THE PERFORMANCE OF THE NCEP OPERATIONAL MODELS FROM AN HPC PERSPECTIVE

WES JUNKER HYDROMETEOROLOGICAL PREDICTION CENTER CAMP SPRINGS, MD

E-MAIL ADDRESS: NORMAN.JUNKER@NOAA.GOV

Understanding the performance of the operational model is critical to being able to forecast the sensible weather

- All models have strengths and weaknesses.
  All have trouble handling smaller scale features.
- All have problems with convection.
- All do a decent job in handling the short range (0-36 hr) forecast of synoptic scale features.

# Why models have forecast problems

- Initialization and quality control smooth data fields, but some of the lost detail may be important.
- Lack of data over the oceans and Mexico.
- Atmospheric processes are non-linear; small changes in initial conditions can lead to large forecast variations (this is the basis for ensemble forecasting).
- Model physics are approximations
  - for lower resolution models, convection is parameterized
  - for higher resolution models the micro-physical processes are parameterized

The way the physics are approximated can lead to model errors, for example

The Betts parameterization in the eta is handled differently over land and water

 this can cause the eta and meso-eta to erroneously strengthen the coastal front.

 and to forecast too much rain along the Gulf and Atlantic Coastal regions

# ETA MODEL IS BEST

AT HANDLING ARCTIC AIRMASSES PLUNGING SOUTHWARD ALONG THE FRONT RANGE OF THE ROCKIES

- FORECASTING PRECIPITATION ALONG THE WEST COAST INCLUDING THE CASCADE AND SIERRA RANGES
- USUALLY BEST IN FORECASTING COLD-AIR DAMMING ALONG THE EAST COAST (ITS LI FORECAST IS OFTEN THE BEST INDICATOR)

### ETA IS BETTER AT FORECASTING PRECIPITATION OVER COMPLEX TERRAIN



12-36 H ETA V.T. 12Z 3 JAN 97



12-36 H NGM V.T. 12Z 3 JAN 97



ANALYSIS V.T. 12Z 3 JAN 97

NOTE THAT THE ETA MAX IN CA IS A LITTLE TOO FAR WEST, IT ALSO OFTEN UNDERPREDICTS PRECIPITATION OVER THE SISKIYOU MOUNTAINS OF NORTHERN CALIFORNIA.

#### ETA MODEL TERRAIN OVER NORTHERN CA.



32-⊭H ETA TERARIN

BECAUSE OF ITS RESOLUTION AND THE RATHER SIMPLE MICROPHYSICS,

THE ETA PREDICTS ITS PRECIPITATION MAXIMUM ASSOCIATED WITH THE SIERRA AND CASCADE RANGES TOO FAR WEST. <u>IT DOES NOT PREDICT ENOUGH</u> <u>PRECIPITATION ON THE PEAKS OR ON THE DOWNWIND SIDE OF THE PEAKS.</u>

# MORE ON ETA PERFORMANCE

#### TOO WET IN FLORIDA

- SOMETIMES OVERDEVELOPS LOW-LEVEL JET
- VORTICITY CENTERS IN SUMMER OFTEN ARE TOO STRONG, ESPECIALLY LATE IN FORECAST CYCLE WHEN THE FLOW IS WEAK
- OVERFORECASTS THE STRENGTH OF ANTICYCLONES

## ETA AND STORM TRACKS

TENDS TO BE A LITTLE TOO FAR SOUTH WITH LOWS AS THEY REFORM EAST OF ROCKIES.

BY CONTRAST, NGM AND AVN ARE OFTEN TOO FAR NORTH

→ TENDS TO SOMETIMES TRACK LOWS TOO FAR WEST ALONG THE EAST COAST.

> - ESPECIALLY DURING MAJOR CYCLOGENESIS WHEN COASTAL TROUGH IS PRESENT

#### COMMON ETA ERROR ALONG EAST COAST

WHEN A CLOSED UPPER LOW APPROACHES THE COAST THE ETA SOMETIMES HAS PROBLEMS FORECASTING THE LOCATION OF THE SURFACE LOW. NOTE WHERE THE UPPER LOW IS CENTERED AND WHERE THE STRONGEST UPPER-LEVEL DIVERGENCE IS IMPLIED.



48 H ETA 500H V.T. 12Z 23 APR 98



48 H NGM 500H V.T. 12Z 23 APR 98

#### NOTE THAT THE ETA SURFACE LOW IS A LITTLE WEST OF ITS 500 MB CENTER. THE NGM HAS A MUCH BETTER FIT TO THE 500 MB PATTERN.

THE STRONG EASTERLY COMPONENT TO THE WINDS NORTH OF THE MODEL LOW ALLOWS IT TO WRAP MOISTURE AND PRECIPITATION TOO FAR WEST



48 H ETA SURFACE V.T. 12Z 23 APR 98

48 H NGM SURFACE V.T. 12Z 23 APR 98

### THE LOW VARIES A LITTLE NORTH AND EAST OF THE NGM. REMEMBER, THE NGM IS TYPICALLY TOO SLOW WITH LOWS ALONG THE COAST.

VERIFYING SURFACE V.T. 12Z 23 APR 98



# **VERIFYING PRECIPITATION**

BIAS=FORECAST/OBSERVED
EQUITABLE THREAT=(H-E)/(F+O-H-E)
THREAT SCORE=H/(F+O-H)

 N=NUMBER OF HITS, F=NUMBER OF GRID POINTS FORECAST, O=GRID POINTS OBSERVED, E=(F\*O)/N

# MODEL BIAS AND THREAT SCORE

IS DEPENDENT ON RESOLUTION OF MODEL

HOW THE MODEL IS DISPLAYED. THE FAX VERSION OF ETA IS NOT DISPLAYED WITH FULL MODEL RESOLUTION!

HOW THE MODEL IS VERIFIED

WHETHER VERIFIED AT A POINT, OR AVERAGED OVER A GRID BOX

# Eta 12-24 Hr Bias (Forecast/observed) Using A Point Verification Dec 97-Feb 98



FROM ORAVEC NOTES

# Eta 24-36 Hr Observed Bias Dec 97-Feb. 98



FOR .01" OR MORE

## Eta 12-24 Hr Bias During August (Left) And Sept (Next Slide) 97

![](_page_16_Figure_1.jpeg)

#### NOTE THE HIGH BIAS ACROSS THE SOUTH AND SOUTHEAST

### **Eta Has A High Bias Across The South During The Warm Season**

![](_page_17_Figure_1.jpeg)

# 12124 HR ETA BIAS FOR SEPT 97

NOTE THE PATTERN SIMILARITY WITH AUGUST

# Regional ETA verification using model grid (80 km)

WARM SEASON 1.00" OR MORE VERIFICATION

![](_page_18_Figure_2.jpeg)

# Regional ETA verification using model grid (80 km)

COLD SEASON 1.00" OR MORE VERIFICATION

![](_page_19_Figure_2.jpeg)

AGAIN NOTE HIGH BIAS ALONG EAST COAST AND LOW BIAS OVER WEST

# ETA .50" OR MORE PERFORMANCE DURING WARM SEASON

![](_page_20_Figure_1.jpeg)

DURING SUMMER ETA UNDERPREDICTS .50" OR GREATER AMOUNTS IN PLAINS. MESO-ETA HAS SAME BIAS

## ETA PERFORMANCE FOR .50 OR GREATER AMOUNTS APR 96-NOV 97

![](_page_21_Figure_1.jpeg)

ETA OVERPREDICTS .50 OR GREATER ACROSS SOUTH AND ALONG EAST COAST. MESO-ETA HAS SAME BIAS

# Regional ETA verification using model grid (80 km)

.01" OR GREATER AMOUNTS DURING COLD SEASON

![](_page_22_Figure_2.jpeg)

HIGHEST THREATS ALONG WEST COAST. HIGH BIAS OVER UPSLOPE AREAS EAST OF ROCKIES AND OVER PLAINS

# Regional ETA verification using model grid (80 km)

.01" OR GREATER AMOUNTS DURING WARM SEASON

![](_page_23_Figure_2.jpeg)

BIG DIFFERENCES WITH POINT VERIFICATION. USING A POINT VERIFICATION, YOU SEE THE HUGE BIASES OVER THE SOUTH

# ETA MODEL HAS PROBLEMS PREDICTING THE STABILITY.

#### HIGH SOIL MOISTURE CASE

![](_page_24_Figure_2.jpeg)

WHEN SOIL MOISTURE IS HIGH, THE ETA DEWPOINTS ARE TOO HIGH AND LOW-LEVEL TEMPERATURES ARE TOO LOW.

THE ETA FORECAST CAPE=1177, LI=-4 OBSERVED CAPE=5, LI=2

THIS SOMETIMES CAUSES THE MODEL TO BE TOO UNSTABLE

#### WHEN HIGH SOIL MOISTURE IS PRESENT, OR WHEN THE MODEL FIRST GUESS THINKS THE SOIL MOISTURE IS HIGH,

THEN, THE MODEL FORECAST SURFACE DEWPOINTS ARE TOO HIGH AND SURFACE TEMPS ARE TOO LOW.

![](_page_25_Figure_2.jpeg)

#### WHEN LOW SOIL MOISURE IS PRESENT DURING SUMMER OVER THE HIGH PLAINS, ESPECIALLY WEST TX, THE FORECAST CAPE IS TOO LOW

![](_page_26_Figure_1.jpeg)

#### WHEN SO MOISTURE IS LOW IN SUMMER IN THE PLAINS, THE SURFACE DEWPOINT IS TOO LOW AND THE TEMPERATURE IS TOO HIGH

![](_page_27_Figure_1.jpeg)

ETA SURFACE WINDS WERE TOO WESTERLY, WAS THERE TOO MUCH DOWNSLOPING?

**OBSERVED** 

**ETA FORECAST** 

#### Forecast vs. Observed Best Cape Spring 96

![](_page_28_Figure_1.jpeg)

Note the large spread. The model stability forecasts are worst when precipitation is forecast

## A NUMBER OF AVN/MRF PERFORMANCE CHARACTERISTICS HAVE CHANGED IN THE PAST YEAR.

THE AVN/MRF NO LONGER APPEAR TO UNDERPREDICT PRECIPITATION DURING THE WARM SEASON, ESPECIALLY FOR HIGHER AMOUNTS.

THE AVN/MRF NO LONGER "OFTEN UNDERPREDICTS SURFACE LOWS, ESPECIALLY OVER OCEANS"

TROPICAL "BLOWUPS" HAVE NOT BEEN MINIMIZED. THEY ARE STILL COMMON DURING THE WARM SEASON. THE MRFX WILL NOT STOP THE PROBLEM.

### **AVN/MRF Often Have Problems Handling Upslope Events**

Around 75% of the precipitation predicted by the AVN during this event was grid scale, rather than convective, precipitation. In these cases, the model QPF is often too far to the northwest. The maximum rainfall falls farther to the south along the surface front.

![](_page_30_Figure_2.jpeg)

12-36 hr AVN QPF V.T. 12Z 27 APR 98

![](_page_30_Figure_4.jpeg)

VERIFYING 24H PRECIPITATION V.T. 12Z 27 APR 98

# About 75% of the AVN Rainfall Over the OK Panhandle Was Grid-scale Precipitation (Not Convection).

The overprediction of grid-scale precipitation may result in latent heat being released at too low a level in the atmosphere. This tends to cause pressures to lower, often resulting in the lows wrapping up too far to the west or northwest.

![](_page_31_Figure_2.jpeg)

**36-HR AVN/MRF** V.T. 12Z 27 APRIL 98

VERIFYING AVN/MRF V.T. 12Z 27 APRIL 98 Another Case: AVN Wraps Low Too Far North And West. Both Surface and 500 mb Lows Are Too Deep.

PRECIPITATION FORECAST IS POOR BECAUSE OF BAD SURFACE AND 500 MB FORECASTS OR VICE-VERSA.

![](_page_32_Figure_2.jpeg)

AVN 36 HR V.T. 00Z APR 1998 AVN VERIFYING SURFACE ANALYSIS V.T. 00Z APR 1998

Is this another case with some type of latent heating feedback problem?

### Aviation Model handling of 500 mb trough

![](_page_33_Figure_1.jpeg)

# 06h V.T. 18Z Apr 18 36h V.T. 00Z Apr 20 Analysis V.T. 00Z Apr 20 Apr 20

The vorticity increases as the system lifts northeastward even though it never taps into or phases with any northern stream energy.

# BIAS COMPARISON OF 12-36 HR MRF AND EARLY ETA FORECASTS

**VERIFIED TO AN 80 KM GRID** 

![](_page_34_Figure_2.jpeg)

THE MRF AND AVN OVERPREDICT ALL THRESHOLDS ESPECIALLY THE HEAVIER ONES DURING SPRING AND SUMMER

The MRF and MRFX spin-up precipitation bombs and tropical systems erroneously at all time ranges.

![](_page_35_Figure_1.jpeg)

# MRF PERFORMANCE FOR 3-5 DAY FORECASTS

SHALLOW COLD AIR IS NOT HANDLED WELL. THE MODEL IS SLOW TO TRANSPORT SHALLOW COLD AIRMASSES, ESPECIALLY ARCTIC AIRMASSES JUST TO THE EAST OF THE ROCKY MOUNTAINS OR APPALACHIAN CHAIN.

EASTERLY BOUNDARY LAYER WINDS ARE OFTEN OVERPREDICTED ALONG THE FRONT RANGE OF THE ROCKY MOUNTAINS.

MODEL HAS A SLIGHT COLD BIAS, ESPECIALLY OVER THE EASTERN THIRD OF THE COUNTRY.

# MRF PERFORMACE (3-5 DAY) CONTINUED.

- MODEL TENDS TO PHASE SEPARATE STREAMS TOO MUCH.
- AT HIGH LATITUTES (NORTH OF 50°), THE MODEL PREDICTS TOO MUCH RETROGRESSION
- TENDS TO WEAKEN THE REMAINS OF UPPER LOWS TOO QUICKLY THAT ARE COMING OUT OF THE SOUTHWEST

## NGM AND THE SURFACE PATTERN

- OVERDEVELOPS SURFACE LOWS OVER LAND ESPECIALLY TO THE LEE OF THE ROCKIES
- UNDERDEVELOPS LOWS OVER WATER
- HAS NORTHERLY DISPLACEMENT ERROR OVER ROCKIES AND IMMEDIATELY IN THEIR LEE
- HAS BIG PROBLEMS HANDLING ARCTIC AIR MASSES (ESPECIALLY ALONG THE FRONT RANGE OF MOUNTAIN RANGES)

### THE NGM AND AVN/MRF HAVE SERIOUS PROBLEMS WITH ARCTIC AIRMASSES

![](_page_39_Figure_1.jpeg)

![](_page_39_Picture_2.jpeg)

![](_page_39_Picture_3.jpeg)

36 HR NGM V.T. 00Z APR 09, 1995

36 HR AVN V.T. 00Z APR 09, 1995

AVN ANALYSIS V.T. 00Z APR 09, 1995

TEMPERATURES ACROSS KANSAS WERE IN THE LOW TO MID 50s WITH STRONG NORTH WINDS. SOUTH OF THE FRONT TEMPERATURES WERE IN THE UPPER 70s TO LOW 90s.

### THE NGM LOWERS HEIGHTS TOO MUCH IN THE NORTHERN ROCKIES AND HIGH PLAINS

![](_page_40_Figure_1.jpeg)

36 HR NGM V.T. 00Z APR 09, 1995

![](_page_40_Picture_3.jpeg)

![](_page_40_Picture_4.jpeg)

36 HR AVN V.T. 00Z APR 09, 1995

NOTE HOW BOTH THE NGM AND AVN CRASH THE HEIGHTS AND PUSH THE SHORTWAVE RIDGE AXIS EASTWARD. THIS ALSO ALLOWS WARM ADVECTION TO DEVELOP TOO QUICKLY ACROSS THE NORTHERN PLAINS. Why models have problems with arctic airmasses

Terrain is averaged

- Initialization process sometimes robs shallow airmass of its coldness
- Models have problems handling the strength of the inversion

The sigma coordinate system

The leading edge of the ETA LI gradient is often the best indicator of the frontal position

# LOWS TO THE LEE OF THE ROCKIES

THE AVN AND NGM USUALLY PREDICT THEM TO FORM TOO FAR NORTH

USE THE 300 MB UPPER LEVEL JET. THE SURFACE LOW IS USUALLY FOUND IN THE LEFT EXIT REGION OF THE JET, USUALLY JUST TO THE NORTH

### NGM 12-36 Hr Winter Threat Score For .50" Or Greater Amounts

![](_page_43_Figure_1.jpeg)

THE HIGHEST THREAT SCORES ARE FOUND NORTH OF THE STORM TRACK

# 12-36 HR .50" OR GREATER NGM WARM SEASON THREAT SCORE

![](_page_44_Figure_1.jpeg)

NOTE LACK OF SKILL IN WEST. AREAS OF HIGHER SKILL ARE SHADED YELLOW.

### NGM .50" OR GREATER WINTER BIAS

HAS A HIGH BIAS ON THE EAST SIDE OF THE CASCADES AND SIERRA RANGES. TERRAIN IN WEST MUCH TOO SMOOTH.

![](_page_45_Figure_2.jpeg)

Note the low bias (yellow) across the Southeast, along Pacific Northwest Coast and the Southwest. The NGM underpredicts convection along cold fronts.

# THE NGM ALMOST ALWAYS SIGNIFICANTLY UNDERPREDICTS THE MAXIMUM

![](_page_46_Figure_1.jpeg)

### NGM WARM SEASON BIAS FOR .50" OR GREATER AMOUNTS

![](_page_47_Figure_1.jpeg)

#### FROM JUNKER ET AL., 1991

# IN CONCLUSION

- THE ETA MODEL HAS BEEN A BIG STEP FORWARD.
  - ◆ MESOSCALE FEATURES ARE NOW SOMETIMES PREDICTED.
- QUANTITATIVE PRECIPITATION FORECASTS CONTINUE TO IMPROVE.
- BETTER VERIFICATION IS NEEDED OF OPERATIONAL MODELS. THE VERIFICATION NEEDS TO BE SHARED WITH FORECASTERS (MEDIA INCLUDED).
- THE MRF PERFORMANCE CHARACTERISTICS HAVE CHANGED SIGNIFICANTLY DURING THE PAST 2 YEARS.