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Abstract
Farm managers are becoming increasingly aware of the spa-
tial variability in crop production with the growing availabil-
ity of yield monitors. Often this variability can be related to
differences in soil properties (e.g., texture, organic matter,
salinity levels, and nutrient status) within the field. To de-
velop management approaches to address this variability,
high spatial resolution soil property maps are often needed.
Some soil properties have been related directly to a soil
spectral response, or inferred based on remotely sensed mea-
surements of crop canopies, including soil texture, nitrogen
level, organic matter content, and salinity status. While
many studies have obtained promising results, several inter-
fering factors can limit approaches solely based on spectral
response, including tillage conditions and crop residue. A
number of different ground-based sensors have been used to
rapidly assess soil properties “on the go” (e.g., sensor
mounted on a tractor and data mapped with coincident po-
sition information) and the data from these sensors compli-
ment image-based data. On-the-go sensors have been devel-
oped to rapidly map soil organic matter content, electrical
conductivity, nitrate content, and compaction. Model and
statistical methods show promise to integrate these ground-
and image-based data sources to maximize the information
from each source for soil property mapping.

Introduction
The processes of soil formation over landscapes, along
with management-induced soil changes (e.g., accelerated
erosion with tillage, compaction, etc.), have created soil

variations within cropped fields that impact crop produc-
tion. Yield monitoring has demonstrated to farmers that
much of the yield variability within fields is associated
with soil and landscape properties. Numerous soil proper-
ties influence the suitability of the soil as a medium for
rooting. Some of these important properties include soil
water holding capacity, water infiltration rate, texture,
structure, bulk density, organic matter, pH, fertility, soil
depth, landscape features (e.g., slope and aspect), the pres-
ence of restrictive soil layers, and the quantity and distrib-
ution of crop residues. These properties are complex and
vary spatially and temporally within fields. The emergence
of variable-rate application technology has generated a
need to quantify these variations at relatively fine spatial
resolutions. Statistically interpolating between sample
points taken over a fixed grid has been used in the past;
however, this approach is not always feasible due to the
time and cost associated with sample collection. Thus,
more emphasis is now being placed on the use of remotely
sensed data to quantify differences in soil physical proper-
ties. The objective of this paper is to review the current
state of knowledge in the application of sensor-based data
for rapidly mapping soil properties, with an emphasis on
work done by the USDA, Agricultural Research Service
(ARS). Additionally, challenges to the current techniques
and areas requiring additional research are identified.

Relationships to Soil Spectral Responses
Characterization of soil properties is one of the earliest ap-
plications of remotely sensed data in agriculture. Bushnell
(1932) described efforts in the 1920s to use aerial photos to
map boundaries of different soil series. Aerial photographs
have been used as a mapping aid in most of the soil sur-
veys in the United States since the late 1950s. A majority
of the studies examining quantitative relationships between
remotely sensed data and soil properties have focused on
the reflective region of the spectrum (0.3 to 2.8 mm), with
some relationships established from data in the thermal
and microwave regions. Most of the spectral responses in
the reflective spectrum can be related to differences in or-
ganic matter content, iron content, and texture (Stoner and
Baumgardner, 1981). The soil property that is most directly
correlated to reflectance-based data is soil albedo (Post et al.,
2000). Additional soil properties have been inferred from
reflectance measurements under laboratory conditions
such as moisture, organic carbon, total nitrogen, and other
chemical properties (Baumgardner et al., 1985; Dalal and
Henry, 1986; Shonk et al., 1991; Sudduth and Hummel,
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1993b; Ben-Dor and Banin, 1994). Some of the relationships
have also been established for data acquired over tilled or
fallow fields, as described in the following paragraphs.

Surface Texture
Reflectance measurements over tilled fields have been used
to develop predictive equations for the fraction of sand,
silt, and/or clay at the soil surface with varying levels of
success (Suliman and Post, 1988; Coleman et al., 1991).
Dependable relationships are only possible when imagery
is acquired over fields with uniform tillage conditions, and
often the response is only strong enough to identify tex-
tural class at the surface (Barnes and Baker, 2000). To min-
imize the effects of soil properties other than texture (e.g.,
soil moisture, organic matter, and minerals other than
quartz), Salisbury and D’Aria (1992) used a combination of
visible, near-infrared (NIR) and thermal-infrared data. Di-
rected sampling approaches can also be useful for inter-
preting bare soil imagery in terms of soil texture (more de-
tail on the concept of “directed sampling” is provided in
following sections of this review).

Organic Matter
Soil organic matter (SOM) has been related to reflectance
data collected over agricultural fields in several studies
(Coleman et al., 1991; Henderson et al., 1992; Chen et al.,
2000). Henderson et al. (1992) found that visible wave-
lengths (0.425 to 0.695 mm) had a strong correlation with
soil organic matter for soils with the same parent material;
however, the relationship was sensitive to Fe and Mn-oxides
for soils from different parent materials. Use of middle in-
frared bands improved predictions of organic carbon con-
tent when the soils were from different parent materials.
Chen et al. (2000) were able to accurately predict soil or-
ganic carbon using true color imagery of a 115-ha field
with the use of locally developed regression relationships.

Salinity
Many salt-affected soils can be identified by a white salt
crust that will form on the soil surface; thus, these soils
tend to have higher visible and NIR reflectance (Rao et al.,
1995). This spectral response cannot always be used to
identify saline soils, because soils with high sand contents
will have visible and NIR spectral properties similar to salt-
crusted soils (Verma et al., 1994). The ability to discrimi-
nate salt-affected soils has been improved through the in-
clusion of thermal data (Verma et al., 1994) and L-band
microwave data (Sreenivas et al., 1995). 

Moisture
Microwave data (both passive and active) have been related
to surface soil moisture (Jackson, 1993; Moran et al., 1998).
The approach is limited when vegetation is present and is
often only sensitive to conditions at the surface (~5 to 20 cm
depth); however, use of different bands and integrating the
data with soil-water balance models have shown that mi-
crowave data can be useful in mapping soil moisture condi-
tions. Soil moisture has been correlated to visible and NIR
reflectance of bare-soil fields if the data are taken a few days
after rainfall (Milfred and Kiefer, 1976). Similarly, thermal
imagery has also been related to differences in surface soil
moisture content (Davidoff and Selim, 1988).

Challenges
There are several challenges that emerge as one tries to infer
soil properties for application to agricultural management
from bare-soil imagery. First, if a soil property map for use
in agricultural management decisions is derived from re-
flectance or emitted thermal data, an implicit assumption

is that the soil property at the surface also correlates to
changes throughout the root zone. Second, changes in sur-
face tillage condition (e.g., bedded versus flat, fine disking
versus coarse plow), rain compaction, moisture, and plant
residue all may induce changes in apparent soil reflectance
that approach or exceed spectral responses due to soil phys-
ical properties such as texture and organic matter (Courault
et al., 1993; Barnes and Baker, 2000). The impact of tillage
on the ability to detect differences in surface soil texture is
illustrated in Plate 1. Plate 1a is a surface texture map gen-
erated by kriging from sand, silt, and clay fractions mea-
sured in the top 30 cm of the soil profile at an approximate
grid spacing of 120 m (adapted from Barnes and Baker
(2000)). The resulting maps were used to form a three-band
composite “image” by assigning fractions of sand, silt, and
clay to the red, blue, and green bands, respectively (e.g.,
increased red levels in Plate 1a represent areas with high
sand content). Plate 1b is a SPOT-1 HRV false-color com-
posite of the same area. Within areas of similar tillage,
areas of high sand content appear to be relatively brighter
in the image; however, it can be seen that any attempt to
apply a single relationship between the image brightness
level and sand content would not yield accurate results.
Therefore, there is a definite need to integrate other data
sources and approaches before robust methods can be de-
veloped to translate bare soil imagery into maps of soil
properties such textural percentage, or plant nutrient
availability.

Crop Residue Cover Assessment
One approach to improving remote sensing techniques that
relies on the spectral response to infer soil properties is to
develop methods that can identify inferring factors so that
they can be removed during later analysis. One example
where progress is being made in this area is in the detec-
tion of crop residue. In addition to improving soil-mapping
techniques, quantifying crop residue cover on the soil sur-
face is important for improving estimates of surface energy
balance, net primary productivity, nutrient cycling, and
carbon sequestration. Quantifying crop residue cover is
also an important factor in controlling soil erosion and
evaluating the effectiveness of conservation tillage prac-
tices. By reducing the movement of eroded soil into streams
and rivers, the movement of nutrients and pesticides is
also reduced. 

Current Techniques
The standard technique for measuring crop residue cover
used by the USDA, Natural Resources Conservation Service
(NRCS) is visual estimation along a line transect (Morrison
et al., 1993). In this method, a cable is stretched over the
soil surface and the presence or absence of residue at se-
lected points along the cable is determined. Accuracy of
the line-point transect depends on the length of the line
and the number of points used per line (Laflen et al., 1981).
Reviews of crop residue measurement techniques docu-
ment recent modifications and illustrate the unresolved
problems of current techniques (Morrison et al., 1993;
Morrison et al., 1995; Morrison et al., 1998).

Photographs and digital images have been analyzed
using either manual or computer-aided methods to identify
and classify residues and soils. Errors occur when the
spectral differences between classes (i.e., soil and residue)
are not sufficiently large for discrimination (Meyer et al.,
1988; Morrison and Chichester, 1991). The reflectance of
both soils and crop residue lack the unique spectral signa-
ture of green vegetation in the 400- to 1000-nm wavelength
region (Gausman et al., 1975; Gausman et al., 1977; Wanjura
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and Bilbro, 1986; Aase and Tanaka, 1991). Crop residues
and soils are often spectrally similar and differ only in am-
plitude at a given wavelength (Figure 1). This makes dis-
crimination between crop residues and soil difficult or
nearly impossible using reflectance techniques in the visi-
ble and NIR portions of the spectrum. 

Improved Remote Sensing Approaches
Two promising approaches have been identified for dis-
criminating crop residues from soil — one based on blue
fluorescence emissions and another based on shortwave in-
frared reflectance. The fluorescence approach is based on
research first reported by McMurtrey et al. (1993), that
crop residues fluoresce more than soils when illuminated
with ultraviolet radiation. Chappelle et al. (1995) made
considerable progress in developing a portable agricultural
residue sensor based on the fluorescence of soils and
residues and have a patent on the technique.

Advances in low-light imaging technology make it pos-
sible to capture fluorescence images. Albers et al. (1995)
described a broadband fluorescence imaging system for de-
tection, characterization, and monitoring of contaminants
in the environment. Multispectral fluorescence images have
been used to detect the spatial variability in the fluores-
cence of plant leaves associated with various physiological
stresses (Kim et al., 2001) and to determine the fraction of
the soil surface covered by crop residue (Daughtry et al.,
1997). Although considerable progress has been made in
developing a portable agricultural residue sensor based on
the fluorescence of soil and residues, several problems
must be addressed, including (1) the excitation energy must
be supplied to induce fluorescence and (2) the fluorescence
signal is small relative to normal, ambient sunlight.

Three broad absorption features (near 1730 nm, 2100 nm,
and 2300 nm) in the reflectance spectra of crop residues

are not evident in reflectance spectra of soils (Figure 1).
Band-depth analysis of these absorption features using
simulated mixed residue-soil scenes indicated that quanti-
tative assessment of crop residue cover is possible (Nagler
et al., 2000; Daughtry et al., 2001). A three-band spectral
variable, cellulose absorption index (CAI), which measured
the depth of the absorption feature at 2100 nm, separated
crop residues from soils (Daughtry, 2001). In a preliminary
study with AVIRIS (Airborne Visible InfraRed Imaging
Spectrometer) data, fields with vegetation, crop residue,
and plowed soil were correctly identified using CAI and the
Normalized Difference Vegetative Index (NDVI; Daughtry
et al., 2001). Pairs of vegetation indices were useful in dis-
criminating most, but not all, cover types. A multiband ra-
diometer with 3 to 5 bands could be used as a replacement
for the manual line-transect method of measuring field
crop residue cover. Regional surveys and maps of crop
residue cover and conservation tillage practices may be
feasible using hyperspectral imaging systems.

Challenges
One of the challenges facing the application of these newer
technologies for residue assessment is data availability.
Only a limited number of sensor systems provide data in
the wavelength range needed to determine CAI. Fluores-
cence techniques require an excitation source, and the flu-
orescence signal is small relative to ambient sunlight.
More work is also needed to determine how crop residue
maps can be used to improve interpretation of soil proper-
ties from multispectral data.

Inferring Soil Properties from Crop Spectral Responses
A crop’s response to differences in soil conditions can also
be used as an aide in soil mapping. An advantage of this
approach over those discussed in the previous section is
that the crop response integrates conditions throughout the
root zone. Soil properties that have been inferred from
crop response include salinity (Wiegand et al., 1996), soil
nutrient deficiencies (McMurtrey et al., 1994; Bausch and
Duke, 1996), and soil moisture availability (Colaizzi et al.,
2003). In the following paragraphs, brief examples are
given where crop response can be related to soil proper-
ties. Pinter et al. (2003; p. xxx this issue) provide a more
detailed review of examples related to crop nutrient and
water status. 

Salinity
Wiegand et al. (1996) used airborne digital videography
and SPOT HRV imagery in conjunction with soil and plant
samples to quantify and map the variations in electrical
conductivity of the root zone in a salt-affected sugarcane
field. They found that crop spectral response based on
either videography or SPOT data provided good estimates
of soil salinity. Regression equations between the weighted
electrical conductivity and the spectral data were then
used to generate a salinity map for the field.

Nutrients
The nutrient status of a crop provides an integrated measure
of soil nutrient availability in the root zone when there are
no other factors limiting the crop’s nutrient uptake (e.g.,
pest infestations and salinity). Several studies have shown
good relationships between spectral reflectance, chlorophyll
content, and nitrogen status in green vegetation (Bausch
and Duke, 1996; Stone et al., 1996; Blackmer et al., 1996).
Stone et al. (1996) developed a Plant Nitrogen Spectral
Index (PNSI) for correcting in-season wheat N deficiencies
from canopy radiance data measured in the red (671 � 6 nm)
and NIR (780 � 6 nm) portions of the electromagnetic spec-
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Figure 1. Reflectance spectra of dry and wet corn residues
at 1 week and 8 months after harvest, and dry and wet
Barnes and Codorus soils.
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trum. Blackmer et al. (1996) used spectroradiometer-
measured reflected radiation of corn at the dent growth stage
and showed that canopy radiance near 550 nm and 710 nm
was superior to canopy radiance near 450 nm or 650 nm
for detecting N deficiencies. Their results also showed that
the ratio of canopy radiance in the 550- to 600-nm interval
to the 800- to 900-nm interval provided sensitive detection
of N stress. Bausch and Duke (1996) developed an N Re-
flectance Index (NRI) to monitor plant N status of irrigated
corn from green (520 to 600 nm) and NIR (760 to 900 nm)
canopy reflectance. The NRI was defined as a ratio of the
NIR/green for an area of interest to the NIR/green for a well
N-fertilized reference area. Comparison of the NRI and the
PNSI produced a near 1:1 relationship for corn growth stages
between V11 and R4. Data plots of the NRI versus plant tis-
sue total N concentration and the PNSI versus plant tissue
total N concentration produced very similar slopes and in-
tercepts. Relationships developed between the NRI-nadir
view and the Nitrogen Sufficiency Index (NSI) and the NRI-
75° view and the NSI from data representing the V9 through
V16 corn growth stages had nearly identical coefficients of
determination (Bausch and Diker, 2001). However, the 75°-
view NRI data had less scatter, as shown in Figure 2. Based
on these relationships and the accepted NSI threshold of
0.95 to indicate an N deficiency, an NRI less than 0.95 also
indicates an N deficiency that needs correcting by applying
additional N. Visible and NIR leaf reflectance data have also
been related to plant micronutrients; however, the responses
between nutrients were not unique with the possible excep-
tion of iron (Masoni et al., 1996).

Plant Available Soil Moisture
While covered in more detail by Pinter et al. (2003; p. xxx
this issue), it should be noted that plant available soil mois-
ture can be related to crop canopy temperature in some cir-

cumstances (Jackson, 1982). Colazzi et al. (2003) found
that the crop water stress index (CWSI) could be related to
the level of soil water depletion determined from neutron
probe readings. Wildman (1982) illustrates how crop pat-
terns in color-infrared (CIR) photos can be related to soil
type in irrigated fields.

Management Zones
Although crop reflectance data have also been related to
moisture stress and nutrient deficiencies in soils, there have
been relatively few additional examples in which crop re-
flectance data have been used to infer soil properties. This
is because it is difficult to separate the effect of the desired
soil property from other factors in the environment. For
example, a crop can be simultaneously deficient in nutri-
ents and experiencing chronic water stress, both of which
result in similar spectral features. While it may not always
be possible to determine the source of crop variability from
remotely sensed data alone, remote sensing research has
reinforced the conclusion that crop plants integrate the
growing conditions they have experienced and express their
response through the canopies produced. Spectral responses
in the visible and NIR wavelengths, and vegetation indices
calculated from the spectral values, are a measure of the
amount of photosynthetically active tissue in plant canopies
(Wiegand and Richardson, 1990). Therefore, the best ap-
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Figure 2. Relationship between the N reflectance index
(NRI) and N sufficiency index. (a) NRI calculated from
nadir view. (b) NRI calculated from 75°-view radiometer
data for the V9 through V16 corn growth stages.

Plate 1. (a) Statistically interpolated map of surface
soil texture represented as a false-color composite
using fraction sand, silt, and clay for red, green, and
blue, respectively. (b) SPOT1-HRV false-color composite
(NIR, green, red bands) of the Maricopa Agricultural Cen-
ter in Arizona (adapted from Barnes and Baker (2000)).
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proach may be to use crop spectral response to identify
spatial variability in the field and then use direct sampling
in selected areas to diagnose the source of the variability.

Management zones, developed by statistically clustering
image pixels into categories of similar spectral response,
should reduce both the variance within each zone and the
number of soil samples required to characterize each zone.
The concept of management zones has practical implica-
tions in sampling design and variable rate application for
precision farming. Johannsen et al. (2000) suggested that
management zones might be used to guide soil sampling
and form the basis for adjusting nutrient application rates
using variable rate technology. Successful development of
meaningful management zones from remote observations
will reduce the amount of time and resources spent on sys-
tematic or grid ground sampling and thus improve the eco-
nomic viability of precision farming (Lu et al., 1997).

Yang and Anderson (1996; 1999) used airborne multi-
spectral digital videography and unsupervised classifica-
tion techniques to determine within-field management
zones for two grain sorghum fields with multiple stresses.
Two of the zones identified were soil related: one repre-
sented areas with insufficient soil moisture, and the sec-
ond depicted areas where plants suffered severe chlorosis
due to iron deficiency. The remaining zones represented
areas with different production levels due to a combina-
tion of soil and environmental factors. In another study,
grain yields differed significantly among the spectral
zones, and the low yield in one of the zones was predomi-
nately due to a very sandy soil texture (Yang et al., 2000).

Aerial imagery and grain yield monitor data often
show a high degree of spatial correlation, although the pat-
terns may change for wet, dry, and normal years (Lu et al.,
1997). Soil chemical and physical properties generally can-
not explain the variability observed in crop yield responses
(Colvin et al., 1997; Timlin et al., 2001). Dulaney et al.
(2001) analyzed ground penetrating radar (GPR) image pro-
file data and determined that the orientation and depth of
subsurface clay layers governed the movement and direc-
tion of groundwater movement. Spatial patterns in the
aerial imagery and corn grain yields showed a high degree
of correlation with the subsurface flow pathways, suggest-
ing that the movement of ground water along the clay lay-
ers may act as a subsurface irrigation system, increasing
crop growth and yields in drought years. 

Challenges
One of the challenges in using crop spectral response to
infer a specific soil property is how to separate the effects
caused by other soil physical and chemical properties and
biological conditions such as plant growth and pest infes-
tations. Only if the effect of the desired soil property is
large enough to cause a change in canopy color or severely
alter the crop growth can it be detected reliably by re-
motely sensed imagery. One problem associated with
image-based management zones is their consistency or sta-
bility over consecutive seasons. New imagery should be
used annually, if necessary, to revise the management
zones to accommodate any unexpected changes, such as
pest infestations.

Complimentary Ground-Based Sensors to Map Spatial Variability
in Soil Properties
One of the major challenges identified in the previous sec-
tions on the use of remotely sensed data to accurately map
soil properties is the number of interfering factors that can
impact the soil or crop’s spectral signal. Developments in
ground-based sensors show promise to provide data sources

complimentary to image-based information when trying to
develop detailed soil property maps. Progress in sensor
development for a number of ground-based sensor systems
was reviewed by Hummel et al. (1996) and Sudduth et al.
(1997). An overview of several ground-based technologies
developed to rapidly assess and map soil properties follows.

NIR Reflectance Sensors
Soil organic matter (SOM) has been correlated with visible
and NIR reflectance in many studies (e.g., Krishnan et al.,
1980; Stoner and Baumgardner, 1981). Sudduth and
Hummel (1993a) developed a portable spectrophotometer
designed to acquire NIR soil reflectance data at a number of
narrow-band wavelengths and successfully predicted SOM
across a range of soil types and moisture contents. How-
ever, in field tests, the movement of soil past the sensor
during scanning introduced considerable errors and pro-
duced unacceptable results (Sudduth and Hummel, 1993b).
Figure 3a shows an updated prototype sensor with faster
data collection capabilities. The sensors have been used to
estimate SOM, soil moisture, and CEC in soils from a wide
geographic area (Sudduth and Hummel, 1993c; Sudduth
and Hummel, 1996; Hummel et al., 2001). Figure 3b pro-
vides a comparison between the estimate of SOM from the
sensor to point measurements in the field. Other ap-
proaches to SOM and moisture sensing are reviewed by
Sudduth et al. (1997).

Soil Electrical Conductivity Sensors
Bulk soil electrical conductivity (EC) can serve as an indi-
rect indicator of important soil physical properties. Factors
that influence EC include soil salinity, clay content, CEC,
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Figure 3. Rapid ground-based mapping of soil organic
matter. (a) Soil organic matter and moisture sensor.
(b) A comparison of organic matter estimated from the
sensor reading to point measurements determined by
laboratory sample analysis.
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clay mineralogy, soil pore size and distribution, soil mois-
ture content, and temperature (McNeill, 1992; Rhoades
et al., 1999). Rhoades and his colleagues pioneered research
on adapting insertion electrode and electromagnetic (EM)
induction sensors for in situ soil appraisal (Rhoades and
Ingvalson, 1971; Rhoades and Corwin, 1981; Corwin and
Rhoades, 1982; Rhoades and Corwin, 1984; Rhoades et al.,
1989; Rhoades et al., 1990) and developed techniques for
assessing irrigation, drainage, and salinity management
using conductivity survey data (Rhoades, 1992; Rhoades
et al., 1997). Two basic designs of EC sensors are now com-
mercially available — an electrode-based sensor requiring
soil contact, and a non-invasive EM sensor. These two sen-
sors provided similar results on claypan soils and led to
the development of guidelines for reliable and accurate EC
data collection using commercially available sensors
(Sudduth et al., 1999; Sudduth et al., 2001). Figure 4a is a
photograph of a commercially available, mobilized soil
conductivity assessment (MSCA) system designed by the ARS
George E. Brown Jr. Salinity Laboratory. This system uses

the recently developed EM38-DD (dual-dipole) conductance
meter, which allows for the on-the-go simultaneous collec-
tion of GPS referenced horizontal and vertical EM38 signal
data. Figure 4b provides an example of a bulk average (0 to
1.2 m) soil salinity map generated using this system.

In areas of salt-affected soils, most of the EC signal is
related to concentration of soluble salts. However, in non-
saline soils, EC variations are primarily a function of soil
texture, organic matter, moisture content, and cation ex-
change capacity (Rhoades et al., 1976; Rhoades et al.,
1999). In a model that provided a theoretical basis for the
relationship between EC and soil physical properties, EC
was described as a function of soil water content (both the
mobile and immobile fractions), the electrical conductivity
of the soil water, the soil bulk density, and the electrical
conductivity of the soil solid phase (Rhoades et al., 1989).
This model, referred to as the dual pathway parallel con-
ductance (DPPC) equation by Lesch et al. (2000), described
the conductivity of the soil as a multi-pathway parallel
electrical conductance equation.

In some situations, the contribution of within-field
changes in one factor will be large enough with respect to
variation in the other factors such that EC can be calibrated
as a direct measurement of that dominant factor. Lesch et
al. (1995a; 1995b; 1998) used this direct calibration ap-
proach to quantify within-field variations in soil salinity
under uniform management and where water content, bulk
density, and other soil properties were “reasonably homo-
geneous.” Direct, within-field calibrations have also been
established between EC and the depth of topsoil above a
subsoil claypan horizon (Doolittle et al., 1994; Kitchen
et al., 1999; Sudduth et al., 2001). Because soil EC integrates
texture and moisture availability, two characteristics that
both vary over the landscape and also affect productivity.
EC sensing also shows promise in interpreting crop yield
variations, at least in certain soils (Jaynes et al., 1993;
Kitchen et al., 1999). Jaynes et al. (1995) used EC as an esti-
mator of herbicide partition coefficients, theorizing that
both were responding to changes in soil drainage class.

Soil Compaction Sensors
Soil compaction caused by wheel traffic or tillage operations
can cause yield depression within fields. Soil compaction
has traditionally been measured with the cone penetrometer
(Perumpral, 1987; ASAE, 1999). Standard penetrometers
exhibit variability due to clods and cracks, operating para-
meters, and soil wedge formation in front of the tip (Gill,
1968). Automated penetrometers have been developed to
control operating parameters and speed collection of the
amount of data required to characterize a field (e.g., Sudduth
et al., 1989). Speed of data collection with a standard
single-shaft vertical penetrometer is inadequate for collect-
ing site-specific data in large fields. A multiple-shaft
penetrometer has been developed that could collect data
from five row positions simultaneously (Raper et al., 1999).
Sudduth et al. (2000) showed that data collected with a
commercial penetrometer that simultaneously measured EC
and soil strength differed significantly from that collected
with an ASAE-standard tip, due to differences in tip geome-
try. Nevertheless, simultaneous measurement of EC and
penetration force in a claypan soil provided a better soil
characterization. Other modifications to a standard soil cone
penetrometer have allowed the simultaneous measurement
of soil moisture content (Newman et al., 1999) and soil or-
ganic matter/soil moisture sensing (Sudduth and Hummel,
1993a; Sudduth and Hummel, 1993b). Laboratory tests in-
dicated that soil moisture effects could be removed from
the penetration resistance values through use of a force
prediction relationship.
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Figure 4. Ground-based mapping of soil salinity. (a)
Photograph of the Mobilized Soil Conductivity Assess-
ment (MSCA) systems that use the Geonic’s EM38-DD
(dual-dipole) conductance meter. A hydraulic sampling
rig (located on the front of each MSCA platform) allows
these systems to also be used for site-specific soil
sampling. (b) Salinity map generated using data from
the MACA system (data acquired in Coachella Valley,
California).
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Soil Nitrate Sensors
A dramatic advance in the miniaturization of ion-selective
membrane technology occurred when Bergveld reported
on ion selective field effect transistors (Bergveld, 1970;
Bergveld, 1972). Ion Selective Field Effect Transistors
(ISFETs), which are based on the same chemical principles
as ion selective electrodes, have several advantages such as
small dimensions, low output impedance, high signal-to-
noise ratio, fast response, and the ability to integrate several
sensors on a single electronic chip. Birrell and Hummel
(1997) investigated the use of a multi-ISFET sensor chip to
measure soil nitrate in a flow injection analysis (FIA) sys-
tem using low flow rates, short injection times, and rapid
washout. The multi-ISFET/FIA system was successfully used
to measure soil nitrates in manually extracted soil extracts
(r2 � 0.9) under these conditions. A prototype automated
extraction system was tested; however, the extraction sys-
tem did not consistently provide soil extracts that could be
analyzed by the FIA/ISFET system, and it required consider-
able improvement (Birrell and Hummel, 2001). The rapid
response of the system allowed samples to be analyzed
within 1.25 s, and the low sample volumes required by the
multi-sensor ISFET/FIA system make it a likely candidate
for use in a real-time soil nutrient sensing system. The po-
tential of several PVC matrix membranes for use as ISFET
membranes was investigated (Birrell and Hummel, 2000).
More recently, research on rapid extraction of nitrate (Price
et al., 2000) demonstrated that judicious selection of data
analysis techniques could result in nitrate analysis results
in 2 to 5 seconds after injection of the extracting solution
into the soil core. 

Challenges
A major challenge is keeping abreast of sensing and data
processing technological developments. Continuing ad-
vancements in data processing speed and data storage ca-
pacity, coupled with reduced per-unit costs, make it possi-
ble to store, access, and process quantities of data with
portable PC-based instrumentation on field equipment that
previously had to be relegated to post-processing on desk-
top or mainframe computers. As advances are made in data
processing and storage, sensors requiring these capabilities
become candidates for application in agriculture. Coopera-
tion and interaction with industry partners will be needed
to ensure that new sensor developments are commercialized.
Advances in manufacturing technology, such as micro-
electromechanical systems (MEMS), allow mechanical de-
vices as well as electronics to be incorporated through
microfabrication to produce fully integrated microsystems,
resulting in a sensor having all electronic and mechanical
components on a single silicon chip. Significant research
will be needed to incorporate this and other developing
technology into sensor systems for agriculture. Consider-
able time and effort will be needed to expand, as appropri-
ate, the adoption of data collection and processing across
agriculture. Extension personnel, crop consultants, farm
supplier representatives, and producers will need exposure
to and training in new sensing technologies and data pro-
cessing and management techniques so that equipment is
properly used, data are correctly interpreted, and timely
management decisions are made.

Modeling and Statistical Approaches for Data Integration
and Interpretation
A primary difference between image-based data and data
collected by ground-based sensors is the spatial distribu-
tion of data. Image-based data can be viewed as a spatially
continuous grid, averaging the entire response over an area

in a pixel. Ground-based data are typically composed of
discrete points, often collected in transects and generally
require some type of spatial data analysis to be interpo-
lated to grids of a resolution similar to that of the remotely
sensed images. Most of the data analysis and interpretation
used to process ground-based data in the examples of the
previous section can be classified into either deterministic
or empirical modeling categories. In discussing these two
categories, electrical conductivity data will be used for the
examples; however, these principles could be extended to
other data sources.

Deterministic (Theoretical) Modeling Approaches
Deterministic conductivity data modeling and interpreta-
tion can be carried out either from a geophysical or (more
commonly) a soil science approach. In the geophysical ap-
proach, mathematically sophisticated inversion-type algo-
rithms are generally employed. These approaches rely heav-
ily on geophysical theory developed for deep penetrating
signal data and have not proved to be especially useful for
the interpretation of near-surface soil conductivity data. The
soil science approach used in salinity inventorying work is
to employ some form of deterministic “conductivity-to-
salinity” model; i.e., an equation which converts conduc-
tivity to salinity, based on knowledge of additional soil
physical properties. Probably the most useful and well-
known model of this type is the DPPC model (Rhoades et al.,
1989; Rhoades et al., 1990; Rhoades, 1992) noted earlier in
the section on ground-based sensors. The model predicts
soil salinity levels based on soil conductivity survey data
and measured or inferred information about the remaining
soil physical properties. The influence that these soil prop-
erties have on the acquired soil conductivity data can be
assessed using the model (Lesch et al., 2000; Corwin and
Lesch, 2003).

Empirical (Statistical) Modeling Approaches
Empirical models are based on objective sampling method-
ology used in conjunction with various statistical calibra-
tion techniques. The most common types of calibration
equations are spatially referenced regression models, uni-
versal kriging models (sometimes also referred to as spatial
random field models), and co-kriging models. Because
nearly all empirical modeling approaches depend on site-
specific calibration, the use of an efficient, cost-effective
statistical sampling design is clearly important. For soil
salinity inventory work using ground-based conductivity
sensors, the difference between a good and poor sampling
design often determines both the economic feasibility and
technical success of the survey project.

Design-based sampling includes simple random sam-
pling, stratified random sampling, multistage sampling,
cluster sampling, network sampling schemes, and line-
transect sampling. An excellent review of these methods
(along with extensive references) can be found in Thompson
(1992). Model-based sampling designs stem directly from
traditional response surface sampling methodology (Box and
Draper, 1987). Specific model-based sampling approaches
having direct application to agricultural and environmental
survey work are described by McBratney and Webster
(1983), Russo (1984), and Lesch et al. (1995b).

In the model-based sampling approach, a minimum set
of calibration soil salinity samples are selected based on the
observed magnitudes and spatial locations of conductivity
sensor data, with the explicit goal of optimizing the estima-
tion of a regression model (i.e., minimizing the mean-square
prediction errors produced by the calibration function).
Therefore, fewer samples are needed for the calibration
when compared to random or designed-based sampling to
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obtain the same level of accuracy in the regression model.
The regression model is used to predict salinity at all re-
maining (i.e., non-sampled) sites.

The main advantage of the model-based approach is a
substantial reduction in the number of samples required for
calibration compared to design-based sampling. The model-
based approach also lends itself naturally to the analysis of
remotely sensed data. Ground-, airborne-, and/or satellite-
based remotely sensed data are often collected specifically
because one expects the data to correlate strongly with
some parameter of interest (e.g., crop stress, soil type, and
soil salinity), but the exact parameter estimates (associated
with the calibration model) may still need to be determined
using some type of site-specific sampling design. This ap-
proach explicitly optimizes this site selection process.

Data Integration
The idea of combining ground-based data with airborne or
satellite remotely sensed data to facilitate the regional as-
sessment of specific soil attributes has considerable merit.
For example, non-saline remotely sensed vegetation in-
dices can be combined with ground conductivity data to
map residual nitrogen levels in soils. Although site spe-
cific, such an approach could still prove to be cost effec-
tive, especially if model-based sampling approaches are
employed. In saline areas, remotely sensed data could sim-
ilarly prove to produce more accurate salinity maps.

Most types of remotely sensed spectral observations
still require site-specific calibration using ground-sampling
techniques. When remotely sensed data are used to infer
soil properties which are correlated with soil electrical
conductivity data (such as salinity, texture, or water hold-
ing capacity), accuracy of ground calibration data could be
improved by using ground-based soil electrical conductiv-
ity surveying techniques. For example, detailed ground-
based soil electrical conductivity surveys (used in conjunc-
tion with appropriate soil calibration sampling designs)
could be undertaken within selected sub-areas of a much
larger remotely sensed survey region. The ground-based
electrical conductivity data provide a better estimate of the
soil attribute of interest (within the sub-areas) and produce
more calibration data for an analysis of the remotely sensed
data.

Several methods for regional assessment of soil salinity
have been documented using advanced information tech-
nologies such as GIS, ground-based soil conductivity data,
remote sensing data, and solute transport models (Corwin
et al., 1989; Corwin, 1996; Corwin et al., 1997; Corwin
et al., 1999a; Corwin et al., 1999b). Corwin (1996) described
two different GIS-based prediction approaches for regional
salinity assessment. Using a statistical approach, Corwin
(1996) estimated the aerial distribution of salinity across
44,000 ha of the Wellton-Mohawk irrigation district (Yuma,
Arizona) based on various spatial salinity-development
factors. Corwin (1996) also described a deterministic ap-
proach which successfully predicted changes in soil salin-
ity conditions using a one-dimensional, transient-state
solute transport model across 2,400 ha of the Broadview
Water District located on the west side of California’s San
Joaquin Valley over a 5-year study period.

In both approaches, ground-based and remotely sensed
data played important roles. The ground-based soil conduc-
tivity data were used to predict baseline soil salinity condi-
tions and monitor the spatial changes in salinity levels over
time. Likewise, remotely sensed data were used to estimate
crop evapotranspiration and potential leaching fractions
(using knowledge of water delivery and cropping patterns).
Once these data are combined with additional information
(such as soil inventory maps, spatial depth-to-groundwater

information, and DEM information) using a GIS, a compre-
hensive database system can be developed which offers
tremendous potential for accurate, regional-scale salinity
assessment.

Integration of these data sources with crop simulation
models could also play an important role in determining
the impact of soil spatial variability on crop yield. Jones
and Barnes (2000) used airborne imagery to calibrate a
process-oriented cotton model to differences in soil type.
First, bare soil imagery was used to determine the spatial
extent of differences in two soil types. Next, leaf area
index (LAI) for each soil type was inferred from the NIR and
red reflectance data obtained during the season using an
empirical relationship. The cotton model parameters re-
lated to soil water holding capacity were then adjusted
until the model predictions followed the same seasonal
trend in remotely sensed estimates of LAI. The outputs
from the model were then used to evaluate different irriga-
tion strategies for the two soil types.

Considerable corollary data about soil properties and
management zones are contained in crop yield maps. How-
ever, extracting and interpreting the information is diffi-
cult because there often appears to be a lack of consistency
in the yield patterns from year to year (Colvin et al., 1997).
In rain-fed agriculture, much of the variation in crop yield
maps may be due to soil factors that affect water availabil-
ity. Simulation models may account for the temporal ef-
fects of limiting soil water on crop growth when soil water
holding capacity is known (Paz et al., 1998). Timlin et al.
(2001) used a simple water budget-yield model to back-
calculate soil water holding capacity by matching simu-
lated and measured corn grain yields. The information was
used to classify a field into areas buffered against drought
and areas more susceptible to drought. Crop growth and
development were correlated with aerial images of the field.
Dulaney et al. (1999) used ground-penetrating radar (GPR)
mapping of subsurface soil structures to accurately identify
preferential subsurface (funnel flow) flow pathways which
are critical to determining an accurate chemical flux exit-
ing a watershed. The GPR identified subsurface flow path-
ways (blue lines in Plate 2) were developed by subtracting
the depth to the first continuous restricting layers from the
surface topography and then applying flow accumulation
and flow direction hydrologic models in a GIS framework
to the derived subsurface topography. Yield maps, hyper-
spectral imaging, and real-time soil moisture monitoring
were used to confirm the existence and extent of the sub-
surface water flow pathways.

Challenges
Only limited investigations have been conducted on meth-
ods to integrate various data sources, and most of the in-
vestigations that have been conducted rely on location spe-
cific, empirical relationships. Few data sets are available
that contain both the soil property information and re-
motely sensed data from diverse regions to determine the
feasibility of generic algorithms that are not site specific.
Further work is needed to determine more robust algo-
rithms that minimize the need for local calibration and a
formal definition of the calibration process.

Summary and Conclusions
The use of remotely sensed data alone has significant limi-
tations in developing robust, quantitative assessments of
soil properties that do not require local calibration. How-
ever, imagery does show good promise to provide a means
for directed sampling and field-specific relationships use-
ful for mapping soil organic matter, texture, salinity, mois-
ture content, and nitrogen levels. Recent developments in
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ground-based sensors provide new methods to rapidly map
soil organic matter, electrical conductivity, compaction,
and nitrate levels. With the addition of ground-based sen-
sors, less ambiguous relationships can be established be-
tween sensor data and soil properties, and the combination
of these two data sources can yield even more accurate soil
maps. Ultimately, a combination of multispectral imagery,
ground-based sensor data, and other ancillary information
integrated through appropriate models could someday
yield accurate and detailed soil maps with limited direct
sampling. Further incorporation of detailed soil maps with
process-orient crop and soil models will provide a means
to determine the environmental and economic impact of
different site-specific management approaches.
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