

From Demonstrating to Refining Mercury Controls

George R. Offen Technical Executive Emissions/Combustion Product Mgmt. (650) 855-8942 or goffen@epri.com

for

DOE/NETL's Mercury Control Technology R&D Program Review Pittsburgh, PA December 11-13, 2005

Regulatory Landscape Continues to Drive Need for Options

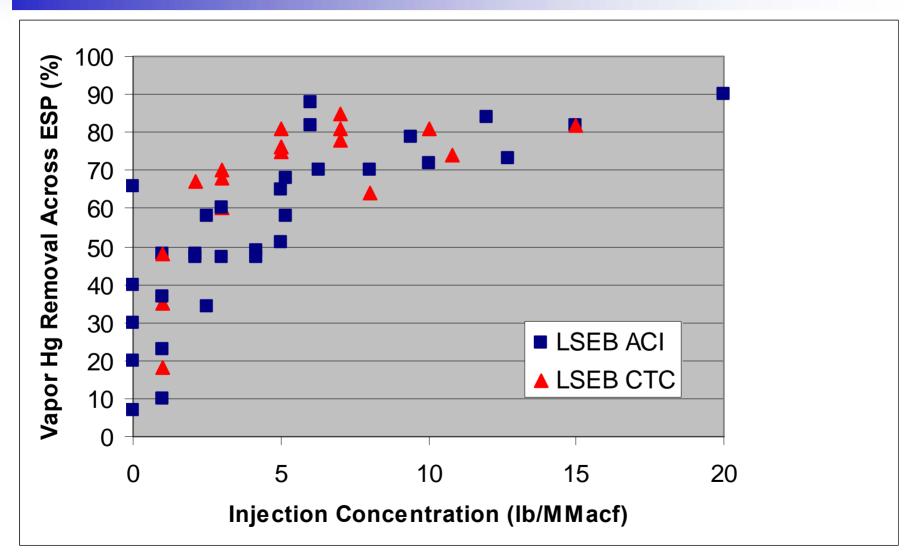
CAMR states offer flexibility

- High ΔHg controls best doable is OK
- Moderate ΔHg controls at low cost
- Time to develop, test long-term, and learn

Non-CAMR states and consent decree companies face big challenge

- Compliance dates near-term
- Many limits are stringent and unforgiving
- We need to help
 - Adequately demonstrate (long-term) complying technologies
 - Inform regulatory/policy discussions with "credible" information

Key Changes Since 2005 Conference


- SCR/FGD co-benefits
 - Suppliers developing catalysts for high Hg⁰ oxidation under all conditions
 - First test of regenerated catalyst

 concern
- Significant interest (and data) in boiler bromide addition
 - Impacts on scrubber, effluent discharge?
- > 40 inj. field tests (15 last year) with EPRI involvement
 - Successes and new issues incl. <u>NSR</u>
- New sorbents improved PAC, high-T, non-carbon
- Better understanding of injection distribution
- Models improving
 - Most pre-2006 DOE sites modeled
 - Mostly close predictions
- Several new concepts to reduce costs, provide options

Recent Issues Experienced

- Sorbent distribution
 - TOXECON II, long lances, short ducts, low turbulence
- SO₃ impact on "ACI"
 - Solvable by alkali injection?
- Temperature sensitivity of halogenated sorbents
- Hopper fires and fugitive dust in TOXECON demo
- Eastern bituminous plant with unusually low Hg⁺⁺
- Halogen injection at PRB unit doesn't produce Hg capture by SD/BH
 - May with SCR?
- Field sorbent tests often ≠ lab tests
- Normal variations mask/confuse analyses
 - E.g., normal PM variations ≥ increase by ACI

Example of Challenges – Performance Variations in ΔHg Across ESP (LSEB)

Focus of EPRI Research (w/DOE, EPA, Members, Contractor/Supplier Partners)

Address issues

- SO₃, temperature variations, coal variations, hopper fires and evacuation
- PM emission increases quantify, understand, mitigate
- Confidence in technology expand experience base to increase
- Improve process, reduce impacts, lower costs
 - Upper sorbent limit for ash use in concrete
 - Novel sorbents high T, SO₃, low ash impact or easily separable from ash
 - Novel technologies Staged coal firing, PEESP, reactive membranes, MercScreen, PM-Screen

User Challenges for Commercial, Compliant Application

- Limits set at level of best performers
 - Data show range of performance
 - Reasons for site-to-site differences often not understood or predictable
- Guarantees appear to be site specific
 - Not consistent with meeting one-size-fits-all limit
- Unclear how to assess Hg control capabilities under conditions not yet tested – e.g., for TX lignite
- High ∆Hg requirements → very low Hg emissions.
 Can we measure these accurately?
- Hopper fires weren't expected; what else might happen?

Expediting Solutions to Mercury Measurement Issues

Equipment issues

- ✓ Probe pluggage
- "Hg Hideout"/ probe calibrations
- Integrated Hg⁺² calibration
- Maintainability of software
- ✓ Long sample lines
- RATA issues alternatives to OHM
 - Development & validation of IRM
 - IRM-capable test contractors
 - Alternative RM sorbent traps
 - Stratification
- Calibration standards
 - NIST / EPA traceability
 - Cylinder stability
 - Hg gas generators
 - Vapor pressure equilibrium equation
 - Hg⁺² calibration standards

Implementation Schedule

	2006		2007			2008				
	3Q	4Q	1Q	2Q	3Q	4Q	1Q	2Q	3Q	4Q
Hardware Development										
Calibration Standards										
IRM Development										
Installation – Start-up										
Certification										

Questions

