_2 , μ , $\tan \beta$) Exploit spin correlation in two lepton final state from $e^+e^- \rightarrow \tilde{\chi}_2^0 \tilde{\chi}_1^0 \rightarrow \ell^+ \ell^- \tilde{\chi}_1^0 \tilde{\chi}_1^0$

beam polarisation essential!

	input 1	fit	input 2	fit
M_1	78.7 GeV	78.7 \pm 0.7 GeV	78.0 GeV	78.0 \pm 0.4 GeV

Scalar Top

Large mixing of \tilde{t}_R and $\tilde{t}_L \Rightarrow$ large mass splitting possible $e^+e^- \rightarrow \tilde{t}_1\tilde{t}_1$ with $\tilde{t}_1 \rightarrow \tilde{\chi}_1^0 c$ and $\tilde{t}_1 \rightarrow \tilde{\chi}_1^+ b$ studied.

CP Violation

SUSY mass parameters may be complex \Rightarrow CP-violationg phases:

$$\mu = |\mu| e^{i \phi_{\mu}}, M_1 = |M_1| e^{i \phi_1}$$

Phases affect various observables: $\sigma(\tilde{\chi}^0_1 \tilde{\chi}^0_2)$, BR($\tilde{\chi}^0_2 o \tilde{\chi}^0_1 e^+ e^-$), $m_{\tilde{\chi}^0_1}$ etc.

 \rightarrow extract size and phases from simultaneous fit:

K. Desch New Physics at Linear Colliders , Snowmass01 - P3, 02/07/2001 Page 11

Special Signatures: GMSB

Various SUSY breaking scenarios (may) have different experimental signatures Gauge mediated SUSY breaking (GMSB) with $\tilde{\chi}_1^0$ NLSP typically leads to delayed $\tilde{\chi}_1^0 \rightarrow \tilde{G}\gamma$ decays with displaced photons \Rightarrow demanding signature for calorimetry!

Large inclusive rate various techniques: sensitivity for $30\mu m < c\tau < 40 m$

K. Desch New Physics at Linear Colliders , Snowmass01 - P3, 02/07/2001 Page 13

R-Paritiy violation

R–Parity violation may provide spectacular signatures!

Extrapolation to High Scales

What can be learned from the measured parameters?

Bottom up approach: \rightarrow G. Blair

Reconstruct the mass parameters at the EW scale (with errors)

Evolve those parameters to high scale through RGE's

High Precision provides information about energy scales far beyond \sqrt{s} of the machine.

- Accessible part of SUSY spectrum (sleptons,gauginos,stop) can be studied in great detail
- All masses precisely measurable (o(50 600) MeV)
- Fundamental SUSY parameters can be extracted with high precision
- Sensitivity in all studied non-standard SUSY scenarios (including phases)
- Extrapolation to high scales to learn about SUSY breaking / unification is possible