ISO/IEC

11XXX

�Information Technology (Hypermedia Scripting Environment (HySE)

�Reference Number

ISO/IEC 11xxx:xxxx�Contents

� TOC \o "1-3" �1 Scope	� GOTOBUTTON _Toc316488683 � PAGEREF _Toc316488683 �5��

1.1 Definition of Scope	� GOTOBUTTON _Toc316488684 � PAGEREF _Toc316488684 �5��

1.2 Field Of Application	� GOTOBUTTON _Toc316488685 � PAGEREF _Toc316488685 �6��

2 Normative References	� GOTOBUTTON _Toc316488686 � PAGEREF _Toc316488686 �6��

3 Definitions	� GOTOBUTTON _Toc316488687 � PAGEREF _Toc316488687 �6��

4 Relationship Between SGML, HyTime and SMSL	� GOTOBUTTON _Toc316488688 � PAGEREF _Toc316488688 �8��

4.1 HyBrid Parameter Entity	� GOTOBUTTON _Toc316488689 � PAGEREF _Toc316488689 �8��

4.2 HyTime Hyperlink Module	� GOTOBUTTON _Toc316488690 � PAGEREF _Toc316488690 �8��

4.3 HyTime Measurement Module	� GOTOBUTTON _Toc316488691 � PAGEREF _Toc316488691 �8��

5 SMSL Application Model	� GOTOBUTTON _Toc316488692 � PAGEREF _Toc316488692 �8��

5.1 Object-Oriented Model	� GOTOBUTTON _Toc316488693 � PAGEREF _Toc316488693 �8��

5.1.1 Encapsulation	� GOTOBUTTON _Toc316488694 � PAGEREF _Toc316488694 �8��

5.1.2 Inheritance	� GOTOBUTTON _Toc316488695 � PAGEREF _Toc316488695 �8��

5.1.3 Composition	� GOTOBUTTON _Toc316488696 � PAGEREF _Toc316488696 �9��

5.1.4 Polymorphism	� GOTOBUTTON _Toc316488697 � PAGEREF _Toc316488697 �9��

5.2 Message Passing Model	� GOTOBUTTON _Toc316488698 � PAGEREF _Toc316488698 �9��

5.3 Multimedia Authoring Paradigms	� GOTOBUTTON _Toc316488699 � PAGEREF _Toc316488699 �9��

5.4 User Interface Paradigm	� GOTOBUTTON _Toc316488700 � PAGEREF _Toc316488700 �9��

5.5 Authoring-time Environment	� GOTOBUTTON _Toc316488701 � PAGEREF _Toc316488701 �10��

5.6 Run-time Environment	� GOTOBUTTON _Toc316488702 � PAGEREF _Toc316488702 �10��

7 Classes	� GOTOBUTTON _Toc316488703 � PAGEREF _Toc316488703 �10��

7.1 The Class Architectural Form	� GOTOBUTTON _Toc316488704 � PAGEREF _Toc316488704 �10��

7.2 Memfunc Architectural Form	� GOTOBUTTON _Toc316488705 � PAGEREF _Toc316488705 �11��

7.3 Memdata Architectural Form	� GOTOBUTTON _Toc316488706 � PAGEREF _Toc316488706 �11��

7.4 Virtual Functions	� GOTOBUTTON _Toc316488707 � PAGEREF _Toc316488707 �12��

8 Aggregates	� GOTOBUTTON _Toc316488708 � PAGEREF _Toc316488708 �12��

8.1 The Aggregate Architectural Form	� GOTOBUTTON _Toc316488709 � PAGEREF _Toc316488709 �12��

8.2 Expressing Aggregates Using ASN.1	� GOTOBUTTON _Toc316488710 � PAGEREF _Toc316488710 �13��

8.3 Expressing Aggregates Using SMSL Architectural Forms	� GOTOBUTTON _Toc316488711 � PAGEREF _Toc316488711 �13��

8.3.1 asn1bool	� GOTOBUTTON _Toc316488712 � PAGEREF _Toc316488712 �13��

8.3.2 asn1int	� GOTOBUTTON _Toc316488713 � PAGEREF _Toc316488713 �13��

8.3.3 asn1bits	� GOTOBUTTON _Toc316488714 � PAGEREF _Toc316488714 �13��

8.3.4 asn1ostr	� GOTOBUTTON _Toc316488715 � PAGEREF _Toc316488715 �13��

8.3.5 asn1null	� GOTOBUTTON _Toc316488716 � PAGEREF _Toc316488716 �13��

8.3.6 asn1oid	� GOTOBUTTON _Toc316488717 � PAGEREF _Toc316488717 �14��

8.3.7 asn1desc	� GOTOBUTTON _Toc316488718 � PAGEREF _Toc316488718 �14��

8.3.8 asn1ext	� GOTOBUTTON _Toc316488719 � PAGEREF _Toc316488719 �14��

8.3.9 asn1real	� GOTOBUTTON _Toc316488720 � PAGEREF _Toc316488720 �14��

8.3.10 asn1enum	� GOTOBUTTON _Toc316488721 � PAGEREF _Toc316488721 �14��

8.3.11 asn1seq	� GOTOBUTTON _Toc316488722 � PAGEREF _Toc316488722 �14��

8.3.12 asn1set	� GOTOBUTTON _Toc316488723 � PAGEREF _Toc316488723 �14��

8.3.13 asn1nums	� GOTOBUTTON _Toc316488724 � PAGEREF _Toc316488724 �14��

8.3.14 asn1pstr	� GOTOBUTTON _Toc316488725 � PAGEREF _Toc316488725 �14��

8.3.15 asn1ttex	� GOTOBUTTON _Toc316488726 � PAGEREF _Toc316488726 �14��

8.3.16 asn1vtex	� GOTOBUTTON _Toc316488727 � PAGEREF _Toc316488727 �14��

8.3.17 asn1ia5	� GOTOBUTTON _Toc316488728 � PAGEREF _Toc316488728 �15��

8.3.18 asn1utct	� GOTOBUTTON _Toc316488729 � PAGEREF _Toc316488729 �15��

8.3.19 asn1gent	� GOTOBUTTON _Toc316488730 � PAGEREF _Toc316488730 �15��

8.3.20 asn18824	� GOTOBUTTON _Toc316488731 � PAGEREF _Toc316488731 �15��

8.3.21 asn1646	� GOTOBUTTON _Toc316488732 � PAGEREF _Toc316488732 �15��

8.3.22 asn1gstr	� GOTOBUTTON _Toc316488733 � PAGEREF _Toc316488733 �15��

8.4 Expressing Aggregates Using Other Notations	� GOTOBUTTON _Toc316488734 � PAGEREF _Toc316488734 �15���

9 Object Identifiers	� GOTOBUTTON _Toc316488735 � PAGEREF _Toc316488735 �15��

9.1 The smsl.oid Architectural Form	� GOTOBUTTON _Toc316488736 � PAGEREF _Toc316488736 �15��

10 Messages	� GOTOBUTTON _Toc316488737 � PAGEREF _Toc316488737 �16��

10.1 The smsl.msg Architectural Form	� GOTOBUTTON _Toc316488738 � PAGEREF _Toc316488738 �16��

10.2 The Message Routing Service	� GOTOBUTTON _Toc316488739 � PAGEREF _Toc316488739 �16��

12 SMSL Predefined Classes	� GOTOBUTTON _Toc316488740 � PAGEREF _Toc316488740 �16��

12.1 User Interface Classes	� GOTOBUTTON _Toc316488741 � PAGEREF _Toc316488741 �17��

12.1.x SMSL.Archive	� GOTOBUTTON _Toc316488742 � PAGEREF _Toc316488742 �17��

12.1.x SMSL.Exception	� GOTOBUTTON _Toc316488743 � PAGEREF _Toc316488743 �17��

12.1.x SMSL.Bitmap	� GOTOBUTTON _Toc316488744 � PAGEREF _Toc316488744 �17��

12.1.x SMSL.BitmapButton	� GOTOBUTTON _Toc316488745 � PAGEREF _Toc316488745 �17��

12.1.x SMSL.Brush	� GOTOBUTTON _Toc316488746 � PAGEREF _Toc316488746 �17��

12.1.x SMSL.Button	� GOTOBUTTON _Toc316488747 � PAGEREF _Toc316488747 �18��

12.1.x SMSL.ByteArray	� GOTOBUTTON _Toc316488748 � PAGEREF _Toc316488748 �18��

12.1.x SMSL.CmdTarget	� GOTOBUTTON _Toc316488749 � PAGEREF _Toc316488749 �18��

12.1.x SMSL.CmdUI	� GOTOBUTTON _Toc316488750 � PAGEREF _Toc316488750 �18��

12.1.x SMSL.ColorDialog	� GOTOBUTTON _Toc316488751 � PAGEREF _Toc316488751 �18��

12.1.x SMSL.ComboBox	� GOTOBUTTON _Toc316488752 � PAGEREF _Toc316488752 �19��

12.1.x SMSL.CreateContext	� GOTOBUTTON _Toc316488753 � PAGEREF _Toc316488753 �19��

12.1.x SMSL.DataExchange	� GOTOBUTTON _Toc316488754 � PAGEREF _Toc316488754 �19��

12.1.CDC	� GOTOBUTTON _Toc316488755 � PAGEREF _Toc316488755 �20��

12.1.x SMSL.Dialog	� GOTOBUTTON _Toc316488756 � PAGEREF _Toc316488756 �22��

12.1.x SMSL.DialogBar	� GOTOBUTTON _Toc316488757 � PAGEREF _Toc316488757 �22��

12.1.x SMSL.DocItem	� GOTOBUTTON _Toc316488758 � PAGEREF _Toc316488758 �22��

12.1.x SMSL.DocTemplate	� GOTOBUTTON _Toc316488759 � PAGEREF _Toc316488759 �22��

12.1.x SMSL.Document	� GOTOBUTTON _Toc316488760 � PAGEREF _Toc316488760 �23��

12.1.1 Window	� GOTOBUTTON _Toc316488761 � PAGEREF _Toc316488761 �23��

12.1.2 Menu bar	� GOTOBUTTON _Toc316488762 � PAGEREF _Toc316488762 �23��

12.1.3 Popdown Menu	� GOTOBUTTON _Toc316488763 � PAGEREF _Toc316488763 �23��

12.1.4 Button	� GOTOBUTTON _Toc316488764 � PAGEREF _Toc316488764 �24��

12.1.5 Radio Button	� GOTOBUTTON _Toc316488765 � PAGEREF _Toc316488765 �24��

12.1.6 Control Slider	� GOTOBUTTON _Toc316488766 � PAGEREF _Toc316488766 �24��

12.1.7 Text Edit Box	� GOTOBUTTON _Toc316488767 � PAGEREF _Toc316488767 �24��

12.1.8 List Box	� GOTOBUTTON _Toc316488768 � PAGEREF _Toc316488768 �24��

12.1.9 Hot Spot	� GOTOBUTTON _Toc316488769 � PAGEREF _Toc316488769 �25��

12.2 Multimedia Classes	� GOTOBUTTON _Toc316488770 � PAGEREF _Toc316488770 �25��

12.2.1 Audio Player	� GOTOBUTTON _Toc316488771 � PAGEREF _Toc316488771 �25��

12.2.2 Audio Recorder	� GOTOBUTTON _Toc316488772 � PAGEREF _Toc316488772 �25��

12.2.3 Video Player	� GOTOBUTTON _Toc316488773 � PAGEREF _Toc316488773 �25��

12.2.4 Video Recorder	� GOTOBUTTON _Toc316488774 � PAGEREF _Toc316488774 �25��

12.2.5 Graphic Viewer	� GOTOBUTTON _Toc316488775 � PAGEREF _Toc316488775 �25��

12.2.6 Graphic Editor	� GOTOBUTTON _Toc316488776 � PAGEREF _Toc316488776 �26��

12.2.7 Video Clip	� GOTOBUTTON _Toc316488777 � PAGEREF _Toc316488777 �26��

12.2.8 Audio Clip	� GOTOBUTTON _Toc316488778 � PAGEREF _Toc316488778 �26��

12.2.9 Graphic	� GOTOBUTTON _Toc316488779 � PAGEREF _Toc316488779 �26��

13 SMSL Services	� GOTOBUTTON _Toc316488780 � PAGEREF _Toc316488780 �26��

13.1 ObjectConstruct	� GOTOBUTTON _Toc316488781 � PAGEREF _Toc316488781 �26��

Purpose	� GOTOBUTTON _Toc316488782 � PAGEREF _Toc316488782 �26��

Use	� GOTOBUTTON _Toc316488783 � PAGEREF _Toc316488783 �26��

Input	� GOTOBUTTON _Toc316488784 � PAGEREF _Toc316488784 �26��

Output	� GOTOBUTTON _Toc316488785 � PAGEREF _Toc316488785 �26��

13.2 ObjectDestroy	� GOTOBUTTON _Toc316488786 � PAGEREF _Toc316488786 �27��

Purpose	� GOTOBUTTON _Toc316488787 � PAGEREF _Toc316488787 �27��

Use	� GOTOBUTTON _Toc316488788 � PAGEREF _Toc316488788 �27��

Input	� GOTOBUTTON _Toc316488789 � PAGEREF _Toc316488789 �27��

Output	� GOTOBUTTON _Toc316488790 � PAGEREF _Toc316488790 �27��

13.3 SendMessage	� GOTOBUTTON _Toc316488791 � PAGEREF _Toc316488791 �27��

Purpose	� GOTOBUTTON _Toc316488792 � PAGEREF _Toc316488792 �27��

Use	� GOTOBUTTON _Toc316488793 � PAGEREF _Toc316488793 �27��

Input	� GOTOBUTTON _Toc316488794 � PAGEREF _Toc316488794 �27��

Output	� GOTOBUTTON _Toc316488795 � PAGEREF _Toc316488795 �27��

Annex A: Using C++ as a Scripting Language	� GOTOBUTTON _Toc316488796 � PAGEREF _Toc316488796 �27��

Annex B: The SMSL Meta-DTD	� GOTOBUTTON _Toc316488797 � PAGEREF _Toc316488797 �27��

��Foreward

(The standard ISO forward text goes here. Is the forward part of the document, or is it automatically inserted by ISO?)

0 Introduction

The traditional view of computer processing is that the program which acts upon data and the data that is acted upon are separate. This, at first, may seem like a natural division. Clearly, one should not have to change a program to process new data. The problem with this theory is that most applications require the data (information) to be structured in a particular way before the program may process it. One program's view of the data structures is often entirely different than another. Data must be converted from one format to another, often with some associated loss of information. If the structure of data changes, programs must be modified.

What is needed is a mechanism that makes data self-describing. A requisite step in this process is separating the data (content) from the structure of the data. ISO/IEC 10744: Standard Generalized Markup Language (SGML) and ISO/IEC 10744: Hypermedia/Time-based Structuring Language (HyTime) provide a mechanism for describing structure without affecting content. This description is known as a Document Type Definition (DTD). To apply object-oriented terminology to SGML, the DTD defines a class of documents and each document is an instance of a class.

While structure may be defined in a standardized manner, the semantics are application defined. This has led to much misunderstanding; how can a standard be useful if there are no semantics attached to it? The answer becomes clear when one realizes the benefits of self-describing information. In this scenario, the structure of the information drives the application; not the other way around. The imposition of semantics would subvert this model.

**** The following paragraph needs to be rewritten per the editing instructions from the Estes Park meeting ****

The emphasis of the Standard Multimedia/Hypermedia Scripting Language (SMSL) is on information, not programming. SMSL is not a language for imposing the will of programmers on the art and science of information processing. The assumption of SMSL is that people have information and they want to do something with it; not that they have applications that they need to feed information to. The SMSL model considers applications to be transitory things which serve a limited purpose, and information to be perpetual. The transitory nature of applications is an immutable law of nature; none the less, a majority of the work done to date in information science has been focused on breaking this law, with the results being roughly equivalent to the Alchemists' search for the Philosopher's Stone. If applications are transitory, then the language they are written in should be simple and efficient. Such is the design goal of SMSL.

1 Scope

1.1 Definition of Scope

This International Standard defines an environment for authoring and running hypermedia applications. An application is comprised of a program (an executable entity), data, and structure.

In SMSL, the program is represented as a series of scripts, which are written in a special language known as a Scripting Language.

A Scripting Language is a Programming Language, however, not all Programming Languages are Scripting Languages. More precisely, the set of Scripting Languages is a subset of the set of Programming Languages. The attributes which differentiate the Scripting Language subset are subtle, and often have more to do with perception than with any clear technical distinctions.

However, Scripting Languages often display one or more of the following characteristics:

language syntax and grammar resemble natural (spoken) languages

language is usable by people who are not professional programmers

language design stresses simplicity over functionality

language is "application focused", in that it is intended to address the needs of one class of application (language is not "general purpose")

The programs written in a Scripting Language are called "Scripts".

Scripting languages are most frequently applied to tasks where the required scripts are relatively simple, as well as somewhat repetitive; for example, application installation. The creation and modification of the script is often hidden from the user. For instance, a terminal emulator may support logon scripts, but the creation of the scripts might be managed by a menu-driven front end.

The Standard Multimedia/Hypermedia Scripting Language (SMSL), as its name implies, is designed for manipulating multimedia information. Any information that can be stored in a computer system and manipulated under software control qualifies as multimedia information.

In this standard, the data, scripts and structural information are organized into a single identifiable unit known as a document. The term document has the same meaning in this context as in SGML (ISO 8879) and HyTime (ISO 10744).

1.2 Field Of Application

2 Normative References

ISO 10744: 1992 Information Processing — Text and office systems — Hypermedia/Time-based Structuring Language (HyTime)

ISO 8879:1986 Information Processing — Text and office systems — Standard Generalized Markup Lanuage (SGML)

ISO 8824:1990 Information Processing — Open Systems Interconnection — Specification of Abstract Syntax Notation One (ASN.1)

ISO 8825:1990 Information Processing — Open Systems Interconnection — Specification of Basic Encoding Rules for Abstract Syntax Notation One (ASN.1)

ISO DIS 13xxx MHEG part1

3 Definitions

aggregate�A simple or compound data structure constructed using the rules of SMSL.

��architecural form�

��ASN.1�Abstract Syntax Notation One

��attribute�

��authoring�The process of creating multimedia applications.

��authoring system�The software and hardware associated with the creation of multimedia applications.

��BER�Basic Encoding Rules

��class�

��construct�To create a run-time instance of an object, including the allocation of memory and other system resources required by the object.

��!destruct�To destroy a run-time instance of an object, including the deallocation of all resources used by the object.

��document�A collection of information that is identified as a unit and that is intended for human perception; in SMSL, the document encapsulates data, structure and scripts.

��element�

��entity�

��HyTime�ISO/IEC 10744:1992 The Time-based Structuring Language.

��member data�The data, expressed as aggregates, that is encapsulated by a class.

��member function�The methods, or functions, encapsulated by a class.

��message�Information communicated between objects.

��message handler�A method that handles a particular message type.

��message map�A data structure which maps message type to message handler for a class.

��object�An instance of a class.

��object-oriented�

��run-time�

��scripting language�A programming language used with SMSL applications.

��semaphore�A shared resource used to implement mutual exclusion algorithms.

��SGML�ISO/IEC 8879:1986 The Standard Generalized Markup Language��4 Relationship Between SGML, HyTime and SMSL

4.1 HyBrid Parameter Entity

4.2 HyTime Hyperlink Module

This section is about the interface between SMSL and the HyTime hyperlink module.

Creating objects which correspond to link ends so that things automatically occur relative to a link.

4.3 HyTime Measurement Module

this section is about the interface between SMSL and the FCS module.

Define the sequencing of events in a “timeline-based” authoring paradigm

Define virtual coordinate spaces for displays

5 SMSL Application Model

SMSL is a standardized scripting enviroment.

An application is comprised of three components: data, structure, and methods.

An SMSL application is synonymous with a document, in that the document “contains” (or encapsulates) the three essential application components.

SMSL is intended to support "self-contained" applications, in which case, most of the processing associated with the application is embedded in the scripts.

Any number of languages may be used as a scripting language with SMSL.

Scripts interact with documents via SMSL services.

There is no media requirement in SMSL, the application can reside on any number and combination of media including CD-ROM, local disk and network server disk.

The application is intended to be as platform-independent as possible and SMSL provides the mechanisms for achieving almost universal portability. However, the application designer and/or SMSL implementor may choose not to support full portability for a variety of reasons (security, economics, etc.) and SMSL does not discourage them from doing so.

5.1 Object-Oriented Model

SMSL supports all of the criteria for object-oriented languages, such as encapsulation, inheritance (including multiple inheritance), polymorphism and containment.

Scripting languages used with SMSL do not have to be object-oriented languages.

Using SMSL implies superimposing object-oriented design on an application, even if the languages(s) used are not object-oriented.

5.1.1 Encapsulation

5.1.2 Inheritance

SMSL places no limits on either the depth or breadth of the class hierarchy.

5.1.3 Composition

A class may contain other classes. For example, a class corresponding to a dialog box can be built from other more primitive classes (button, text edit box, list box, etc.)

5.1.4 Polymorphism

Polymorphism is the ability to call a variety of functions using the same interface.

What is the correct term here? Polymorphism doesn’t seem to be what I am describing below.

SMSL supports polymorphism by allowing multiple implementations of a method, providing that each instance either return a different data type, that the order and type of arguments vary, or some combination.

5.2 Message Passing Model

Many modern software systems are based on a processing model where objects receive messages (or commands) which control their processing.

Each message type handled by an object corresponds to one member function of the class from which the object was instantiated.

The SMSL run-time environment serves as a kernel through which all application messages are passed.

The kernel keeps an ordered message queue.

Using the SendMessage service, an SMSL application can request that a a message be sent to an object. These messages are known as syncrhonous events.

The kernel can, in some instances (such as mouse button events) send messages to an object that were not specifically requested to be sent by the application. These messages are known as asynchronous events.

The application or the kernel can request messages be sent to an object either at a specific time, or at a time relative to another event. These messages are known as isochronous events.

A message map establishes the relationship between a message and a message identifier (messageID).

5.3 Multimedia Authoring Paradigms

SMSL supports all popular authoring paradigms for multimedia applications.

5.4 User Interface Paradigm

Due to the fact that SMSL is intended for use in multimedia applications, SMSL assumes, but does not require, a graphical user interface. Graphical user interfaces share a number of common characteristics, and SMSL exploits these characteristics.

SMSL assumes the following hardware is available on the run-time platform:

Device�Examples��Display�bit mapped color (or gray scale) graphics display��Cursor movement�mouse, touch screen, track ball, joy stick��Character input�keyboard��Mass storage�hard disk, optical disk (CD-ROM)��Semaphore�global shared memory resource��Sound�sound card, MIDI synthesizer��Timer�system clock��

The SMSL services rely on the underlying operating system to support the display of windows and dialog boxes, display of graphics, audio and video playback, and other system dependent services required by the application. The interfaces between the SMSL run-time environment and the underlying operating system are not specified or enforced by SMSL.

5.5 Authoring-time Environment

5.6 Run-time Environment

6 Event Sequencing

SMSL provides a mechanism for producing a sequence of messages that are sent to objects. This is a simple method of building an application from a set of objects. It is assumed that most of the processing will be performed by the methods associated with the objects, thus only the most rudimentary operations are supported using event sequencing. Still, most interactive multimedia applications could be implemented using this mechanism. Event sequencing is based on HyTime Finite Coordinate Spaces (FCS) and a variation of the HyLex and HyQ notations (see clause xx in ISO/IEC 10744: for further details.)

A common application of the Event Sequencing facility would be to have compiled scripts which implement the methods assoicated with a class of objects, and to interpret the event sequence at run time to implement the actual application.

7 Classes

A class is a set of objects that share a common structure and behavior.

Classes are declared in SMSL documents using the class architectural form. New classes can be derived from existing classes which are either implied by the element hierarchy of an SGML/HyTime document, or are defined as part of this standard.

One of the useful characteristics of SMSL is that new class hierarchies can be superimposed onto existing documents.

The content of a class is arbitrary, however two additional architectural forms are available which correspond to the object-oriented programming paradigm: the memfunc architectural form which is used to declare the member functions of a class (also known as methods), and the memdata architectural form which is used to declare data members.

The organization and use of the class by the scripting languages is not specified by SMSL. The class declaration may be used to derive any combination of authoring and run-time information that the implementor chooses. For example, if C or C++ is used as a scripting language, the class declarations may be used to produce header files that can be compiled along with the scripts.

7.1 The Class Architectural Form

The class architectural form is used when declaring a new class. The content of a class element is member function (script) elements, and data member elements. If additional content is required then a new element type, with the appropriate content model, should be derived from class.

The super atttribute is a list of superclass names from which the new class is derived (i.e. a list of classes from which the new class will inheret data and function members). The order the superclasses are listed is not of significance to SMSL, although it may be significant to the scripting language implementation. The elements referenced by the super attribute must also specify the class architectural form.

A class is of ctype abstract if it cannot be directly instantiated; i.e. only other classes may be derived from this class. A class is of ctype normal (the default) if an instance of the class can be directly constructed.

In some languages, other attributes may be appropriate. For example, in C++, keywords such as virtual, public, private or protected are commonly used in class declarations. If the scripting language used by an application supports (or requires) additional keywords, it is recommended that an element type be derived from the class architectural form, and that the additional keywords be declared as attribute types of the derived element type.

<!element class		- - (%HyBrid;)* >

<!attlist class

			SMSL	NAME		“class”

			id	ID		#REQUIRED

			super	IDREFS	#IMPLIED

			ctype	(normal, abstract) normal

>

7.2 Memfunc Architectural Form

The memfunc architectural form declares a member function of a class. The content of a memfunc element (or an element type derived from script) is a script in a declared notation.

The funcname attribute names the function. In some languages, there may be additional constraints placed upon the name. The only restrictions SMSL places on the function name is that it be a generic identifer that is unique to the class in which the function is declared.

The functype attribute names the notation that the script is written in. The notation must be declared according to the rules of clause x.x.x.

The message attribute, if provided, must have as its value an IDREF to a smsl.msg element. The message attribute indicates that the function acts as a handler when messages of that type are sent to the object. This is the primary mechanism for creating “virtual functions” in SMSL. Refer to clause x.x.x for further information about virtual functions.

<!element	memfunc	 - O (%HyBrid;)* >

<!attlist	memfunc

		SMSL		NAME		“memfunc”

		funcname	NAME		#REQUIRED

		functype	NOTATION	#REQUIRED

		message	IDREF		#IMPLIED

>

In addition to the other attributes listed above, an implementation may add its own attribute types to a class derived from memfunc. For example, when C++ is used as a scripting language, it may be useful to create an access attribute that has as its possible values “protected”, “public” or “private”.

7.3 Memdata Architectural Form

The memdata architectural form declares a data member of a class. Each data member is an aggregate even if it is comprised of a single basic data type.

The aggregate may be declared externally to the class, in which case the ID of the aggregate is supplied when the data member is declared, or the aggregate may be declared in place, in which case the content of the memdata element declares the aggregate using the rules described in clause x.x.x

The memname attribute specifies the name of the data member. The memname is a generic identifier that must be unique to the class in which the memdata element is defined.

The aggname attribute specifies the ID of an aggregate. If the aggname attribute is used, the content of the memdata element must be empty.

<!element	memdata - O (%HyBrid;)* >

<!attlist	memdata

		SMSL		NAME	membdata

		memname	NAME	#REQUIRED	-- data member name,

							 must be unique to

							 this class --

		aggname	IDREF	#IMPLIED	-- aggregate name --

>

7.4 Virtual Functions

Overloading message handlers is the mechanism for implementing virtual functions in SMSL.

The SMSL built-in classes provide default handlers for most member functions.

Some mechanism is needed to explicitly call the message handlers in classes from which another class was derived.

Will the name of the function have any role the overloading?

Will multiple functions of the same name be allowed, providing they either return different data types or accept different arguments?

8 Aggregates

Aggregates are a method of constructing data structures. The purpose of aggregates is to avoid platform and/or language-dependent data types. Aggregates may be expressed in any number of notations, with the common factor being that the SMSL run-time representation always uses the Basic Encoding Rules (BER) of ISO:IEC xxxx:xxxx. Because of this requirement, SMSL can be easily deployed in distributed computing environments. Data can be passed between objects which may exist not only on different systems, but systems with different operating systems and/or processors, with little consideration of data format compatibility issues.

8.1 The Aggregate Architectural Form

The aggregate architectural form is used to construct aggregates compatible with SMSL applications. The content model for the aggregate architectural form is general. SMSL applications may derive new element types based on the aggregate architectural form, which may further constrain their content model.

The notation used to describe an aggregate during the authoring phase is left to the application, although SMSL provides predefined notation types for ASN.1 and SMSL, and architectural forms which properly constrain the content model for the notation in use.

<!ELEMENT	aggregate - - (PCDATA)>

<!ATTLIST	aggregate

		SMSL		NAME		#FIXED

		id		ID		#REQUIRED

		notation	NOTATION	#REQUIRED

>

8.2 Expressing Aggregates Using ASN.1

Aggregates may be expressed using the Abstract Syntax Notation One (ASN.1) described in ISO/IEC xxxx.xxxx. The implementation is expected to supply the requisite interpreter/compiler for the ASN.1 notation.

NOTE:	Other standards (such as MHEG) provide ASN.1 notation for various classes of objects. The use of ASN.1 notation in SMSL applications provides for a potential bridge between the standards. Further, the use of BER as a run-time representation facilitates even greater compatibility.

<!NOTATION	ASN.1	PUBLIC

		“ISO 8824:1990 //NOTATION

		Abstract Syntax Notation One (ASN.1) //EN”>

<!ELEMENT	agg.asn1 - - (PCDATA)>

<!ATTLIST	agg.asn1

		SMSL		NAME		#FIXED SMSL

		id		ID		#REQUIRED

		notation	NOTATION	#FIXED ASN.1

>

8.3 Expressing Aggregates Using SMSL Architectural Forms

<!ELEMENT	agg.smsl - - (%agg.smsl)>

<!ATTLIST	agg.smsl

		SMSL		NAME		#FIXED

		id		ID		#REQUIRED

		notation	NOTATION

>

8.3.1 asn1bool

<!NOTATION	asn1bool	-- Boolean: universal tag 1 --

		“ISO 8824:1990 //NOTATION

		Abstract Syntax Notation One (ASN.1) //EN”>

8.3.2 asn1int

<!NOTATION	asn1int	-- Integer: universal tag 2 -->

		“ISO 8824:1990 //NOTATION

		Abstract Syntax Notation One (ASN.1) //EN”>

8.3.3 asn1bits

<!NOTATION	asn1bits	-- BitString: universal tag 3 -->

		“ISO 8824:1990 //NOTATION

		Abstract Syntax Notation One (ASN.1) //EN”>

8.3.4 asn1ostr

<!NOTATION	asn1ostr	-- OctetString: universal tag 4 -->

		“ISO 8824:1990 //NOTATION

		Abstract Syntax Notation One (ASN.1) //EN”>

8.3.5 asn1null

<!NOTATION	asn1null	-- Null: universal tag 5 -->

		“ISO 8824:1990 //NOTATION

		Abstract Syntax Notation One (ASN.1) //EN”>

8.3.6 asn1oid

<!NOTATION	asn1oid	-- ObjectIdentifier: universal tag 6 -->

		“ISO 8824:1990 //NOTATION

		Abstract Syntax Notation One (ASN.1) //EN”>

8.3.7 asn1desc

<!NOTATION	asn1desc	-- ObjectDescriptor: universal tag 7 -->

		“ISO 8824:1990 //NOTATION

		Abstract Syntax Notation One (ASN.1) //EN”>

8.3.8 asn1ext

<!NOTATION	asn1ext	-- External: universal tag 8 -->

		“ISO 8824:1990 //NOTATION

		Abstract Syntax Notation One (ASN.1) //EN”>

8.3.9 asn1real

<!NOTATION	asn1real	-- Real: universal tag 9 -->

		“ISO 8824:1990 //NOTATION

		Abstract Syntax Notation One (ASN.1) //EN”>

8.3.10 asn1enum

<!NOTATION	asn1enum	-- Enumerated: universal tag 10 -->

		“ISO 8824:1990 //NOTATION

		Abstract Syntax Notation One (ASN.1) //EN”>

8.3.11 asn1seq

<!NOTATION	asn1seq	-- Sequence/SequenceOf: universal tag 16 --

		“ISO 8824:1990 //NOTATION

		Abstract Syntax Notation One (ASN.1) //EN”>

8.3.12 asn1set

<!NOTATION	asn1set	-- Set/SetOf: universal tag 17 --

		“ISO 8824:1990 //NOTATION

		Abstract Syntax Notation One (ASN.1) //EN”>

8.3.13 asn1nums

<!NOTATION	asn1nums	-- NumericString: universal tag 18 --

		“ISO 8824:1990 //NOTATION

		Abstract Syntax Notation One (ASN.1) //EN”>

8.3.14 asn1pstr

<!NOTATION	asn1pstr	-- PrintableString: univeral tag 19 --

		“ISO 8824:1990 //NOTATION

		Abstract Syntax Notation One (ASN.1) //EN”>

8.3.15 asn1ttex

<!NOTATION	asn1ttex	-- TeletexString: universal tag 20 --

		“ISO 8824:1990 //NOTATION

		Abstract Syntax Notation One (ASN.1) //EN”>

8.3.16 asn1vtex

<!NOTATION	asn1vtex	-- VideotextString: universal tag 21 --

		“ISO 8824:1990 //NOTATION

		Abstract Syntax Notation One (ASN.1) //EN”>

8.3.17 asn1ia5

<!NOTATION	asn1ia5	-- IA5String: univeral tag 22 --

		“ISO 8824:1990 //NOTATION

		Abstract Syntax Notation One (ASN.1) //EN”>

8.3.18 asn1utct

<!NOTATION	asn1utct	-- UTCTime: universal tag 23 --

		“ISO 8824:1990 //NOTATION

		Abstract Syntax Notation One (ASN.1) //EN”>

8.3.19 asn1gent

<!NOTATION	asn1gent	-- GeneralizedTime: universal tag 24 --

		“ISO 8824:1990 //NOTATION

		Abstract Syntax Notation One (ASN.1) //EN”>

8.3.20 asn18824

<!NOTATION	asn18824	-- ISO 8824 GraphicString: universal tag 25 --

		“ISO 8824:1990 //NOTATION

		Abstract Syntax Notation One (ASN.1) //EN”>

8.3.21 asn1646

<!NOTATION	asn1646	-- ISO 646 VisibleString: universal tag 26 --

		“ISO 8824:1990 //NOTATION

		Abstract Syntax Notation One (ASN.1) //EN”>

8.3.22 asn1gstr

<!NOTATION	asn1gstr	-- GeneralString: universal tag 27 --

		“ISO 8824:1990 //NOTATION

		Abstract Syntax Notation One (ASN.1) //EN”>

8.4 Expressing Aggregates Using Other Notations

9 Object Identifiers

Object identifiers uniqely identify an object. The object identifier is a run-time entity, in that it’s purpose is to address the object only during the “life” of the object.

The format of the object identifier is left as an implementation decision. In some implementations, the value of the object identifier might be a handle. In others, the value of the object identifer might be a pointer to the object’s location in memory.

It is possible for object identifiers to be reused if the implementation so chooses, providing that at any point in time, an object identifier maps to one and only one object.

The SMSL run-time environment is required to maintain a database of object identifiers and object locations.

An object idenfier results from invoking the SMSL ObjectConstruct Service (clause x.x.x).

9.1 The smsl.oid Architectural Form

Used to declare an object identifier usable by the object instantiation services.

10 Messages

Messages are passed between objects in SMSL applications under control of the message routing service. There are two types of messages: SMSL and Application. SMSL messages are defined by the standard. Application messages are defined by the application.

10.1 The smsl.msg Architectural Form

The smsl.msg architectural form is used to define message types in SMSL applications. Each message type is assigned a unique generic ID. The content of an smsl.msg element, or an element type derived from smsl.msg, is a string of letters and/or numbers that an SMSL implementation uses to identify the message. It is assumed that these values will be unique to each implementation of SMSL.

<!ELEMENT	smsl.msg - - ()* >

<!ATTLIST	smsl.msg

		smsl		NAME		#FIXED smsl

		id		ID		required

>

The generic ID specified when a smsl.msg element is declared is used (in an IDREF) when member functions for a class are declared (refer to clause x.x). This provides a mapping between the message type and the functions which handle that message for a particular class.

10.2 The Message Routing Service

The message routing service is used to pass messages between objects in SMSL applications. The arguments to the message routing service are the objectID of the object to receive the message, the messageID of the message to be sent, an aggregateID for the arguments passed to the message handler function, and a second aggregateID that will contain the function results when the message handler returns.

NOTE:	The mechanism for presenting the arguments to the message routing service is left as an implementation detail.

11 Declaring Script Notations

SMSL is designed to work with any number of scripting languages. A FORMAL notation declaration (refer to ISO/IEC 8879:1986) is required for each language in use. The following example notation declaration would allow the LISP dialect known as scheme to be used as a scripting language in SMSL applications.

<!notation	scheme	PUBLIC

		“+//ISBN 0-xxxx-xxxx-1::Programming Language//NOTATION

		IEEE Scheme Specification//EN”>

12 SMSL Predefined Classes

The classes described in this clause are all catalogued in the SMSL meta-DTD.

The messages described in the clause are also catalogued in the SMSL meta-DTD.

The data members are all described as aggregates using the SMSL notation for ASN.1

The methods described for each class must be implemented as part of the SMSL services.

12.1 User Interface Classes

User interaction will take place through a variety of user interface objects, such as dialog boxes, movie players, sound players, text editors, windows, and graphics interpreters.

12.1.x SMSL.Archive

The archive class is for saving and loading objects to and from mass storage or network devices. Objects are “flattened”, or stored in a single level data structure, which can include both data and methods.

Messages

Close

Flush

GetFile

IsLoading

IsStoring

Read

ReadObject

Write

WriteObject

Operator<<

Operator>>

12.1.x SMSL.Exception

Messages

Catch

Throw

12.1.x SMSL.Bitmap

Messages

LoadBitmap

LoadOEMBitmap

CreateBitmap

CreateBitmapIndirect

CreateCompatibleBitmap

CreateDiscardableBitmap

FromHandle

SetBitmapBits

GetBitmapBits

SetBitmapDimension

GetBitmapDimension

12.1.x SMSL.BitmapButton

Messages

LoadBitmaps

AutoLoad

SizeToContent

12.1.x SMSL.Brush

Messages

CreateBrushIndirect

CreateDIBPatternBrush

CreateHatchBrush

CreatePatternBrush

CreateSolidBrush

FromHandle

12.1.x SMSL.Button

Messages

Create

GetState

SetState

GetCheck

SetCheck

GetButtonStyle

SetButtonStyle

DrawItem

12.1.x SMSL.ByteArray

Messages

GetSize

GetUpperBound

SetSize

FreeExtra

RemoveAll

GetAt

SetAt

ElementAt

SetAtGrow

Add

InsertAt

RemoveAt

Operator[]

12.1.x SMSL.CmdTarget

Messages

BeginWaitCursor

EndWaitCursor

RestoreWaitCursor

OnCmdMsg

12.1.x SMSL.CmdUI

Messages

Enable

SetCheck

SetText

ContinueRouting

12.1.x SMSL.ColorDialog

Messages

DoModal

GetGolor

SetCurrentColor

OnColorOK

12.1.x SMSL.ComboBox

Messages

Create

GetCount

GetCurSel

SetCurSel

GetEditSel

SetEditSel

SetItemData

SetItemDataPtr

GetItemData

GetItemDataPtr

Clear

Copy

Cut

Paste

LimitText

SetItemHeight

GetItemHeight

GetLBText

GetLBTextLen

ShowDropDown

GetDroppedControlRect

GetDroppedState

SetExtendedUI

GetExtendedUI

AddString

DeleteString

InsertString

ResetContent

Dir

FindString

FIndStringExact

SelectString

DrawItem

MeasureItem

CompareItem

DeleteItem

12.1.x SMSL.CreateContext

Messages

12.1.x SMSL.DataExchange

Messages

PrepareCtrl

PrepareEditCtrl

Fail

PrepareVBCtrl

12.1.
x SMSL.
CDC

CreateDC

CreateIC

CreateCompatibleDC

DeleteDC

FromHandle

DeleteTempMap

Attach

Detach

SetAttribDC

SetOutputDC

ReleaseAttribDC

ReleaseOutputDC�GetSafeHdc

SaveDC

RestoreDC

ResetDC

GetDeviceCaps

IsPrinting

GetBrushOrg

SetBrushOrg

EnumObjects

SelectObject

SelectStockObject

GetNearestColor

SelectPalette

RealizePallette

UpdatedColors

GetBkColor

SetBkColor

GetBkMode

SetBkMode

GetPolyFillMode

SetPolyFillMode

GetROP2

SetROP2

GetStretchBltMode

SetStretchBltMode

GetTextColor

SetTextColor

GetMapMode

SetMapMode

GetViewportOrg

SetViewportOrg

GetViewportExt

SetViewportExt

ScaleViewportExt

GetWindowOrg

SetWindowOrg

OffsetWindowOrg

GetWindowExt

SetWindowExt

ScaleWindowExt

DPtoLP

LPtoDP

FillRgn

FrameRgn

InvertRgn

PaintRgn

SetBoundsRect

GetBoundsRect

GetClipBox

SelectClipRgn

ExcludeClipRect

ExcludeUpdateRgn

IntersectClipRect

OffsetClipRgn

PtVisible

RectVisible

GetCurrentPosition

MoveTo

LineTo

Arc

Polyline

FillRect

FrameRect

InvertRect

DrawIcon

Chord

DrawFocusRect

Ellipse

Pie

Polygon

PolyPolygon

Rectangle

RoundRect

PatyBlt

BitBlt

StretchBlt

GetPixel

SetPixel

FloodFill�ExtFloodFill

TextOut

ExtTextOut

TabbedTextOut

DrawText

GetTextExtent

GetOutputTextExtent

GetTabbedTextExtent

GetOutputTabbedTextExtent

GrayString

GetTextAlign

SetTextAlign

GetTextMetrics

GetOutputTextMetrics

SetTextJustification

GetTextCharacterExtra

SetTextCharacterExtra

GetFontData

GetKerningPairs

GetOUtlineTextMetrics

GetGlyphOutline

GetCharABCWidths

GetCharWidth

GetOutputCharWidth

SetMapperFlags

GetApectRatioFilter

QueryAbort

Escape

StartDoc

StartPage

EndPage

SetAbortProc

AbortDoc

EndDoc

ScrollDC

PlayMetaFile

12.1.x SMSL.Dialog

Messages

InitModalIndirect

DoModal�MapDIalogRect

IsDialogMessage

NextDlgCtrl

PrevDlgCtrl

GotoDlgCtrl

SetDefID

GetDefID

SetHelpID

EndDialog

OnInitDialog

OnSetFOnt

OnOK�OnCancel

12.1.x SMSL.DialogBar

Messages

Create

12.1.x SMSL.DocItem

Messages

GetDocument

12.1.x SMSL.DocTemplate

Messages

GetDocString

12.1.x SMSL.Document

Messages

AddView

GetDocTemplate

GetFirstViewPosition

GetNextView

GetPathName

GetTitle�IsModified

RemoveView

SetModifiedFlag

SetPathName

SetTitle

UpdateAllViews

CanCloseFrame

DeleteContents

OnChangedViewList

OnCLoseDocument

OnNewDocument

OnOpenDocument

OnSaveDocument

ReportSaveLoadException

SaveModified

SetModifiedFlag

SetPathName

SetTitle

UpdateAllViews

12.1.x SMSL.DumpContext

Messages

Flush

operator<<

HexDump

GetDepth

SetDepth

121.x SMSL.DWordArray

Messages

GetSize

GetUpperBound

SetSize

FreeExtra

RemoveAll

GetAt

SetAt

ElementAt

SetAtGrow

Add

InsertAt

RemoveAt

operator[]

12.1.x SMSL.Edit

Messages

Create

GetLineCount

GetHandle

SetHandle

FmtLines

LineIndex

SetRect

SetRectNP

SetTabStops

CanUndo

GetModify

SetModify

SetReadOnly

GetPasswordChar

GetRect

GetSel

GetLine

GetFIrstVisibleLine

EmptyUndoBuffer

LimitText

LineFromChar

LineLength

LineScroll

ReplaceSel

SetPasswordChar

SetSel

Undo

Clear

Copy

Cut

Paste

12.1.x
SMSL.
EditView

Messages

GetEditCtrl

GetPrinterFont

GetSelectedText

SetPrinterFont

SetTabStops

FIndText

PrintInsideRect

SerializeRaw

OnFindNext

OnReplaceAll

OnReplaceSel

OnTextNotFound

12.1.x SMSL.
Exception

SMSL.
MemoryException

SMSL.NotSupportedException

SMSL.ArchiveException

SMSL.FileException

SMSL.ResourceException

Messages:

IsKindOf

Try

Catch

Throw

12.1.x SMSL.File

Messages

Duplicate

Open

Close

Read�Write

Flush

Seek

SeekToBegin

SeekToEnd

GetLength

SetLength

LockRange

UnlockRange

GetPosition

GetStatus

Rename

Remove

GetStatus

SetStatus

12.1.x
SMSL.
FileDialog

Messages

DoModal

GetPathName

GetFileName

GetFileExt

GetFileTitle

GetReadOnlyPref

OnShareViolation

OnFIleNameOK

OnLBSelChangedNotify

12.1.x
SMSL.
FileException

Messages

OSErrorToException

ErrnoToException

ThrowOsError

ThrowErrno

12.1.x
SMSL.
FindReplaceDialog

Messages

Create

FindNext

GetNotifier

GetFindString

GetReplaceString

IsTerminating

MatchCase

MatchWholeWord

ReplaceAll�RepalceCurrent

SearchDown

12.1.x
SMSL
.
Font

Messages

CreateFontIndirect

CreateFont

FromHandle

12.1.x SMSL.FontDialog

Messages

DoModal

GetCurrentFont

GetFaceName

GetStyleName

GetSize

GetColor

GetWeight

IsStrikeOut

IsUnderline

IsBold

IsItalic

12.1.x SMSL.FormView

12.1.x SMSL.FrameWnd

Messages

Create

LoadFrame

LoadAccelTable

ActivateFrame

SetActiveView

GetActiveView

GetActiveDocument

RecalcLayout

OnSetPreviewMode

OnCreateClient

12.1.x SMSL.GdiObject

Messages

GetSafeHandle

FromHandle

Attach

Detach

DeleteObject

DeleteTempMap

GetObject

CreateStockObject

UnrealizeObject

12.1.x SMSL.ListBox

Messages

Create

GetCount

GetHorizontalExtent

SetHorizontalExtent

GetTopIndex

SetTopIndex

GetItemData

GetItemDataPtr

SetItemData

SetItemDataPtr

GetItemRect

SetItemHeight

GetItemHeight

GetSel

Get
Text

Get
TextLen

SetColumnWidth

SetTabStops

GetCurSel

SetCurSel

SetSel

GetCaretIndex

SetCaretIndex

GetSelCount

GetSelItems

SelItemRange

AddString

DeleteString

InsertString

ResetContent

Dir

FindString

FindStringExact

SelectString

DrawItem

MeasureItem

CompareItem

DeleteItem

12.1.x SMSL.MDIChildWindow

Messages

Create

MDIDestroy

MDIActivate

MDIMaximize

MDIRestore

GetMDIFram
e

12.1.x SMSL.Menu

Messages

Attac
h

Detach

FromHandle

GetSafeHMe
nu

DeleteTemp
Map

CreateMenu

CreatePop
upMenu

LoadMenu

LoadMenuIndirect

DestroyMenu

DeleteMenu

TGrackPopupMenu

AppendMenu

Check
MenuItem

En
ableMenuItem

GetMenuItemCount

GetMenuItemID

GetMenuState

GetMenuString

GetSubMen
u

InsertMenu

ModifyMenu

12.1.x SMSL.MetaFileDC

Messages

Create

Close

12.1.x
 SMSL.PaintDC

Messages

12.1.x SMSL.Palette

Messages

CreatePalette

FromHandle

GetPaletteEntries

SetPaletteEntries

AnimatePalette

GetNearestPaletteIndex

ResizePalette

12.1.x SMSL.Rect

Messages

Width

Height

Size

TopLeft

BottomRight

IsRectEmpty

IsRectNull

PtInRect

SetRect

SetRectEmpty

CopyRect

EqualRect

InflateRect

OffsetRect

SubtractRect

IntersectRect

UnionRect

12.1.x SMSL.Regiion

Messages

CreateRectRgn

CreateRectRgnIndirect

CreateEllipticRgn

CreateEllipticRgnIndirect

CreatePolygonRgn

CreatePolyPolygonRgn

CreateRoundRectRgn

CombineRgn

CopyRgn

EqualRgn

FromHandle

GetRgnBox

OffsetRgn

PtInRegion

RectInRegion

SetRectRgn

12.1.x SMSL.ScrollBar

Messages

GetScrollPos

SetScrollPos

GetScrollRange

SetScrollRange

ShowScrollBar

EnableScrollBar

12.1.x SMSL.ScrollView

Messages

FillOutsideRect

GetDeviceScrollPosition

GetDeviceScrollSizes

GetScrollPosition

GetTotalSize

ResizeParentToFit

ScrollToPosition

12.1.x SMSL.Size

Messages

operator==

operator!=

operator+=

operator-=

operator+

operator-

12.1.x SMSL.SplitterWnd

Messages

Create

CreateStatic

CreateView

GetRowCount

GetColumnCount

GetRowInfo

SetRowInfo

GetColumnInfo

SetColumnInfo

GetPane

IsChildPane

IdFromRowCol

RecalcLayout

12.1.x SMSL.
Static

Messages

Create

SetIcon

GetIcon

12.1.x SMSL.
Status
Bar

Messages

Create

SetIndicators

CommandToIndex

GetItemID

GetItemRect�GetPaneText

SetPaneText�GetP
aneInfo

SetPaneI
nfo

12.1.x
SMSL.StdioFile

Messages

ReadString

WriteString

12.1.
x SMSL.
String

Messages

GetLength

IsEmpty

Empty

GetAt

operator[]

SetAt

operator

const char *()

operator=

operator+

operator
+
=

operator
==

operator!=

operator<

operator>

Compare

CompareNotCase

Collate

Mid

Left

Right

SpanIncluding

SpanExcluding

MakeUpper

MakeLower

MakeReverse

Find

ReverseFind

FindOneOf

operator<<

operator>>

GetBuffer

GetBuf
ferSetLength

ReleaseBuffer

LoadString

AnsiToOem

OemToAN
si

12.1.x SMSL.TIme

GetCurrentTime

GetTime

GetYear

GetMonth

GetDay

GetHour

GetMinute

GetSecond

GetDayOfWe
ek

GetGmtTm

GetLocalTm

Form
at

FormatGmt

operator=

operator+

opeartor-

operator+=

operator-=

operator==

operator!=

operator<

operator>

operator<<

operator>>

12.1.x.
 SMSL.
TimeSpan

GetDays

GetHours

GetTotalHours

GetMinutes

GetTotalMinutes

GetSeconds

GetTotalSecon
ds

Format

operator=

operator
+

operator-

operator+=

opera
tor-=

opera
tor
==

operator!=

operato
r<

operator>

operator<<

operator>>

12.1.x SMSL.
ToolBar

Messages

Create

SetSizes�SetHeight

Lo
adBitma

SetButtons

Com
mandToInd
ex

GetIt
emID

GetItemRect

Ge
tButtonInfo

SetBu
ttonInfo

12.1.x SMSL.
View

Messages

DoPreparePrinting

GetDocument

IsSele
cted

OnActivateV
iew

OnBeginPrinting

OnDraw

OnEndPrintin
g

OnEndPrintPreview

OnInitialUp
date

OnPrepareDC

OnPrepareP
rinting

OnPrint

OnUpdate

12.1.x SMSL.WinApp

Messages

LoadCursor

LoadStandardCursor

LoadOEMCursor

LoadIcon

LoadStandardIcon

LoadOEMIcon

LoadVBXFile

UnloadVBXFile

GetProfileInt

WriteProfileInt

GetProfileString

WriteProfileString

AddDocTemplate

OpenDocumentFile

AddToRecentFileList�GetPrinterDeviceDefaults

InitApplication

InitInstance

Run

OnIdle

ExitInstance�PreTranslateMessage

SaveAllModified

DoMessageBox

ProcessMessageFilter

ProcessWndProcException

DoWaitCursor

OnDDECommand

WinHelp

LoadStdProfileSettings

SetDialogBkColor

EnableVBX

EnableShellOpen

RegisterShellFileTypes

OnFileNew�On
FileOpen

OnFilePrintSetup

OnContextHelp

OnHelp

OnHelpIndex

OnHelpUsing

12.x.x SMSL.Wnd

Messages

DestroyWindow

Create

PreCreateWindow

CalcWindowRect

GetStyle

GetExStyle

Attach

Detach

SubclassWindow

FromHandle

FromHandlePermanent

DeleteTempMap

GetSafeHwnd

IsWindowEnabled

EnableWindow

GetActiveWindow

SetActiveWindow

GetCapture

SetCapture

GetFocus

SetFocus

GetDesktopWindow

GetWindowPlacement

SetWindowPlacement

IsIconic

IsZoomed

MoveWindow

SetWindowPos

ArrangeIconicWindows

BringWindowToTop

GetWindowRect

GetCLientRect

ChildWindowFromPoint

FIndWindow

GetNextWindow

GetTopWindow

GetWindow

GetLastActivePopup

IsChild

GetParent

SetParent

Wi
ndowFromPoint

GetDlgItem

GetDlgCtrlID

GetDescendantWindow

SendMessageToDescendants

GetParentFrame

UpdateDialogControls

UpdateData

BeginPaint

EndPaint

LockWindowUpdate

GetDC

GetDCEx

RedrawWindow

GetWindowDC

ReleaseDC

UpdateWIndow

SetRedraw

GetUpdateRect

GetUpdateRgn

Invalidate

InvalidateRgn

ValidateRect

ValidateRgn

ShowWindow

IsWindowVisible

ShowOwnedPopups

EnableScrollBar

MapWIndowPoints

ClientToScreen

ScreenToClient

SetWindowText

GetWindowText

GetWindowTextLength

SetFont

GetFOnt

GetScrollPos

GetScrollRange

ScrollWindow

ScrollWindowEx

SetScrollPos

SetScrollRangfe

ShowScrollBar

Enable
ScrollBarCtrl

GetScrollBarCtrl

RepositionBars

DragAcceptFiles

CreateCaret

CreateSolidCaret

CreateGrayCaret

GetCaretPos

SetCaretPos

HideCaret

Sh
owCaret

CheckDlgButton

CheckRadioButton

DlgDirList

DlgDirListComboBox

DlgDirSelect

DlgDirSelectComboBox

GetDlgItemInt

GetDlgItemText

GetNextDlgGroupItem

GetNextDlgTabItem

IsDLgButtonChecked

SendDlgItemMessage

SetDlgItemInt

SetDlgItemText

SubclassDlgItem

GetMenu

SetMenu

DrawMenuBar

GetSystemMenu

HiliteMenuItem

SetTimer

KeillTimer

FlashWindow

MessageBox

PreTranslateMessage

SendMessage

PostMessage

ChangeClipboardChain

SetClipboardViewer

OpenClipboard

GetClipboardOwner

GetOpenClipboardWindow

GetClipboardViewer

CreateEx

GetCurrentMessage

Default

GetSuperWndProcAddr

WindowProc

DefWIndowProc

PostNcDestroy

OnChildNotify

DoDataExchange

OnInitMenu

OnInitMenuPopup

OnSysChar

OnSysCommand

OnSysDeadChar

OnSysKeyDown

OnSysKeyUp

OnCompatcting

OnDevModeChange

OnQueryNewPalette

OnQueryOpen

OnSetFocus

OnShowWindow

OnSize

OnCharToItem

OnCompareItem

OnDrawItem

OnGetDlgCode

OnMeasureItem

OnVKeyToItem

OnChar

OnDeadChar

OnHScroll

OnKeyDown

OnKeyUp

OnLButtonDblClk

OnLButtonDown

OnLButtonUp

OnMButtonDblClk

OnMButtonDown

OnMButtonUp

OnMouseActivate

OnMouseMove

OnRButtonDblClk

OnRButtonDown

OnRButtonUp

OnSetCursor

OnTimer

OnVScroll

OnNcActivate

OnNcCalcSize

OnNcCreate

OnNcDestroy

OnNcHitTest

OnNcLButtonDblClk

OnNcLButtonDown

OnNcLButtonUp

OnNcMB
uttonDblClk

OnNcMB
uttonDown

OnNcMButtonUp

OnNcMouseMove

OnNcPaint

OnNcRButtonDblClk

OnNcRButtonDown

OnNcRButtonUp

OnMDIActivate

OnAskCBFormatName

OnChangeCbChain

OnDestroyClipboard

OnDrawClipboard

OnHScrollClipboard

OnPaintClipboard

OnRenderAllFormats

OnRenderFormat

OnSizeClipboard

OnVScrollClipboard

12.1.2 Menu bar

Data Members

ItemList

Methods

12.1.3 Popdown Menu

Data Members

ItemList

Methods

12.1.4 Button

Data Members

Methods

12.1.5 Radio Button

Data Members

ButtonTextList

ButtonActionList

Orientation: Are radio buttons positioned vertically or horizontally?

Methods

12.1.6 Control Slider

Data Members

MinValue: Minimum value the slider can take

MaxValue: Maximum value the slider can take

Orientation: Is slider positioned vertically or horizontally?

Methods

12.1.7 Text Edit Box

Data Members

InitialText

Methods

12.1.8 List Box

Data Members

InitialText

Methods

12.1.9 Hot Spot

Data Members

Methods

12.2 Multimedia Classes

12.2.1 Audio Player

Data Members

Methods

12.2.2 Audio Recorder

Data Members

Methods

12.2.3 Video Player

Data Members

Methods

12.2.4 Video Recorder

Data Members

Methods

12.2.5 Graphic Viewer

Data Members

GraphicsFormat

ViewerRectangleSize

WindowObject

Methods

DisplayGraphic

CropGraphic

12.2.6 Graphic Editor

Data Members

Methods

12.2.7 Video Clip

Data Members

Methods

12.2.8 Audio Clip

Data Members

Methods

12.2.9 Graphic

Data Members

Methods

13 SMSL Services

The SMSL services use an object (message passing) architecture. An overview of the SMSL application environment is provided in the following figure:

13.1 ObjectConstruct

Purpose

To create an instance of an object at run time.

Use

Runtime

Input

Location of root of element tree signifying the class to be instantiated.

Output

An object ID for the created class.

13.2 ObjectDestroy

Purpose

To destroy an instance of a run-time object.

Use

Runtime

Input

Object ID: The object to be destoyed.

Depth: The depth to which contained objects are destroyed.

Output

13.3 SendMessage

Purpose

To send a message to an object.

Use

Runtime

Input

Output

Annex A: Using C++ as a Scripting Language

(NORMATIVE)

Annex B: The SMSL Meta-DTD

(NORMATIVE)

		ISO/IEC CD 11XXX

� PAGE �
41
�

