Supported by

M.G. Bell Princeton Plasma Physics Laboratory *for the* NSTX Research Team *presented at the* 4th General Scientific Assembly of the Asia Plasma & Fusion Association, Hangzhou, China, Oct 13 – 16, 2003

Columbia U Comp-X **General Atomics** INEL Johns Hopkins U LANL LLNL Lodestar MIT **Nova Photonics** NYU ORNL **PPPL PSI** SNL UC Davis **UC** Irvine UCLA UCSD **U** Maryland **U New Mexico U** Rochester **U** Washington **U Wisconsin** Culham Sci Ctr Hiroshima U HIST Kvushu Tokai U Niigata U Tsukuba U **U** Tokyo loffe Inst TRINITI **KBSI** KAIST ENEA, Frascati CEA, Cadarache **IPP**, Jülich **IPP**, Garching **U** Quebec

"Spherical Torus" Extends Tokamak to Extreme Toroidicity

• Motivated by potential for increased β (Peng & Strickler, 1980s)

 β_{max} (= $2\mu_0 \langle p \rangle / B_T^2$) = $C \cdot I_p / aB_T \propto C \cdot \kappa / Aq$

- B_T : toroidal magnetic field on axis;
- $\langle p \rangle$: average plasma pressure;
- I_p: plasma current;
- a: minor radius;
- κ : elongation of cross-section;
- A: aspect ratio (= R/a);
- q: MHD "safety factor" (> 2)
- C: Constant ~3%·m·T/MA (Troyon, Sykes - early 1980s)
- Confirmed by experiments
 - $\beta_{\text{max}} \approx 40\%$ (START UK, 1990s)

NSTX Designed to Study High-Temperature Toroidal Plasmas at Low Aspect-Ratio

Experiments started in Sep. 99

Aspect ratio A	1.27
Elongation k	2.5
Triangularity δ	0.8
Major radius R ₀	0.85m
Plasma Current I _p	1.5MA
Toroidal Field B _{T0}	0.6T
Pulse Length	1s
Auxiliary heating:	
NBI (100kV)	7 MW
RF (30MHz)	6 MW
Central temperature	1 – 3 keV

View of NSTX, Heating Systems and Diagnostics

Currently constructing a new center bundle for TF coil
Original damaged by a joint failure in February 2003

In Addition to High β, New Physics Regimes Are Expected at Low Aspect Ratio

- Intrinsic cross-section shaping $(B_P/B_T \sim 1)$
- Large gyro-radius (a/ $\rho_i \sim 30-50$)
- Large fraction of trapped particles ($\sim \sqrt{(r/R)}$)
- Large bootstrap current (>50% of total)
- Large plasma flow & flow shear (M ~ 0.5)
- Supra-Alfvénic fast ions ($v_{NBI}/v_{Alfvén} \sim 4$)
- High dielectric constant ($\varepsilon \sim 30-100$)

NSTX Has Achieved Good Progress in β_T

- $\beta_T = 35\%$ determined by magnetic analysis
- $B_T = 0.3T$, A = 1.4, $\kappa = 2.0$, $\delta = 0.8$
- High confinement (H) mode (*c.f.* standard tokamaks) broadens pressure profile

APFA Meeting, Hangzhou / 0310 / MGB

2

R [m]

-2

Measured Dependence of Beta-Limit Motivates Shaping Enhancements

- Reducing error fields and routine H-modes improved performance in '02
- Improving feedback control of vertical position to increase elongation

- Capability for higher I_p at high δ contributes to strong dependence
- Planning to modify inboard PF coils to increase δ at higher κ

Reduction of Error Fields from PF Coils Reduced Occurrence of Locked Modes

5

at wall (Gauss) at 0 degrees

- PF5 (vertical field) coils found to generate large n=1 field perturbation
- Re-shaped prior to '02 run
- Vacuum islands reduced to < 1cm

- With OH, mode locking now only occurs at low density
- With NBI, mode locking occurs more readily: torque opposes rotation

NSTX Shot 109926 Toroidal Array Data

Observed Growth of Resistive Wall Modes When Normalized-β Exceeds No-Wall Limit

• Global rotation damping ~ 6 times larger when $\beta_N > \beta_N^{<no-wall>}$

Developing Capability for Active Control of Resistive Wall Modes

- 24 each large-area internal B_R, B_Z coils installed before '03 run
 - Mounted on passive stabilizers
 - Symmetric about midplane

Internal RWM/EF sensors

- 6 external correction coils in '04
 - Operate as 3 opposing pairs
 - Counteract error field amplification

PF5 coils (main vertical field)

• Process sensor data in real-time through plasma control system for eventual feedback control

APFA Meeting, Hangzhou / 0310 / MGB

With NBI Heating, Global Confinement Exceeds Standard ITER Scalings

 Both L & H -mode plasmas exceed ITER-L97 scaling for total confinement (EFIT)

 Many plasmas also exceed ITER-H98p(y,2) scaling for thermal confinement (TRANSP)
– L-modes are more transient

During NBI, T_i > T_e in Center Although Most Heating Power Flows to Electrons

• "Flat spot" appears to be associated with 2/1 MHD island

Power Balance During NBI Heating Shows Ions Have Low Transport

- Some shots show anomalously high T_i in region r/a ~ 0.6 – 0.8, yielding $\chi_i < \chi_i^{<\text{NC}>}$

High-Field-Side Gas Injection Improves Both Reproducibility and Duration of H-mode

- Consistent with effects of neoclassical viscosity
- Low-field-side fueling with similar rate delays H-mode transition

 Rapid density build up indicates effective edge transport barrier

Exploring Methods for Generating and Sustaining Toroidal Plasma Current

- STs need non-inductive current
 - space for transformer solenoid in center is very limited
- Exploit the neoclassical "bootstrap" current at high β
 - effect of toroidicity in a collisionless plasma
- Use RF waves which interact with the electrons
 - Fast waves at high harmonics of ion cyclotron frequency (**HHFW**)
 - Electron Bernstein Waves (EBW) at low harmonics of electron cyclotron frequency
- Coaxial Helicity Injection (CHI) can initiate toroidal current
 - Create linked toroidal and poloidal magnetic flux (helicity) by injecting poloidal current which relaxes to form closed magnetic surfaces

Neoclassical Bootstrap Effect Drives Substantial Fraction of Plasma Current

 Achieved substantial fraction of NBI-driven and bootstrap current for ~ skin time in diamagnetic plasma

 Control of profiles of pressure & current needed to maximize stability & bootstrap current together

High-Harmonic Fast-Waves Can Provide Both Heating & Current Drive

- 6 MW at f = 30 MHz
 - Pulse length up to 5 s
- 12 Element antenna
 - Active phase control between elements

$$- k_{T} = \pm (3-14) m^{-2}$$

- $\omega/\Omega_{\rm D} = 9 13$
- Expect little direct wave absorption on thermal ions
- Wave velocity matched to thermal velocity of electrons

HHFW Effectively Heats Electrons

- Coupled power to 6MW, energy 1.6MJ
- Good electron heating observed at low density with early HHFW
 - Antenna operated in phasing for slowest waves: $k_T \approx 14m^{-1}$
 - Improved density control by helium pre-conditioning shots

Evidence for Current Drive by HHFW in Plasmas with Co and Counter CD Phasing

- 150 kA driven current from simple circuit analysis
- Modeling codes calculate 90 230 kA driven by waves

Neutral Particle Analyzer Shows Interaction of HHFW with Energetic Ions Produced by NBI

- Ion "tail" above NB injection energy enhances DD neutron rate
- Tail reduced at lower B:
 - Higher β promotes greater off-axis electron absorption reducing power available to central fast-ion population

APFA Meeting, Hangzhou / 0310 / MGB

Detecting Emission of Thermal EBW to Measure Efficiency of Wave Coupling to Antenna

- Black-body EBW is mode-converted to propagating EM wave at Upper-Hybrid resonance layer in plasma edge
- Requires small density scale-length L_n for efficient conversion
 - Antenna includes movable limiters to steepen edge locally

• Planning 3MW EBW system for localized current drive - ~15GHz for $\rm f_{ce}$ and Doppler-shifted $\rm 2f_{ce}$ absorption

CHI Has Generated Significant Toroidal Current Without Transformer Induction

• Goal to produce reconnection of current onto closed flux surfaces – Demonstrated on HIT-II experiment at U. of Washington, Seattle

NSTX Explores Plasma Confinement in a Unique Toroidal Configuration

- Potential for high β already demonstrated
- Confinement with NBI heating exceeds expectations
 - lons are well confined
 - Combined NBI-driven and bootstrap current up to 60% of total
- Challenge is to achieve favorable characteristics simultaneously with non-inductive current drive
 - Self-consistent bootstrap current
 - Current sustainment by RF waves
 - Current initiation by coaxial helicity injection

NSTXI