Int, Comm. Muon Source, Sept 7,2002, TRIUMF

FFAG: Fixed-Field Alternating Gradient Synchrotron

Proton Driver for Muon Source

Yoshiharu Mori (KEK)

Int, Comm. Muon Source, Sept 7,2002, TRIUMF Proton Driver for Pulsed Muon Source : Specifications

Beam energy Beam power Beam rep. rate Bunch width ~1GeV ~1MW (ave. cur. ~ 1mA) ~10kHz <100ns

Compact, Low cost.....

Needs for large beam power & rapid acceleration

1. Large Beam Power Proton Driver: secondary particle production (K, μ , π ,n,RI....) spallation neutron source ADS for nuclear energy breeding 2. Rapid Acceleration **Acceleration of short-lived particles:** *muon ---- Neutrino Factory, Muon Collider* unstable nuclei ENERGY: 1 ~ 10 GeV, CURRENT: ~ mA

Circular Accelerator

Synchrotron:

* Strong Focusing in 3D directions(trans. & long.). Betatron and Synchrotron Oscillations. ---> Stable beam acceleration

but, B is time-varying to keep a closed orbit constant. ---> Duty Factor : small ~1%(rep. rate:~10Hz) Small beam power compared with other cw or semi-cw machines.

Fixed B -----> Fixed Field Alternating Gradient(FFAG)

Cyclotron *isochronous Synchrotron *const. closed orbit (varying mag. field) FFAG *varying closed orbit (const. mag. field)

シンクロトロンは加速途中で 磁場が変化する。

加速の繰り返しが遅い。

FFAG加速器は加速の途中でも 磁場は変化しない。

加速の繰り返しが速い。

NEXT: FFAG加速器の未来

FFAG accelerator

FFAG principle : Ohkawa (1953), Symon, Kolomensky ~'50s

Magnetic field strength : constant ---> Moving orbit @MURA project

(1)proof-of-principle machine :electron model->worked successfuly!
(2)30GeV proton machine:proposal
(3) proton-proton collider(two beam accelerator):proposal

No practical machine so far!

(1)Relatively large at high energy (>30GeV) : Big Magnet (2)Complicated magetic field configuration : 3D design

(3)RF cavity : Large beam aperture : Variable Frequency & High Gradient.

Cardinal Conditions of FFAG

Magnetic field configuration * Zero-chromaticity

---> Betatron functions are scaling for enerygy.:v_x,v_y constant

$$x'' + g_x = 0; g_x = \frac{K^2}{K_0^2}(1 - n)$$
$$z'' + g_z z = 0; g_z = \frac{K^2}{K_0^2}n$$

a)Geometrical similarity

$$\left. \frac{\partial}{\partial p} \left(\frac{K}{K_0} \right) \right|_{\theta = const.} = 0$$

b)Constant n

$$\left. \frac{\partial n}{\partial p} \right|_{\theta = const.} = 0$$

CYCLOTRON CONFERNECE, May 12-17,2001, MSU, Lansing

FFAG Magnetic Field Configuration

Scaling type of FFAG a)Geometrical similarity b)Constant n

(a)
$$r\left(\frac{\partial\theta}{\partial r}\right)_{\vartheta} = \varsigma = const.$$
, (b) $n_{\Gamma} = -\frac{r}{B}\left(\frac{\partial B}{\partial r}\right)_{\theta}$

$$B(r,\theta) = B_i \left(\frac{r_i}{r}\right)^{n_0} F\left(\theta - \zeta \ln \frac{r}{r_i}\right)$$

Magnetic Field Configuration : Scaling Type

a) Radial Sector /tunable /short straight section

b) Spiral Sector /small excursion /less tunable

FFAG Accelerator

Comparison with ordinary synchrotron

- 1. Magnetic Field
- 2. Closed Orbit
- 3. Focusing
- 4. Duty Factor (Repetition Cycle)
- 5. Space charge/Instability

FFAGord. SynchrotronStatic (Fixed)Time varyingMovingFixedStrongStrongLarge ~10-50%Small ~1 %(~>1kHz)(~10Hz)Not criticalSevere(small particle numbers per bunch)

Problems to be solved:

* complicated magnetic field ---> 3D codes(TOSCA etc.)

* RF system : high field & rapid tuning

--> " High Gradienet & Broad Band RF Cavity"

FFAG: revival again 2000

New type RF Cavity @KEK "High Gradient & Broad band" (f ~ MHz)

*"Magnetic Alloy (MA) loaded Cavity" MA tape : "FINEMET" (nano-crystal alloy) *High gradient : 50 ~100 kV/m (ferrite ~10kV/m) *Broad band : no need for frequency tuning(Q~1)*

> Large Repetition Rate : ~1kHz Large beam aperture : MA tape

Magnetic Alloy

A high-permeability soft magnetic alloy, such as FINEMET and METGLAS has become available for applying the RF cavity, recently.

Characteristics of MA:

(1) The μ Qf-value remains constant at a high RF magnetic field (Brf) of more than 2 kG.

(2) A high Curie temperature, typically **570°C** for **FINEMET**.

(3) The intrinsic Q-value is small. No frequency tuning loop is necessary in the cavity control system because of its low Q-value (Q~1). This substantially widens the stable operating region of the cavity loading phase angle under heavy beam loading. The longitudinal coupled-bunch instability may be reduced

(4)The Q-value can be increased up to more than 10(Q>10) by a radial gap with cut-core configuration.

(5) Fabrication of a large core is possible because the core is formed by winding the very thin tapes.

Typical characteristics of Ni-Zn ferrite and Magnetic Alloy(FINEMET).

Prototype of MA-loaded Cavity

Single Gap MA-loaded Cavity

RF Voltage	20kV
No. of Cores	6
Shunt Impedance	500-750 W
Q	1
Total Length	40 cm

Measured Cavity Impedance & Phase

Multi-beam Acceleration

multi-bunch in different orbit :

**cw machine (Cyclotron) as an injector* **increase acceleration cycle w/o large rf voltage* **small space charge effect*

p --> small # of particles per bunch in diff. orbit

FFAG : multi-beam operation

Development of proton FFAG accelerator

PoP (proof-of-principle) model using MA cavity aims:

(1) fast acceleration : t<1msec --> 1kHz rep. rate (2) first proton FFAG accelerator

(parameters)

Type of magnet Radial sector type (Triplet) No. of sectors 8 Field index(k-value) 2.5 50keV(injection) ~ 500keV Energy **Reptition rate** 1kHz Magnetic field Focus-mag. : 0.14~0.32Tesla Defodus-mag.: 0.04~0.13Tesla Radial of closed orbit 0.81~1.14m Betatron tune Horizontal: 2.17~2.22 Vertical: 1.24~1.26 0.61~1.38MHz rf frequency rf voltage 1.3~3.0kVp

PoP proton FFAG accelerator

1: ion source 2: chopper electrode 3: triplet-quadrupole magnet 4: steering magnet **5: solenoid magnet** 6: beam slit 7: Faraday cup 8: septum electrode 9: bump electrode **10: sector magnet** 11: F-magnet pole 12: D-magnet pole 13: beam position monitior 14: RF cavity 15: RF amplifier 16: vacuum bellows 17: turbo molecular pump 18: cryopump

PoP proton FFAG model

Beam Acceleration

Measured Betatron Tunes

150-MeV proton FFAG accelerator

Prototype for various applications: # Madical application : Cancer therapy # Muon phase rotation : PRISM project

150MeV FFAG main parameters

No. of sectors	12
Field index(k -value)	7.5
Energy	12MeV - 150MeV
Repetition rate	250Hz
Max. Magnetic field	
Focus-mag.:	1.63 Tesla
Defocus-mag.:	0.13 Tesla
Closed orbit radius	4.4m -5.3m
Betatron tune	
Horizontal :	3.8
Vertical :	2.2
rf frequency	1.5 -4.6MHz

150-MeV proton FFAG accelerator

Yoke-free magnet of triplet sector FFAG

Magnet of 150-MeV proton FFAG

Int, Comm. Muon Source, Sept 7,2002, TRIUMF

1GeV-1MW-10kHz FFAG Proton Driver

Energy	150MeV-1GeV
Intensity	6x1011ppp
Rep. Rate	10kHz (1kHz x10)
Ave. Current1mA (Beam Power 1MW)	
Radius	~16m
k	25
# of cell	48
rf freq.	5.43MHz - 8.08MHz
rf voltage	~850kV
bunch width	~40ns