Organics in Product Water from Mechanical Thermal Expression

Ying Qi and Alan Chaffee School of Chemistry, Monash University CRC for Clean Power from Lignite

Google	Web <u>Images Groups News</u> more »	<u>Sign ir</u>
	Professor Snape Dirt	Search <u>Advanced Search</u> Preferences
0.0	Search: 💿 the web 🔘 pages from Australia	
Web		Results 1 - 10 of about 46,900 for Professor Snape Dirt. (0.20 seconds)

Google	Web	<u>Images</u>	<u>Groups</u>	<u>News</u>	<u>more »</u>		
	Profes	Professor Snape Dirt					Advanced Search Preferences
	Search	: 💿 the v	veb 🔘 pag	jes from	Australia		

Web

Tip: Save time by hitting the return key instead of clicking on "search"

TtH • Story • Digs to Offer*

Faith still had one arm locked around **Professor Snape's** neck. ... They placed their hands on the shoe though, **dirt**, gum, and hair be damned. ... www.tthfanfic.com/Story-4658/echo+Digs+to+Offer.htm - 30k - <u>Cached</u> - <u>Similar pages</u>

A little dirt with your tea, sir or The Story of Buh Buh Bobbin

"Dirt. I know." she smiled. "I often accused Elrond of trying to pull one ... Stop chewing on Professor Snape's stool." The wolf took one long look at the ... memnet.tripod.com/tellindar10.htm - 41k - <u>Cached</u> - <u>Similar pages</u>

Ocelumency .. A Severus Snape archive

Professor Severus **Snape** reflects back on his past, both the hate and the painful ... Severus **Snape** sat, staring out of the **dirt** streaked window of his cold ... occlumency.sycophanthex.com/viewstory.php?sid=1100 - 12k - <u>Cached</u> - <u>Similar pages</u>

Occlumency :: A Severus Snape archive

... Morgan felt blood there. This was all she needed: to be conked out on a forsaken **dirt** road. ... "Of course, **Professor Snape**, it's just a little cut. ... occlumency.sycophanthex.com/viewstory.php?sid=4108 - 35k - <u>Cached</u> - <u>Similar pages</u>

Harry Potter and the Idolatry of Yore

Your **Professor Snape** knew this." Madam Pomfrey's jaw fell open as she suddenly ... **Snape** looked down at the **dirt** before continuing. "I found her, Harry. ... www.dprophet.com/iofy/chap33pg2.html - 11k - <u>Cached</u> - <u>Similar pages</u>

Professor Snape {er}... Answers Your Questions

Professor Snape {er}. **... Snape** and Sarah are sitting at the kitchen table, twiddling their thumbs and whistling nonchalantly. When you're stuck in a house **...** www.livejournal.com/community/dearsnape/ - 62k - <u>Cached</u> - <u>Similar pages</u>

🕝 Internet

Results 1 - 10 of about 46,900 for Professor Snape Dirt. (0.20 seconds)

Sign ir

Web Images Groups News more »

Search Advanced Search Preferences

Search: 💿 the web 🔘 pages from Australia

Web

Google

Results 1 - 10 of about 10,200 for Professor Colin Snape Dirt. (0.23 seconds)

[PDF] Liz Humphreys reports on four NERC-funded scientists using the ...

Professor Colin Snape Dirt

File Format: PDF/Adobe Acrobat - View as HTML

The oil and **steroid** detector. We don't normally put oil exploration and **steroid** abuse. detection in the same box, but **Colin Snape** and team at the ... www.nerc.ac.uk/publications/ documents/pe-spr05/bridginggap.pdf - <u>Similar pages</u>

[PDF] THE USE OF BOUND BIOMARKERS RELEASED VA HYDROPYROLYSIS O SOLVE ...

File Format: PDF/Adobe Acrobat - View as HTML

Colin E. Snape. 1., Will Meredith. 1. and Gordon D. Love ... colin.snape@nottingham.ac.uk. 2. Department of Earth, Atmospheric and Planetary Sciences, ...

www.nerc.ac.uk/funding/thematics/ oceanmargins/regform/Snape_abs.pdf - Similar pages

Asteroids and Steroids

Ida **Steroids** and asteroids have now got more in common than just seven letters. ... a team led by Prof **Colin Snape** at the University of Nottingham,have used ... www3.imperial.ac.uk/portal/page?_pageid=46,3198724& __dad=portallive&_schema=PORTALLIVE - 34k - <u>Cached</u> - <u>Similar pages</u>

Scientists make step forward in drug detection - News Archive ... The research, being led by Professor Colin Snape in the University's School ... even the new designer steroid specifically manufactured to avoid detection ... research.nottingham.ac.uk/ NewsReviews/newsDisplay.aspx?id=137 - 12k -Cached - Similar pages

Business Week: This Steroid Sleuth Doesn't Quit

Access the article, This Steroid Sleuth Decent Quit from Business Week, ... Professor Colin Snape and his team believe they can nail the identity of any ... www.findarticles.com/p/articles/ mi_kmbus/is_200503/ai_n13285942 - 23k - Cached - Similar pages

Organics in Product Water from Mechanical Thermal Expression

Ying Qi and Alan Chaffee School of Chemistry, Monash University CRC for Clean Power from Lignite

WATER PROBLEM IN BROWN COAL

Lignite-Water Interactions

3-D molecular model of fossil wood (*Podocarpus sp*) from Loy Yang OC. The simulation box is (2.73 nm)³.

Lignite-Water Interactions

Water removed to illustrate pore volume

Porosity: 45.4%

Current Practice

Water is removed by evaporation VERY

Non-Evaporative Drying Processes

Include:

- Mechanical Thermal Expression (MTE)
- Hydrothermal Dewatering (HTD)
- Pressurised Steam Drying

Water is removed as a liquid rather than steam

Heat of evaporation is saved leading to more efficient electricity production

Possible Applications

Industrial

Power Station: Condensate water Power Station: Cooling water Power Station: Fire and ash water Paper plant

Environmental Recharge

Surface waters: lowlands, uplands, lakes, marine LV industrial area Groundwater

Primary Industries

Irrigation Livestock Aquaculture **Recreation**

MTE Processing

Schematic of MTE Pilot Plant

Cooperative Research Centre for CLEAN POWER FROM LIGNITE

MTE Dewatering

Effect of Process Conditions

Harsher conditions (T, P) lead to greater water removal Pressure becomes less significant as it increases

Cooperative Research Centre for CLEAN POWER FROM LIGNITE

Comparison of Dewatering Methods

Organic Carbon in Product Water

	MTE	Batch HTD	HTD pilot plant	Pressurised steam dewatering
Temperature (°C)	120 - 200	250 - 350	300	182 – 222
Lignite	Loy Yang	Loy Yang	Loy Yang	Loy Yang
Total Organic Carbon (g/L)	0.08 - 0.4	0.3* - 7	1.32	NA
Organic Carbon (g/kg dry coal)	0.4 - 2.2	2* - 50*	NA	0.1*-2.3

Organic Carbon in product water is predominantly determined by process temperature MTE releases less organics to the product water

Cooperative Research Centre for CLEAN POWER FROM LIGNITE

MTE Water Quality

From Rig

After Settling

MTE Water Quality

Physical Properties vs Guideline Levels

Water type	pН	Conductivity (µS/cm)	Turbidity (NTU)	TDS (mg/L)	TSS (mg/L)
Loy Yang MTE water	3.46	2000	2600	2200	1700
Morwell MTE water	3.63	3890	726	5300	800
Yallourn MTE water	3.48	2080	1230	3000	920
Lowland rivers	6.5-8	125-2200	6-50	-	-
Latrobe Valley Waters	6-8.5	-	50	770	90
Cooling water make up	6.4-7.7	500	40	200	30
Agricultural irrigation	6-9	-	_	800	_
Saline Water Outfall Pipeline (SWOP)	6.5-8.5		25	25000	20
Regional Outfall Sewer	6.0-9.0				40

Physical properties do not generally meet guideline levels Remediation will be required.

General analytical procedure for Organics

Cooperative Research Centre for

CLEAN POWER FROM LIGNITE

General analytical procedure for Organics

Direct SPE-GC-MS

- Method
 - Solid phases PPL
 - Elution solvent ethyl acetate
- Recoveries (ppm level)
 - Mono-phenols >90%
 - Di-phenols <80%</p>
 - Tri-phenol undetectable at < ~45ppm</p>
 - LMW polar carboxylic acids not detectable at < ~250 ppm
- Conclusions
 - Low GC sensitivity of phenols and carboxylic acids
 - High detection limits
 - Poor recoveries for di and triphenols

General analytical procedure for Organics

Phenol acetylation - SPE

Cooperative Research Centre for **CLEAN POWER FROM LIGNITE**

Phenol acetylation - SPE

- <u>Acetylation method evaluation</u>
 - <u>One step</u> acetylation in literature

•Substituted mono phenols and diphenol – low acetylation yield at low pH

•Phenol – low yield at low pH and high pH

•Tri-hydroxy phenol – low yield at high pH

Phenol acetylation - SPE

- Acetylation method evaluation
 - <u>Two step</u> acetylation developed
 - First low pH for tri-hydroxy phenol
 - Second high pH for the rest of phenols (mono-, di-)

Phenol quantification – method validation

200°C/25M	Amount in	Amount	Total amount	Reco	very
	MTE sample (µg/L)	added (µg/L)	in spiked MTE sample (µg/L)	%	RSD%
Phenol	76 ± 1	195	280 ± 16	105	7.9
4-methyl-phenol	3.6 ± 0.3	192	208 ± 3	104	1.4
2,4-dimethyl-phenol	0.9 ± 0.0	203	212 ± 2	104	0.92
2-methoxy-phenol	98 ± 3	215	321 ± 1	104	0.25
2-methoxy-4-methyl-phenol	3.5 ± 0.1	199	215 ± 0	107	0.17
Catechol	627 ± 19	211	824 ± 17	93	8.7
2,6-dimethoxy-phenol	43 ± 1	208	244 ± 16	97	8.0
Vanillin	118 ± 5	213	345 ± 29	107	13
Pyrogallol	153 ± 4	223	290 ± 13	62	9.4

Phenols identified in MTE water from Loy Yang coal (200°C, 25MPa)

	\frown		
Total organic carbon 0.	.15g/L	Estimated to	otal phenols ~4mg/L
Phenol		1,2-dihydrox	y-4-meth i benzene
4-methyl-phenol		2-methyoxy-	4-e ⁺¹ .yı-phenol
2,4-dimethyl-phenol		4-[1-methv ¹	ethyl] phenol
2-methoxy-phenol 1-[4- ¹ , aroxy-3-methoxyphe			-3-methoxyphenyl] ethanone
2-methoxy-4-methyl-phe	enol	4-hydroxy	-3,5-dimethylphenyl] ethanone
Catechol	Phonolics	~	phenyl] ethanone
2,6-dimethoxy-phenol	Flienolius		hethylethylphenyl]} ethanone
Vanillin	Carboxylic a	CIOS	5-dimethoxy benzaldehyde
Pyrogallol	Others		nzaldehyde
3-methoxy-4-ethoxy phe	GC-MS non-o	detectable	nzaldehyde
1,4-dihydroxy-2-methoxy	y-denzene	2, 3-a myarox	y-benzaldehyde
1,4-dihydroxy-2,3,5-trim	ethyl benzene	3-hydroxy-4-	-ethoxy-benzaldehyde

GC-MS TIC of an acetylation-SPE extract

Cooperative Research Centre for CLEAN POWER FROM LIGNITE

GC-MS TIC of an acetylation-SPE extract

Cooperative Research Centre for

Model of Lignitic Wood

Hatcher, Org Geochem, 16, 959 (1990)

General analytical procedure for Organics

Carboxylic acid methylation

Common Reagents:

- Diazomethane
- BF₃/MeOH
- Acetyl chloride/ MeOH
- Trimethyloxonium

tetrafluoroborate (TMO)

Acid methylation – comparison of methods

Acid methylation – comparison of methods

Methylation with TMO in Aqueous Solution

 $\mathsf{RCOO}^{-} + \mathsf{CH}_3 \text{-} \mathsf{O} \text{-} (\mathsf{CH}_3)_2^{+} \rightarrow \mathsf{RCOOCH}_3 + \mathsf{CH}_3 \text{-} \mathsf{O} \text{-} \mathsf{CH}_3$

Procedure must promote reaction between TMO and acid:

- staged addition of TMO (5x)
- repeated alkalisation (NaHCO₃, Na₂CO₃)
- sealed and incubated at 100C (2 min)

TMO methylation - SPE

Conclusions:

- Lengthy acid isolation step by N₂ drying or SPE is avoided
- Methylation efficiency and reproducibility high
- Final isolation of methyl esters using C18 / ethyl acetate

Carboxylic Acids in MTE water by GC-MS

Carboxylic Acids in MTE water by GC-MS

- XX monocarboxylic acids
- XX dicarboxylic acids

Carboxylic Acids in MTE water by GC-MS

Aromatic acids						
Benzeneacetic acids	Benzoi	c acids				
benzeneacetic acid	benzoic acid	4-hydroxyl-3-methoxy-benzoic acid				
4-methoxy-benzeneacetic acid	4-methyl-benzoic acid	?-hydroxyl-?-methoxy-benzoic acid				
3,4-dimethoxy-benzeneacetic acid	4-methoxy benzoic acid	4-hydroxy-2-methoxy-3,5,6- trimethyl benzoic acid				
4-hydroxy-3-methoxy- benzenacetic acid	3-methoxy-4-methyl-benzoic acid	2,4-dihydroxy-3,6-dimethyl- benzoic acid				
Benzenedicarboxylic acids	2,4-dimethoxy-6-methyl- benzoic acid	3,4,5-trihydroxy benzoic acid				
4-methyl-1,2- benzenedicarboxylic acid	?,?-dimethoxy-?-methyl benzoic acid					
4-methyl-1,3- benzenedicarboxylic acid	3-ethoxy-benzoic acid					
?-methyl-?,?- benzenedicarboxylic acid	?-methyl-?,?- benzenedicarboxylic acid 2-hydroxy benzoic acid					
	benzenetricarboxylic acids					
1,2,4-benzenetricarboxylic acid	1,3,5-benzenetricarboxylic acid	5-methyl-1,2,4- benzenetricarboxylic acid				

Cooperative Research Centre for CLEAN POWER FROM LIGNITE

MTE Water Quality

Organics Composition

	Loy Yang A			Morwell		
	150° 25 MPa	200° 6 MPa	200°C 25 MPa	200° 6 MPa	200° 6 MPa	200° 25 MPa
Total phenols (mg/kg, db)	0.34	3.8	14	21	25	71
Total acids (mg/kg, db)	161	620	980	1210	1280	1970
Total compounds identified by GC-MS (mg/kg, db)	161	625	1000	1300	1310	2040
Total organic carbon (mg C/kg, db)	710	1300	2200	2500	2900	3600

Detectable organics are mostly small molecular weight carboxylic acids, not phenols as observed for HTD and SD

MTE Water Quality

Organics % observed by GC-MS

	Loy Yang A			Morwell		
	150° 200° 200°C		200°	200°	200°	
	25	6	25	6	6	25
	MPa	MPa	MPa	MPa	MPa	MPa
Total phenols (as carbon) in OC (%)	.037	.023	.48	.62	.65	1.4
Total acids (as carbon) in OC (%)	12	24	24	27	23	28
Total identified organics (as carbon) in OC (%)	12	24	24	27	24	29

GC-MS detectable components account for 25-30% of the organics in MTE water

Higher Molecular Weight Organics in MTE Water

Cooperative Research Centre for CLEAN POWER FROM LIGNITE

Conclusions

- MTE is effective for removing ~75% of the water in low rank coals like those from Victoria
- By-product water is 'clean' relative to that produced by other dewatering methods
- It will still require remediation for most foreseeable uses
- It contains inorganics as well as organics
- ~25-30% of the organics can be identified and quantified by GC-MS
- HMW components are also present
- Identifiable components are biomarkers and, considered as a whole, are not particularly nasty.

"In effect, you are what you eat - plus a little bit of what you might inject"

> Professor Colin Snape BBC News

Quality Criteria

- Total Dissolved Solids (TDS): mg/L
- Suspended Solids (SS): mg/L
- pH
- Colour: Pt/co
- Turbidity: NTU²
- Conductivity: (µS/cm)
- Biological Oxygen Demand (BOD): mg/L

MTE Water Remediation

2. Gasification of Organics

Approach is moderately effective at 300-350C. This approach is ineffective for inorganics.

Figure 3-16. Comparison of acetyl chloride (AC) and BF_3 (BF) for methylation of carboxylic acids

Cooperative Research Centre for CLEAN POWER FROM LIGNITE

Mono-hydroxy phenols						
	Alkyl phenols	Methoxy phenols	Phenolic ketones			
phenol	4-[1-methylethyl] phenol	2-methoxy phenol	1-[2-hydroxyphenyl]- ethanone			
2-methyl phenol	2-methyl-5-[1-methylethyl]- phenol	4-methoxy phenol	1-[3-hydroxyphenyl]- ethanone			
3-methylphenol	5-methyl-2-[1-methylethyl]- phenol	2-methoxy-4-methyl phenol	1-[4-hydroxyphenyl]- ethanone			
4-methyl phenol	2,4-bis[1-methylethyl]-phenol	2-methoxy-4-ethyl phenol	1-[4-hydroxy-3,5- dimethoxyphenyl]-ethanone			
2,4-dimethyl phenol	4-[1-methylpropyl] phenol	2,6-dimethoxy phenol	1-[4-hydroxy-3- methoxyphenyl]-2-propanone			
2,5-dimethyl phenol	2- or 4-[2-methylpropyl] phenol	2,4-dimethoxy phenol	Phenolic benzaldehydes			
2,3-dimethyl phenol	?-methyl-?-propyl phenol	1-[4-hydroxy-3- methoxyphenyl] ethanone	2-hydroxy benzaldehyde			
3-ethyl phenol	4-[1,1-dimethylpropyl] phenol		3-hydroxy-benzaldehyde			
	4-[3-methyl-2-butenyl]-phenol		4-hydroxy benzaldehyde			
			4-hydroxy-3-methyl benzaldehyde			
			4-hydroxy-3-methoxy benzaldehyde (vanillin)			
MONASH	University		4-hydroxy-3,5-dimethoxy Cooperative Besearch Centre for CREAN PUNCTURE RESEarCh LIGNITE			

Di-hydroxy phenols						
1,2-benzenediol (catechol)	?-dimethyl-1,3- benzenediol	1-[2,4-dihydroxyphenyl]- ethanone		1-[2,4-dihydroxy-3- methylphenyl]- propanone		
1,3-benzenediol	2,3,5-trimethyl-1,4- benzenediol	1-[2,5- ethan	-dihydroxyphenyl]- one	2,4-dihydroxy benzaldehyde		
1,4-benzenediol	a methoxy benzenediol	1-[2,4-dihydroxyphenyl]- propanone		2,5-dihydroxy benzaldehyde		
2-methyl-1,4- benzenediol		1-[2,5-dihydroxyphenyl]- propanone		3,4-dihydroxy benzaldehyde		
a methyl benzenediol				?,?-dihydroxy-4- methoxy-benzaldehyde		
Tri-hydroxy phenols						
1,2,3-benzenetriol (pyrogallol)	1,2,4-benzenetriol		1,3,5-benzenetriol	a tri-hydroxy phenol (MW=182)		

