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Topics

• Review of operation in 2002 - 3

• Results from experiments in 2003

• Continuing analysis of data from 2002

• Upgrades for the 2004 experiments

• Major elements of the future research plan

– Guided by the Five-Year Plan developed over the past
year and reviewed in June 2003
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Calendar and Highlights of Operation

Ip = 1.5MA, BT = 0.6T, PNBI = 7MW,
βT = 35%, βN = 6.2%mT/MA, RWM, HHFW-CD

TF coil repair, NB bellows repair,

Solid pellet injector, RWM control,

Diagnostic upgrades incl. MSE

Start ‘04 operation

Review of
Five-Year Plan

TF coil failure

New absorber insulator & nulling coils,
RF antenna mods, Add’l gas injectors,
RWM det’n coils, 51-ch CHERS, Edge rot’n

Start ‘03 operation

End ‘02 operation

Start ‘02 operation

20
03

20
02

20
04

PHHFW = 5MW, CHI recommissioning,
implement rt-EFIT plasma control

ST workshop 02 
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Developed Feedback Control of Plasma
Equilibrium Based on rt-EFIT Analysis

• Real-time analysis on 8 G4 processors

– Data acquisition at 5kHz

• 75 magnetic data points,

• 11 coil currents,

• 8 loop voltages (⇒ vessel eddy currents)

– Reconstruction every 12ms

– Currents calculated on grid every 0.4ms

• Controlled boundary at 6 points using all
PF coil currents for Ip flattop (~300ms)

110068; 0.350s

Offline
EFIT

rt-EFIT

Control
point
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Started Investigating Dependence of H-mode
on Poloidal Location of Fueling

• For Lower Single Null divertor, easiest
access with HFS midplane injector

Gas injectors (03)

Supersonic gas (04)

Solid pellets (04)
• For Double Null divertor, HFS midplane

and upper injectors give similar response
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Solid Pellets and Supersonic Gas Injection
Will Augment Fueling Capabilities

• Lithium, boron, carbon as pellets or micro-pellet ensembles

– Pellets accelerated by gas in vespel sabot: 20 – >100 m/s

• Pellets up to 2mmØ × 6mm ( ~10mg for lithium, ~1021 Li)

• Minimal accompanying gas:  < 4 Torr.l in 2s (<5% addition)

– Inject up to 8 pellets/shot from 400 barrel turret

– Now in final testing before installation

• Supersonic gas injector being developed with CDX-U for
installation in ‘04

– Laval nozzle made of graphite for close proximity to plasma

– Inject gas at ~1.8km/s (Mach 8 at final gas temperature)

– Up to 6 × 1021 D in 300ms
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Recent Diagnostic Upgrades

• 51-channel CHERS system for Ti, vtor, (nC)

• Edge Rotation Diagnostic for instrinsic CIII, CIV, HeII emission

– 7 toroidal, 6 poloidal sightlines, 1.4 – 1.58 m at outboard midplane

• Collection optics for 10-channel MSE installed

– Analyzers now being assembled for installation during next run

• Br and Bp measurements for Resistive Wall Mode identification

• Edge deposition monitor with mass sensitive quartz crystal

• Scintillator analyzer for fast ions on lost orbits (pitch, energy)

• EBW emission antenna with local limiter for edge gradient control

• Edge Turbulence Imaging optical throughput increased ×10,
300 frame camera (‘04)
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High Resolution CHERS Diagnostic Shows
Additional Structures in Ion Profiles

• “Flat spot” appears to be associated with 2/1 MHD island

0.9 1.2 1.5
0

5

10

15

20

25

30

35

0.0

0.5

1.0

1.5

2.0

T
em

pe
ra

tu
re

 (
ke

V
)

R
ot

at
io

na
l f

re
qu

en
cy

 (
kH

z)

1099370.393s
0.385s

Radius (m)

Te

Ti Fφ

CX signal
(A.U.)

Radius (m)
0.9 1.2 1.5



9th ST Workshop / 030915 / MGB 9
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Toroidal velocity

R
 (

cm
)

R
 (

cm
)

Features of Flow in H-mode Edge Revealed
 in C III Emission

ELM-free
periods

H-mode

• Velocities change in
ELM-free H-mode
phases

• Features in CIII
emission track
EFIT boundary

EFIT boundary
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He II (Majority) Ions Develop Hot Component
During HHFW Heating

RF on

RF off

Poloidal, rtan~146 cm

co
un

ts
co

un
ts

Poloidal, rtan~146 cm

Pixel #

Cold component
40 eV, -10 km/s
(similar with NBI)

RF excited component
490 eV, -50 km/s

Fit residual

• Possible indication of parametric decay of RF waves
- launched waves do not interact directly with ions

~300ms to rise
~30ms to decay
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Neutral Particle Analyzer Reveals Ion Heating
Following Reconnection Events

• Maxwellian tails for both D (majority) and H (minority)
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Spectrum

Teff = 4300 eV

IRE Hydrogen
Spectrum

Teff = 3600 eV

NPA Rtan = 70 cm

                        ∆∆∆∆t = 1 msec 

Typical Ohmic 
Deuterium Spectrum

Ti = 300 eV

• Decay of tail consistent with
classical slowing

• H/D ~ 2 - 5 %

• Heating also seen in NB
heated plasmas

•Complicated by possible
spatial redistribution of
energetic ions

• Similar to MAST observations and consistent with theory of
Helander et al. [Phys. Rev. Lett. 89, (2002)]
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Anomalies in Power Balance Reduced By
Renanalysis of CHERS: χχχχi

<NC> < χχχχi < χχχχe

• Intrinsic emission from edge complicates Ti measurement
• Inclusion of atomic fine structure effects reduced Ti by ~5%

• Investigating effects of large trapped particle population
– Can lead to anisotropy in apparent ion temperature

• Most previous anomalies
in TRANSP power balance
resolved

but

• Some shots still show
anomalously high Ti in
region r/a ~ 0.6 – 0.8,
yielding χi < χi
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 With NBI Heating, Global Confinement
Continues to Exceed Standard ITER Scalings

• Both L & H -mode plasmas
generally exceed ITER-L97
scaling for total confinement
(EFIT)

• Many plasmas also exceed
ITER-H98p(y,2) scaling for
thermal confinement (TRANSP)
–  L-modes are more transient
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Power Scans Reveal Complex Dependence of
Confinement on Toroidal Field

BT = 0.45T:  τE degrades BT = 0.6T:  small τE degradation

• Scaling cannot be described by a simple power law
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Measured Dependence of Beta-Limit
Motivates Shaping Enhancements

• Capability for higher Ip at high δ
contributes to strong dependence

• Investigating modification to
inboard PF coils to increase δ at
higher κ

• Reducing error fields and
routine H-modes improved
performance in ‘02

• Reducing latency in vertical
position control loop to
increase elongation in ‘04

2003  data
2002  data
2001 data
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Observed Growth of Resistive Wall Modes
When  ββββN Exceeds No-Wall Limit
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• Global rotation damping ~ 6 times larger when βN > βN
<no-wall>
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Developing Capability for Active Control of
Resistive Wall Modes

PF5 coils (main vertical field)

• 6 external correction coils in ‘04

– Operate as 3 opposing pairs

– Counteract error field amplification

Internal RWM/EF sensors

BR

BZ

• 24 each large-area internal BR,
BZ coils installed before ‘03 run

– Mounted on passive stabilizers

– Symmetric about midplane

• Process sensor data in real-time through plasma control system
for eventual feedback control
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Non-Inductive Current Drive Vital to
Achieving Goals for Pulse Duration

• Achieved substantial
fraction of NBI-driven
and bootstrap current
for ~ skin time in
diamagnetic plasma

• Vloop ≈ 0.1V
            for ~0.3s

• Control of profiles of
pressure & current
needed to maximize
stability & bootstrap
current together
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Achieved Reliable Operation of High-Harmonic
Fast-Wave Antenna for Heating & CD

• Modified feedthroughs in 2002 opening to reduce voltage stress
• Quickly raised power in 2003 experiments

– Antenna voltages to 15 kV, coupled power to 5.1MW, energy 1.6MJ

• Good electron heating observed at low density with early HHFW
– Obtained improved density control by helium pre-conditioning shots
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Planning 3MW Electron Bernstein Wave System
for Localized Current Drive in Advanced Regimes

• ~15GHz for fce and Doppler-shifted 2fce absorption

• Develop ~1MW gyrotron sources ’04 – 5, install ‘06 – 7

• Requires small Ln for mode-conversion of EM wave to EBW

• Investigating with emission measurements in NSTX
– New antenna includes movable limiters to steepen edge locally

EBW emission efficiency
in NSTX
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In Near Term, CHI Experiments Will Focus
On Transient CHI Scenario

• Transient CHI developed on HIT-II (U. Wash.) in 2002
– Closed flux develops as brief (few ms) CHI pulse is terminated
– Apply induction to ramp up current

• Reliably produced highest currents obtained in HIT-II
• Initiated experiments with transient CHI in NSTX in ‘03

– New absorber insulator does appear more resistant to arcs
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Alternative Scheme for Non-Solenoid Startup
will be Investigated Using Outer PF Coils

• Use existing PF5, PF4, PF3, PF2 coils to get
poloidal flux and poloidal field null

– ~0.15Wb available at ~1m radius

• Possibility for > 100kA

– Meets conventional requirements for
breakdown with adequate preionization

– Provide power supply for PF4 coils (FY’04)

– Reverse PF5 supply for initial tests

• Also investigate JT-60U non-solenoid scheme

Poloidal flux contours
at time of breakdown
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Planning Additional Methods for 
Controling Recycling

• Density control will be a major issue for long pulses in “advanced”
operating modes combining

– Edge transport barriers (H-mode)

– Possible internal transport barriers (indications with HHFW)

– High fraction of bootstrap current (dominated by density gradient)

– RF current drive to maintain stability (dependent on Te)

• Effects of “mini” boronization between shots in ‘04

• Lithium pellet conditioning in ‘04

• Lithium evaporator in ‘05 (CDX-U development)

• Cryo-pump installation in ‘05

• Lithium surface module in ‘07
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Results Have Encouraged Development of an
Ambitious Research Plan for NSTX

• Potential for high β already demonstrated

– Expand boundaries by additional shaping and active control

• Confinement with NBI heating exceeds expectations
– Ions are well confined and contribute to good total confinement

– Combined NBI-driven and bootstrap current up to 60% of total

• Challenge is to achieve these favorable characteristics
simultaneously with non-inductive current drive

– Self-consistent bootstrap current

– Current sustainment by RF waves

– Current initiation by coaxial helicity injection and other novel means

• TF joint failure has delayed but not deterred research
– Fabrication of new TF center bundle is well advanced
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Appendix 1: Since Coil Realignment, Mode-
locking Now Only Observed at Low ne, BT

• In ohmically heated plasma,
reducing density by 5% can
cause rotating mode to lock

– Modes lock to preferred
locations

• Intrinsic mode rotation in
electron diamagnetic drift
direction

• With NBI, mode locking
occurs more readily

– NB torque opposes rotation

n=1 tearing mode

Equilibrium

 response

Mode locks



9th ST Workshop / 030915 / MGB 26

8

10

12

6

4

2

14012010080604020
Energy (keV)

beam injection
energy

B0=4.5 kG
B0=4.0 kG
B0=3.5 kG

NBI
HHFW

Appendix 2: Evidence Seen for HHFW
Interactions with Energetic Beam Ions

• Tail reduced at lower B:
– Higher β promotes greater off-axis electron absorption

reducing power available to central fast-ion population
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