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“Spherical Torus” Extends Tokamak to
Extreme Toroidicity

• Motivated by potential for increased β (Peng & Strickler, 1980s)

βmax  (= 2µ0〈p〉/BT
2)  =  C·Ip/aBT  ∝  C·κ/Aq

BT: toroidal magnetic field on axis;
〈p〉: average plasma pressure;
Ip: plasma current;
a: minor radius;
κ: elongation of cross-section;

A: aspect ratio (= R/a);
q: MHD “safety factor” (> 2)
C: Constant ~3%·m·T/MA

(Troyon, Sykes - early 1980s)

• Confirmed by experiments
–  βmax ≈ 40% (START - UK, 1990s)
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NSTX Designed to Study High-Temperature
Toroidal Plasmas at Low Aspect-Ratio

Aspect ratio A 1.27

Elongation κ 2.5

Triangularity δ 0.8

Major radius R0 0.85m

Plasma Current Ip 1.5MA

Toroidal Field BT0 0.6T

Pulse Length 1s

Auxiliary heating:

NBI (100kV) 7 MW

RF (30MHz) 6 MW

Central temperature 1 – 3 keV
Experiments started in Sep. 99  
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View of NSTX, Heating Systems and Diagnostics

• Currently constructing a new center bundle for TF coil
– Original damaged by a joint failure in February 2003
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In Addition to High ββββ, New Physics Regimes
 Are Expected at Low Aspect Ratio 

• Intrinsic cross-section shaping (BP/BT ~1)

• Large gyro-radius (a/ρi ~ 30–50)

• Large fraction of trapped particles (∼√(r/R))

• Large bootstrap current (>50% of total)

• Large plasma flow & flow shear (M ~ 0.5)

• Supra-Alfvénic fast ions (vNBI/vAlfvén ~ 4)

• High dielectric constant (ε ~ 30–100)
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NSTX Has Achieved Good Progress in ββββT

•  βT = 35% determined by magnetic analysis
•  BT = 0.3T, A = 1.4, κ = 2.0, δ = 0.8
•  High confinement (H) mode (c.f. standard

 tokamaks) broadens pressure profile
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Measured Dependence of Beta-Limit
Motivates Shaping Enhancements

• Capability for higher Ip at high δ
contributes to strong dependence

• Planning to modify inboard PF
coils to increase δ at higher κ

• Reducing error fields and
routine H-modes improved
performance in ‘02

• Improving feedback control of
vertical position to increase
elongation

2003  data
2002  data
2001 data
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Reduction of Error Fields from PF Coils
Reduced Occurrence of Locked Modes

n=1 tearing mode

Equilibrium

 response

Mode locks

2002 PF5 coil
2001 PF5 coil

• PF5 (vertical field) coils found to
generate large n=1 field perturbation

• Re-shaped prior to ‘02 run
• Vacuum islands reduced to < 1cm

• With OH, mode locking now only occurs at low density
• With NBI, mode locking occurs more readily: torque opposes rotation
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Observed Growth of Resistive Wall Modes
When Normalized-ββββ Exceeds No-Wall Limit
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• Global rotation damping ~ 6 times larger when βN > βN
<no-wall>
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Developing Capability for Active Control of
Resistive Wall Modes

PF5 coils (main vertical field)

• 6 external correction coils in ‘04

– Operate as 3 opposing pairs

– Counteract error field amplification

Internal RWM/EF sensors

BR

BZ

• 24 each large-area internal BR,
BZ coils installed before ‘03 run

– Mounted on passive stabilizers

– Symmetric about midplane

• Process sensor data in real-time through plasma control system
for eventual feedback control
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 With NBI Heating, Global Confinement
Exceeds Standard ITER Scalings

• Both L & H -mode plasmas
exceed ITER-L97 scaling for
total confinement (EFIT)

• Many plasmas also exceed
ITER-H98p(y,2) scaling for
thermal confinement (TRANSP)
–  L-modes are more transient
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During NBI, Ti > Te in Center Although Most
Heating Power Flows to Electrons

• “Flat spot” appears to be associated with 2/1 MHD island
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Power Balance During NBI Heating Shows
Ions Have Low Transport

• Some shots show anomalously high Ti in region r/a ~ 0.6 – 0.8,
yielding χi < χi

<NC>

• Analyze power balance with
TRANSP code

– Use measured profiles of

Te, Ti, ne, nimp, Prad

– Monte-Carlo calculation of
NBI deposition and

thermalization

•  χi
<NC> < χi < χe
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High-Field-Side Gas Injection Improves Both
Reproducibility and Duration of H-mode

• Consistent with effects of neoclassical viscosity
• Low-field-side fueling with similar rate delays H-mode transition
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Exploring Methods for Generating
and Sustaining Toroidal Plasma Current

• STs need non-inductive current

– space for transformer solenoid in center is very limited

• Exploit the neoclassical “bootstrap” current at high β

– effect of toroidicity in a collisionless plasma

• Use RF waves which interact with the electrons

– Fast waves at high harmonics of ion cyclotron frequency (HHFW)

– Electron Bernstein Waves (EBW) at low harmonics of electron
cyclotron frequency

• Coaxial Helicity Injection (CHI) can initiate toroidal current

– Create linked toroidal and poloidal magnetic flux (helicity) by injecting
poloidal current which relaxes to form closed magnetic surfaces
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Neoclassical Bootstrap Effect Drives
 Substantial Fraction of Plasma Current

• Achieved substantial
fraction of NBI-driven
and bootstrap current
for ~ skin time in
diamagnetic plasma

• Vloop ≈ 0.1V
            for ~0.3s

• Control of profiles of
pressure & current
needed to maximize
stability & bootstrap
current together
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• 6 MW at f = 30 MHz

– Pulse length up to 5 s

• 12 Element antenna

– Active phase control
between elements

– kT = ± (3-14) m-1

Field line
in edge

High-Harmonic Fast-Waves Can Provide
Both Heating & Current Drive

•  ω/ΩD = 9 – 13

• Expect little direct wave absorption on thermal ions
• Wave velocity matched to thermal velocity of electrons
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HHFW Effectively Heats Electrons

• Coupled power to 6MW, energy 1.6MJ
• Good electron heating observed at low density with early HHFW

– Antenna operated in phasing for slowest waves: kT ≈ 14m-1

– Improved density control by helium pre-conditioning shots
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Evidence for Current Drive by HHFW in 
Plasmas with Co and Counter CD Phasing
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• 150 kA driven current from simple circuit analysis
• Modeling codes calculate 90 – 230 kA driven by waves
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Neutral Particle Analyzer Shows Interaction of
HHFW with Energetic Ions Produced by NBI

• Ion “tail” above NB injection energy enhances DD neutron rate
• Tail reduced at lower B:

– Higher β promotes greater off-axis electron absorption reducing
power available to central fast-ion population
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Detecting Emission of Thermal EBW to
Measure Efficiency of Wave Coupling to Antenna

EBW emission efficiency
in NSTX

• Planning 3MW EBW system for localized current drive
– ~15GHz for fce and Doppler-shifted 2fce absorption

• Black-body EBW is mode-converted to propagating EM wave at
Upper-Hybrid resonance layer in plasma edge

• Requires small density scale-length Ln for efficient conversion

– Antenna includes movable limiters to steepen edge locally
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CHI Has Generated Significant Toroidal
Current Without Transformer Induction
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NSTX Explores Plasma Confinement in a
Unique Toroidal Configuration

• Potential for high β already demonstrated

• Confinement with NBI heating exceeds expectations

– Ions are well confined

– Combined NBI-driven and bootstrap current up to 60% of total

• Challenge is to achieve favorable characteristics

simultaneously with non-inductive current drive

– Self-consistent bootstrap current

– Current sustainment by RF waves

– Current initiation by coaxial helicity injection


