Atoms and Peridynamic Continua

Stewart Silling
Richard Lehoucq

Sandia National Laboratories
Albuquerque, New Mexico

Society for Natural Philosophy Meeting
Houston, TX
October 27, 2007

- Fracture mechanics has some troublesome aspects.
- Requires supplemental equations to tell a crack what to do.
- Treats fracture as a sort of pathology.
- Need to keep redefining the body to avoid applying PDEs on a growing crack.

- 1998 - Began looking for a new model of solid mechanics such that the same equations hold everywhere regardless of discontinuities.

Peridynamics: Horizon, family, and bonds

- Points \boldsymbol{x} and \boldsymbol{x} ' can interact directly.
- Horizon δ :
- Maximum interaction distance.
- Bond:
- The vector connecting x to any x^{\prime} within its horizon in the reference configuration.
- Family of x :
- The set of all bonds from x to any x^{\prime}
 within its horizon.

Vector states

- A vector state is a vector-valued function defined on a family H :

$$
\underline{A}\langle\xi\rangle, \quad \xi \in H
$$

- Example:

$$
\underline{A}\langle\xi\rangle=3|\xi|^{2} \xi
$$

- Define the dot product of 2 vector states by

$$
\underline{A} \bullet \underline{B}=\int_{H} \underline{A}\langle\xi\rangle \cdot \underline{B}\langle\xi\rangle d V_{\xi}
$$

Usual scalar product of 2 vectors

Can also have scalar states (scalar-valued functions of ξ).

Notation for vector state-valued fields

$\underline{A}[x, t] \quad$...a vector state at a point x in the body at time t $\underline{A}[x, t]\langle\xi\rangle$...the value (which is a vector) of $\underline{A[x, t]}$ evaluated at a bond ξ

Deformation states

- Deformation:

$$
y=\hat{y}(x, t)
$$

- Deformation state maps a bond into its deformed image:

$$
\underline{Y}[x, t]\langle\xi\rangle=\hat{y}(x+\xi, t)-\hat{y}(x, t), \quad \xi \in H_{x}
$$

Deformation states can describe complex relative movements near x

The basic assumption

- Strain energy density $W(x, t)$ depends only on $\underline{Y}[\boldsymbol{x}, \mathrm{t}]$.

Peridynamic constitutive model

$$
W(x, t)=\hat{W}(\underline{Y})
$$

Energy depends on all the bonds collectively; it is not merely the sum of independent bond energies.

Strain energy and force states

If there is a vector state \underline{T} such that if $\Delta \underline{Y}$ is any increment in the deformation state,

$$
\Delta W=\hat{W}(\underline{Y}+\Delta \underline{Y})-\hat{W}(\underline{Y})=\underline{T} \bullet \Delta \underline{Y}+o(\Delta \underline{Y})
$$

then \underline{T} is the Frechet derivative of W, and we write

$$
\underline{T}=\nabla \hat{W}
$$

(analogous to the tensor gradient in the classical theory)
Nonhomogeneous elastic bodies: include \boldsymbol{x} explicitly in constitutive model:

$$
\underline{T}=\underline{\hat{T}}(\underline{Y}, x)=\nabla \hat{W}(\underline{Y}, x)
$$

\underline{T} is called the force state. It is a vector state that associates every ξ with a force density.

Equilibrium equation from stationary potential energy

Potential energy in a body:

$$
\Phi=\int_{R} \hat{W}(\underline{Y}[x]) d V_{x}-\int_{R} b(x) \cdot u(x) d V_{x}
$$

Take first variation:

$$
\begin{aligned}
\Delta \Phi & =\int_{R} \underline{T} \bullet \Delta \underline{Y} d V_{x}-\int_{R} b \cdot \Delta u d V_{x} \\
& =-\int_{R}\left(\int_{R}\left(\underline{T}[x]\left\langle x^{\prime}-x\right\rangle-\underline{T}\left[x^{\prime}\right]\left\langle x-x^{\prime}\right\rangle\right) d V_{x^{\prime}}+b(x)\right) \cdot \Delta u(x) d V_{x}
\end{aligned}
$$

So the Euler-Lagrange (equilibrium) equation is

$$
\int_{R}\left(\underline{T}[x]\left\langle x^{\prime}-x\right\rangle-\underline{T}\left[x^{\prime}\right]\left\langle x-x^{\prime}\right\rangle\right) d V_{x^{\prime}}+b(x)=0
$$

Internal forces

The force state $\underline{T}[x, t]$ associates a force density with each bond $\boldsymbol{x} \cdot \boldsymbol{x}$.
Peridynamic equation of motion:

$$
\rho \ddot{u}(x, t)=\int_{H}\left\{\underline{T}[x, t]\left\langle x^{\prime}-x\right\rangle-\underline{T}\left[x^{\prime}, t\right]\left\langle x-x^{\prime}\right\rangle\right\} d V_{x^{\prime}}+b(x, t)
$$

Forces need not be parallel to each other or to the deformed bond.

Special case:

Bonds independent of each other

Suppose the strain energy density function is

$$
\hat{W}(\underline{Y})=\frac{1}{2} \int_{H} w(\underline{e}\langle\xi\rangle, \xi) d V_{\xi}, \quad \underline{e}\langle\xi\rangle=|\underline{Y}\langle\xi\rangle|-|\xi| \quad \text {...extension state }
$$

$w . . \quad$ scalar - valued " micropotential" function

- Magnitude of the bond force depends only on the deformed bond length.
- Bond force is parallel to the deformed bond.

$$
\begin{aligned}
& \text { Leads to the "bond-based" peridynamic model } \\
& \rho \ddot{u}(x, t)=\int_{H} f\left(\left|\hat{y}\left(x^{\prime}, t\right)-\hat{y}(x, t)\right|, x^{\prime}-x\right) d V_{x^{\prime}}+b(x, t) \\
& \qquad f(\eta, \xi)=\frac{\partial w}{\partial \eta}(\eta, \xi)
\end{aligned}
$$

Further restriction of special case: Linearized bond-based model

- Magnitude of the bond force depends only on the bond extension (length change).
- Bond force is parallel to the deformed bond.
- Bond force varies linearly with bond extension.
- Extension is evaluated by a linear approximation.

$$
\begin{gathered}
\rho \ddot{u}(x, t)=\int_{H} C\left(x^{\prime}-x\right)\left(u\left(x^{\prime}, t\right)-u(x, t)\right) d V_{x^{\prime}}+b(x, t) \\
C(\xi)=\frac{\partial f}{\partial \eta}(0, \xi)
\end{gathered}
$$

I. A. Kunin's books Elastic Media with Microstructure I \& II $(1982,1983)$ solve many
important problems with this model.

Some applications of the bond-based theory

Results from the Emu computer code demonstrate the ability to model complex discontinuities

Impact and fragmentation

Transition to unstable crack growth

Crack turning in a 3D feature

Back to full model: Global balances of conserved quantities

Linear momentum: Integrating the equation of motion over the body

$$
\begin{gathered}
\int_{R}\left(\int_{R}\left\{\underline{T}[x, t]\left\langle x^{\prime}-x\right\rangle-\underline{T}\left[x^{\prime}, t\right]\left\langle x-x^{\prime}\right\rangle\right\} d V_{x^{\prime}}+b(x, t)-\rho \ddot{u}(x, t)\right) d V_{x}=0 \\
\Rightarrow \int_{R}(b(x, t)-\rho \ddot{u}(x, t)) d V_{x}=0
\end{gathered}
$$

Angular momentum: The restriction on the constitutive model

$$
\begin{gathered}
\left.\int_{H} \underline{Y}\langle\xi\rangle \times \underline{\hat{T}}(\underline{Y})(\xi\rangle\right) d V_{x}=0 \\
\Rightarrow \int_{R} \hat{y}(x, t) \times(b(x, t)-\rho \ddot{u}(x, t)) d V_{x}=0
\end{gathered}
$$

Some properties of peridynamic constitutive models

Define the composition of two vector states by

$$
(\underline{A} \circ \underline{B})\langle\xi\rangle=\underline{A}\langle\underline{B}\langle\xi\rangle\rangle
$$

What about stress?

- How to eliminate stress from your life:

$$
\rho \ddot{u}(x, t)=\int_{H}\left\{\underline{T}[x, t]\left\langle x^{\prime}-x\right\rangle-\underline{T}\left[x^{\prime}, t\right]\left\langle x-x^{\prime}\right\rangle\right\} d V_{x^{\prime}}+b(x, t)
$$

-But if you want stress in your life, define the peridynamic stress tensor:
$v(x)=\int_{S} \int_{0}^{\infty} \int_{0}^{\infty}(\alpha+\beta)^{2} \underline{T}[x-\beta m]\langle(\alpha+\beta) m\rangle \otimes m d \alpha d \beta d \Omega{ }_{m}$
α, β... scalars
$d \Omega_{m} \ldots$ differential solid angle in the direction of unit vector m
S... unit sphere

Then:

$$
\nabla \cdot v=\int\left\{\underline{T}[x]\left\langle x^{\prime}-x\right\rangle-\underline{T}\left[x^{\prime}\right]\left\langle x-x^{\prime}\right\rangle\right\} d V_{x^{\prime}}
$$

More about peridynamic stress

- Total force on subregion Q in R :

$$
F=\int_{\partial Q} v n d A
$$

- Stress satisfies the following boundary condition:

$$
v n=0 \quad \text { on } \partial R^{\prime}
$$

Atoms as a peridynamic continuum

Assume identical atoms for simplicity. $M=$ mass. Multibody interatomic potential of each atom k :

$$
\psi\left(y_{1}-y_{k}, y_{2}-y_{k}, \ldots, y_{N}-y_{k}\right)
$$

where y_{i} is the current position of atom i.

Undeformed

Deformed

Description of this system as a nonhomogeneous peridynamic body:

$$
\begin{aligned}
& \rho(x)=M \sum_{k} \Delta\left(x-x_{k}\right) \ldots \text { Delta functions } \\
& \hat{W}(\underline{Y}, x)=\sum_{k} \Delta\left(x-x_{k}\right) \psi\left(\underline{Y}\left\langle x_{1}-x\right\rangle, \underline{Y}\left\langle x_{2}-x\right\rangle, \ldots, \underline{Y}\left\langle x_{N}-x\right\rangle\right)
\end{aligned}
$$

where x_{i} is the reference position of atom i.

Deformations: A seeming paradox

- If you have a finite set of atoms, you can determine the internal forces from their current configuration alone.

- But if you have a continuous body, you can't.

This is why we usually introduce a reference configuration in continuum mechanics.

- Suppose that the probability of finding atom k in a small volume $d V_{y}$ at point y in the current configuration at time t is $p_{k}(y, t) d V_{y}$

Probability density p_{k}

- If atomic positions y_{k} are defined exactly, set $p_{k}(y, t)=\Delta\left(y-y_{k}\right)$.

Statistical interpretation of a deformation

Undeformed probability
density P_{k}

Deformed probability
density p_{k}

Condition on the deformation:
$p_{k}(\hat{y}(x, t), t) d V_{y}=P_{k}(x) d V_{x} \quad$ for all x, t
4
Deformation "conforms to" the p_{k}

- This is the only condition we'll need on the deformation.
- In general, there is not a unique deformation that conforms to given p_{k}.

Resulting kinematics are less restrictive than the Cauchy-Born rule

Peridynamic representation of a statistical distribution of atoms

Define a nonhomogeneous peridynamic body by

$$
\begin{gathered}
\rho(x)=M \sum_{k} P_{k}(x) \\
\hat{W}(\underline{Y}, x)=\sum_{k} P_{k}(x) \iint \ldots \int \psi\left(\underline{Y}\left\langle\xi_{1}\right\rangle, \underline{Y}\left\langle\xi_{2}\right\rangle, \ldots, \underline{Y}\left\langle\xi_{N}\right\rangle\right) \\
P_{1}\left(\xi_{1}+x\right) P_{2}\left(\xi_{2}+x\right) \ldots P_{N}\left(\xi_{N}+x\right) d V_{\xi_{1}} d V_{\xi_{2}} \ldots d V_{\xi_{N}}
\end{gathered}
$$

If the atomic positions are known exactly

If the atomic positions x_{i} are known exactly:

$$
\begin{gathered}
\text { Set } \begin{array}{c}
P_{i}(x)=\Delta\left(x-x_{i}\right) \Rightarrow \\
\rho(x)=M \sum_{k} \Delta\left(x-x_{i}\right)
\end{array} \\
\hat{W}(\underline{Y}, x)=\sum_{k} \Delta\left(x-x_{k}\right) \psi\left(\underline{Y}\left\langle x_{1}-x\right\rangle, \underline{Y}\left\langle x_{2}-x\right\rangle, \ldots, \underline{Y}\left\langle x_{N}-x\right\rangle\right) \\
\bullet
\end{gathered}
$$

Total free energy in the statistical peridynamic body

$$
\begin{aligned}
& U= \int \hat{W}(\underline{Y}) d V_{x} \\
&= \int \sum_{k} P_{k}(x) \iint \ldots \int \psi\left(\underline{Y}\left\langle\xi_{1}\right\rangle, \underline{Y}\left\langle\xi_{2}\right\rangle, \ldots, \underline{Y}\left\langle\xi_{N}\right\rangle\right) \\
&= \sum_{1}\left(\xi_{1}+x\right) P_{2}\left(\xi_{2}+x\right) \ldots P_{N}\left(\xi_{N}+x\right) d V_{\xi_{1}} d V_{\xi_{2}} \ldots d V_{\xi_{N}} d V_{x} \\
& \quad p_{1}\left(y_{1}-y, y_{2}-y, \ldots, y_{N}-y\right) p_{2}\left(y_{2}\right) \ldots p_{k}(y) \ldots p_{N}\left(y_{N}\right) d V_{y_{1}} d V_{y_{2}} \ldots d V_{y} \ldots d V_{y_{N}}
\end{aligned}
$$

which is what a physicist would say is the expected value of total free energy in the N -atom system.

Homogenization:

Smooth out the spatial dependence of PD model

- Choose a scalar-valued weighting function $\varphi(q)$ where q is a vector;

$$
\int_{A} \varphi(q) d V_{q}=1, \quad \varphi(q)=\varphi(-q)
$$

- Define a homogenized body by

$$
\begin{gathered}
\bar{\rho}(x)=\int_{A} \varphi(q) \rho(x+q) d V_{q} \\
\bar{W}(\underline{Y}, x)=\int_{A} \varphi(q) \hat{W}(\underline{Y}, x+q) d V_{q}
\end{gathered}
$$

```
q moves around
```

 in \(A\) while \(\underline{Y}\) is held fixed.

Homogenization

- For a given homogeneous deformation, compute the total strain energy in the homogenized body:

$$
\begin{aligned}
\bar{U} & =\int_{R^{3}} \bar{W}(\underline{Y}, x) d V_{x}=\int_{R^{3}} \int_{R^{3}} \varphi(q) \hat{W}(\underline{Y}, x+q) d V_{q} d V_{x} \\
& =\int_{R^{3}} \varphi(q) d V_{q} \int_{R^{3}} \hat{W}(\underline{Y}, z) d V_{z} \\
& =\int_{R^{3}} \hat{W}(\underline{Y}, z) d V_{z} \\
& =U
\end{aligned}
$$

- Therefore the total strain energy is unchanged by homogenization.

Homogenization example: 1D spring-mass system

Peridynamic body:

$$
\rho(x)=M \sum_{k} \Delta(x-h k)
$$

Peridynamic body after homogenization:

$$
\begin{aligned}
\bar{\rho}(x) & =\int M \sum_{k} \Delta(x+q-h k) \varphi(q) d q \\
& =M \sum_{k}^{k} \varphi(x-h k)
\end{aligned}
$$

Homogenization example: 1D spring-mass system

Peridynamic body:

$$
\hat{W}(\underline{Y}, x)=\frac{\mu}{4} \sum_{k} \Delta(x-h k)\left\{(\underline{Y}\langle h\rangle-h)^{2}+(\underline{Y}\langle-h\rangle+h)^{2}\right\}
$$

Peridynamic body after homogenization:

$$
\begin{aligned}
\bar{W}(\underline{Y}, x) & =\frac{\mu}{4}\left(\int \sum_{k} \Delta(x+q-h k) \varphi(q) d q\right)\left\{(\underline{Y}\langle h\rangle-h)^{2}+(\underline{Y}\langle-h\rangle+h)^{2}\right\} \\
& =\frac{\mu}{4} \sum_{k} \varphi(x-h k)\left\{(u(x+h)-u(x))^{2}+(u(x-h)-u(x))^{2}\right\}
\end{aligned}
$$

Homogenization example: 1D spring-mass system

Equation of motion after homogenization boils down to:

$$
M \sum_{k} \varphi(x-h k) \ddot{u}(x, t)=\mu \sum_{k} \varphi(x-h k)\{u(x-h, t)-2 u(x, t)+u(x+h, t)\}
$$

If we assume waves of the form

$$
u(x, t)=e^{i(k x-\omega t)}
$$

This leads to the following dispersion relation:
same as for the original spring-mass system, regardless of φ

$$
\omega=\sqrt{\frac{2 \mu(1-\cos \kappa h)}{M}}
$$

Rescaling:

Increase the length scale of a PD material model

- Take any strain energy density function and change its horizon from δ to δ^{\prime}.
- Define:

$$
\hat{W}_{\varepsilon}(\underline{Y})=\hat{W}(\underline{E}(\underline{Y})), \quad(\underline{E}(\underline{Y}))\langle\xi\rangle=\underline{Y}\langle\varepsilon \xi\rangle, \quad \varepsilon=\delta / \delta^{\prime}
$$

- Can show the strain energy is invariant under rescaling if the deformation is homogeneous.

Discussion

- The peridynamic theory has a qualitative connection with molecular dyamics.
- Our slogan: "Nature integrates"
- Possible strategy for coarse-graining includes
- Representation of discrete atoms as a peridynamic continuum.
- Continuum constitutive model IS the interatomic potential.
- Homogenize.
- Rescale.

Some publications

- Peridynamic theory:
- S. A. Silling, Reformulation of elasticity theory for discontinuities and long-range forces, JMPS (2000).
- S.A. Silling, M. Zimmermann, and R. Abeyaratne, Deformation of a peridynamic bar, J. Elast. (2003).
- O. Weckner and R. Abeyaratne, The effect of long-range forces on the dynamics of a bar, JMPS (2005).
- M. Zimmermann, thesis (MIT, 2004).
- R. B. Lehoucq and S. A. Silling, Force flux and the peridynamic stress tensor, JMPS (2007).
- S. A. Silling et. al., Peridynamic states and constitutive modeling, J. Elast. (2007).
- Atomistics
- R. B. Lehoucq and S. A. Silling, Statistical coarse-graining of atomistics into peridynamics, Sandia report (2007).
- Numerical method:
- S.A. Silling and E. Askari, A meshfree method based on the peridynamic model of solid mechanics, Computers and Structures (2005).
- E. Emmrich and O. Weckner, Analysis and numerical approximation of an integro-differential equation modelling non-local effects in linear elasticity, Mathematics and Mechanics of Solids (2005).
- O. Weckner and E. Emmrich, Numerical simulation of the dynamics of a nonlocal, inhomogeneous, infinite bar, J. Comp. Appl. Mech. (2005).
- E. Emmrich and O. Weckner, Energy conserving spatial discretisation methods for the peridynamic equation of motion in the non-local elasticity theory (to appear).
- Fracture and damage (mostly numerical):
- S.A. Silling and E. Askari, Peridynamic modeling of impact damage, ASME PVP-Vol. 489 (2004).
- S.A. Silling and F. Bobaru, Peridynamic modeling of membranes and fibers, International Journal of Non-Linear Mechanics (2005).
- F. Bobaru and S.A. Silling, Peridynamic 3D models of nanofiber networks and carbon nanotube-reinforced composites, American Institute of Physics conference proceedings (2004).
- Phase boundaries:
- K. Dayal and K. Bhattacharya, Kinetics of phase transformations in the peridynamic formulation of continuum mechanics, JMPS (2006).

