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Minimizing longitudinal distortion in a nearly isochronous linear nonscaling fixed-field

alternating gradient accelerator
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Linear non-scaling FFAGs (Fixed-Field Alternating Gradient accelerators) are machines that use
linear magnets to achieve an extremely large energy acceptance (generally a factor of 2 or more).
This paper examines the longitudinal dynamics in such a machine, focusing on the longitudinal
acceptance, the phase space area that is transmitted without excessive distortion. The paper shows
how to compute the distortion in two ways: computing the emittance growth, and computing
the distortion of an initial ellipse from an elliptical shape. The paper will describe a model for the
longitudinal dynamics in a linear non-scaling FFAG, show how to compute the longitudinal distortion
in such a machine using a Dragt-Finn factorization, examine the accuracy of the calculation, and
describe how longitudinal acceptance can interact with other performance criteria for an FFAG.

PACS numbers: 29.27.Bd,41.85.-p,45.10.Hj

Keywords: FFAG; longitudinal dynamics; Dragt-Finn factorization

I. INTRODUCTION

Fixed field alternating gradient (FFAG) accelerators
are machines which accelerate over a large range of en-
ergy (generally a factor of 2 or more) without varying the
magnet fields. Since the magnet fields don’t vary dur-
ing acceleration, acceleration is potentially very rapid.
FFAGs were first studied and built in the 1950s [1–3],
but little further work was done on these machines un-
til very recently. In the last few years, two FFAGs have
been built in Japan [4–8], and FFAGs have been proposed
there for several other projects.

All of the FFAGs built until now have been what are
today called “scaling” FFAGs. They are called scaling
because of an important property of the machine: after
applying a particular energy-dependent linear transfor-
mation to the phase space variables, the dynamics of the
machine become completely independent of energy. In
particular, the tunes and momentum compaction are in-
dependent of energy, and the energy-dependent closed or-
bits are geometrically similar. The energy-independent
tune and the energy independence of the phase space
(except for an energy-dependent linear transformation)
allows one to choose a good working tune, as in a syn-
chrotron, and one will then avoid resonances over the
entire acceleration process.

There are of course difficulties with scaling FFAGs.
The time of flight depends strongly on energy, even when
the velocity is nearly the speed of light, so one must ei-
ther vary the RF frequency to match the time of flight,
which limits the acceleration rate, or one must fix the
RF frequency and accelerate so quickly that the bunch
does not leave the RF crest. The large energy range and
the machine’s nonzero dispersion require large apertures.
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FIG. 1: Time of flight as a function of energy in a linear
non-scaling FFAG.

Finally, the highly nonlinear magnets required for a scal-
ing FFAG can potentially limit the dynamic apertures
for those machines.

A new type of FFAG, the linear non-scaling FFAG
[9, 10], was proposed to improve the performance of
FFAGs with respect to these difficulties, particularly for
muon acceleration. Muons must be accelerated very
rapidly to avoid decays, yet one desires to make as many
passes through the RF as possible to use the very expen-
sive RF cavities more efficiently. The rate of acceleration
prevents the RF frequency from being varied, and thus
the range in time-of-flight must be minimized. Linear
non-scaling FFAGs for muon acceleration applications
make the machine as isochronous as possible by making
the machine isochronous somewhere close to the middle
of the energy range of the machine (as in Fig. 1). In a
scaling FFAG, the momentum compaction is a nonzero
constant, leading to a larger time-of-flight range than for
a comparable non-scaling FFAG. Muon accelerators also
require an exceptionally large dynamic aperture, so to
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improve that, the linear non-scaling FFAGs use only lin-
ear magnets, as opposed to the highly nonlinear magnets
required for a scaling FFAG. Finally, the non-scaling na-
ture of the FFAG means that orbits will not be geometri-
cally similar as in the scaling FFAG. This extra freedom
can be used to make the apertures smaller in some of the
magnets.

As can be seen in Fig. 1, the time of flight in a lin-
ear non-scaling FFAG will be well approximated by a
parabola. As can be determined from the shift of the
minimum from the center in that figure, cubic order
terms only contribute around 10% to the time of flight
within the energy range. The characteristics of the mo-
tion in phase space are determined qualitatively by this
parabolic shape, and the underlying causes of the phase
space distortion examined here are present when the time
of flight is approximated by a parabola.

Instead of using linear magnets, one can use nonlinear
magnets and make a non-scaling FFAG lattice almost
perfectly isochronous [11, 12]. Higher order effects (such
as the time of flight dependence on transverse amplitude)
and errors will inevitably make the isochronicity imper-
fect, but one can certainly reduce the time-of-flight range
substantially from what can be achieved in a linear non-
scaling FFAG. While this may come at the cost of dy-
namic aperture (due to nonlinearities) and magnet cost,
such machine require consideration. This paper will more
directly address the case of linear non-scaling FFAGs,
where the time of flight as a function of energy is nearly
parabolic; the results from this paper can be useful in
comparing the machine performance of linear non-scaling
FFAGs to these other types of non-scaling FFAGs.

This paper describes the longitudinal dynamics in a
machine where the time of flight is exactly a parabolic
function of energy, with the minimum of the parabola at
the center of the energy range, and the RF voltage is a si-
nusoidal function of the phase. In the model, the RF volt-
age and the time-of-flight advance are both distributed
uniformly around the ring. This system has been ex-
amined previously [13, 14]. A primary constraint on the
design parameters for these FFAGs will be the amount of
longitudinal phase distortion one can tolerate. This pa-
per will quantify this distortion and describe a method
for computing it for this system.

II. HAMILTONIAN IN SCALED VARIABLES

The FFAG ring is assumed to consist entirely of iden-
tical cells, all of which contain an RF cavity. I take the
further step of ignoring the longitudinal variation within
the cell, making a continuous approximation of the sys-
tem. The time-of-flight τ is approximated here to be a
parabolic function of energy E:

dτ

ds
= ∆T

(

2E − Ei − Ef

∆E

)2

− T0, (1)

where the machine is designed to accelerate from Ei to
Ef , ∆E = Ef−Ei, ∆T is the difference between the time
of flight per unit length at Ei (or Ef ) and the central
energy, s is the distance along a reference curve which
defines the coordinate system, and T0 is chosen so that
dτ/ds is zero when the phase of a particle in the RF
cavities does not change from one cell to the next. The
energy gain in the cavities is sinusoidal:

dE

ds
= V cos(ωτ), (2)

where V is the average energy gain per unit length for
on-crest acceleration in a cell, and ω is the angular RF
frequency. The choice of placing the minimum of the
parabola at (Ei + Ef )/2, and the fact that there is no
phase in Eq. (2), is based on symmetry.

As an example of what these parameters might be
like for a real machine, consider a muon FFAG design:
the machine would accelerate from 10 to 20 GeV, using
201.25 MHz superconducting RF. One design [15] has 91
4.7 m long combined-function doublet cells. With a gra-
dient of 10 MV/m in the cavities, V is about 1.5 MeV/m.
∆T is about 1.4 ps/m in this lattice.

One can perform the change of variables

x = ωτ p =
E − Ei

∆E
u = sω∆T (3)

to get the new equations of motion

dx

du
= (2p − 1)2 − b

dp

du
= a cos x (4)

where

a =
V

ω∆T∆E
b =

T0

∆T
. (5)

Note that b is a relatively simple quantity to adjust in
a machine design: a small change of frequency, phase
relationship between cavities, or cell length can gener-
ally make b any desired value. a is generally more costly
to vary: adjusting it requires that the amount of RF
voltage be changed, that the number of cells be changed
(to change ∆T [16]), or that the cell length (to change
∆T [16]), RF frequency, or energy range be changed sig-
nificantly. The muon accelerator parameters described
above came from a lattice designed for a = 1/12.

In these scaled variables, the goal of the machine is to
accelerate from p = 0 to p = 1. This scaled system is
governed by the Hamiltonian

1

6
(2p − 1)3 − b

2
(2p − 1) − a sin x. (6)

Henceforth, I will work with this scaled Hamiltonian.
When b > 0, this Hamiltonian has unstable fixed

points at x = ±π/2 and p = (1 ∓
√

b)/2. The value
of the Hamiltonian on the corresponding separatrices is

±1

3
b3/2 ∓ a. (7)
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FIG. 2: Phase space in normalized variables, showing separa-
trices delimiting the phase space and an elliptical ring in phase
space at 11 points in the acceleration process from p = 0 to
p = 1.
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FIG. 3: Region of a-b parameter space for which particles
can be accelerated from p = 0 to p = 1, shown in white.
Particles will not accelerate from p = 0 to p = 1 because of
condition (9) (light grey) or condition (8) (medium grey) or
both (darker grey).

The separatrices delineate regions of phase space which
cannot be crossed. Figure 2 shows the separatrices di-
viding the phase space. From the Hamiltonian values on
the separatrices and an examination of the phase space
it can be seen that there will be no region of phase space
connecting p = 0 to p = 1 if a < (1/3)b3/2 if b > 0; if
b < 0, there are no separatrices. Thus, to accelerate from
p = 0 to p = 1

a >
1

3
b3/2 (8)

if b > 0; there is no restriction from the separatrices if
b < 0. Furthermore, there must be at least one trajectory

crossing both p = 0 and p = 1. By symmetry, this means
that the trajectory passing through x = 0 and p = 1/2
must pass through p = 0 and p = 1. It must be possible
for the Hamiltonian to be zero when p = 0 and p = 1.
Since |sinx| 6 1,

a >

∣

∣

∣

∣

1

6
− b

2

∣

∣

∣

∣

. (9)

The combination of these restrictions leads to

1

3
− 2a < b < (3a)2/3. (10)

Note that as a result, there is an absolute restriction
that a > 1/24. The region of the a-b parameter space
that permits acceleration from p = 0 to p = 1 is shown
in Fig. 3.

III. LIE ALGEBRAIC FORMULATION

To analyze the phase space transmission in this system,
I will write the map for evolution in u in Lie Algebraic
form, using the Dragt-Finn factorization [17, 18]. In this
paper, I will analyze the map about the central trajec-
tory, passing through x = 0 and p = 1/2. It is convenient
to start with the map from x = 0, p = 1/2 forward in u.
Its Lie factorization can be written as

Mhalf = e−:g1:e:f5:e:f4:e:f3:e:f2:e:f1:. (11)

g1 = x/2 is the operator that translates to the initial
conditions (x, p) = (0, 1/2). The remaining operators will
be computed through numerical integration as described
in [18]. The map from beginning to end is just

Mfull = CM−1
halfC−1Mhalf, (12)

where

C
(

x
p

)

=

(

−x
1 − p

)

. (13)

Note that the operator order follows the Lie Algebraic
convention of first to last being left to right. Writing C
in Lie algebraic notation,

C = Fe:x: = e−:x:F , (14)

where F is the reflection operator

F
(

x
p

)

=

(

−x
−p

)

. (15)

Note that F2 is the identity operator, as is C2. The
combined map can thus be written
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Mfull = e−:x:Fe−:f1:e−:f2:e−:f3:e−:f4:e−:f5:e:g1:Fe:x:e−:g1:e:f5:e:f4:e:f3:e:f2:e:f1:

= e:f1−x:Fe−:f2:e−:f3:e−:f4:e−:f5:Fe:x−2g1:e:f5:e:f4:e:f3:e:f2:e:f1:

= e:f1−x:e−:f2:Fe−:f3:e−:f4:Fe2:f5:e:f4:e:f3:e:f2:e:f1:

= e:f1−x:e−:f2:e:f3:e−:f4:e2:f5:e:f4:e:f3:e:f2:e:f1:

= e:f1−x:e−:f2:e:f3: exp
(

2:e−:f4:f5:
)

e:f3:e:f2:e:f1:

= e:f1−x:e−:f2: exp
(

2:e:f3:e−:f4:f5:
)

e2:f3:e:f2:e:f1:

= e:f1−x: exp
(

2:e−:f2:e:f3:e−:f4:f5:
)

exp
(

2:e−:f2:f3:
)

e:f1:

≈ e:f1−x: exp
(

2:e−:f2:f5:
)

exp
(

2:e−:f2:f3:
)

e:f1:.

I use the transformation rule for similarity transforma-
tions on Lie operators, the fact that F leaves even or-
der homogeneous polynomials invariant, and changes the
sign of odd order homogeneous polynomials, that first-
order Lie exponentials can be combined by adding their
exponents, and that g1 = x/2. The final approximation
is appropriate since the factorization was truncated at
fifth order already, and including the effects of f3 and f4

on f5 would result in terms higher order than fifth. Note
that the linear part of the map is the identity and that
any f4 terms disappear from the final map. Note that if
the time of flight were not perfectly parabolic or the RF
waveform were asymmetric, the linear part would not be
the identity (which will not matter for these results) and
there would be a nonzero f4 term.

A. Quantities to Analyze

To give optimal performance of a machine, we will want
to minimize some quantity which is related to the devi-
ation of the machine from linearity. Different types of
machines will require the minimization of different quan-
tities. For colliders, the r.m.s. energy spread and bunch
length at collision are the important quantities. Thus,
the machine should minimize the emittance growth for
that case. For a neutrino factory, however, the machine
is generally designed to transmit a certain phase space
volume and not much more. In that case, one wishes
to minimize the growth of the boundary of an elliptical

phase space volume.
One wants to find the effect of the FFAG on an el-

liptical distribution. A translation has no effect on the
distribution shape, so one only needs to analyze the effect
of

M = exp
(

2:e−:f2:f5:
)

exp
(

2:e−:f2:f3:
)

(16)

on an ellipse. If A = e:a2: is a linear transformation that
transforms a circle to the desired ellipse, then one can
instead analyze the effect of

MC = AMA−1

= e:a2: exp
(

2:e−:f2:f5:
)

exp
(

2:e−:f2:f3:
)

e−:a2:

= exp
(

2:e:a2:e−:f2:f5:
)

exp
(

2:e:a2:e−:f2:f3:
)

(17)

on a circularly symmetric distribution in phase space. A
linear map transforms a homogeneous polynomial to a
homogeneous polynomial of the same order. Thus

MC = e:g5:e:g3: (18)

gm = 2e:a2:e−:f2:fm =
m
∑

k=0

gmkxm−kpk (19)

In most cases, I will try to find the optimal ellipse orien-
tation (i.e., I will try to choose A) so as to minimize the
quantity of interest.

I will need to compute the effect of MC on a phase
space vector to third order; this is

MC

(

x
p

)

≡ MCz1 = z1 + z2 + z3 (20)

z2 = [g3,z1] =

(

−g31x
2 − 2g32xp − 3g33p

2

3g30x
2 + 2g31xp + g32p

2

)

(21)

z3 =
1

2

[

g3, [g3,z1]
]

=

(

(g2
31 − 3g30g32)x

3 + (g31g32 − 9g30g33)x
2p + (g2

32 − 3g31g33)xp2

(g2
31 − 3g30g32)x

2p + (g31g32 − 9g30g33)xp2 + (g2
32 − 3g31g33)p

3

)

. (22)
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There are also fourth order terms, but they are not
needed for the initial computations, so I will delay con-
sidering them. Because of the presence of the transfor-
mation A, I will examine transformations of circles and
circular distributions under MC .

To optimize the design, I will vary the transformation
A (which has two free parameters) to minimize the quan-
tity of interest for a given a and b. I will then find the
b which minimizes the quantity for a given a (since, as
noted above, it costs very little to change b), producing
a plot of the quantity versus a.

1. Emittance Growth

To compute the emittance, we assign

x =
√

2J cos θ p = −
√

2J sin θ (23)

and average over an arbitrary distribution in J and a
uniform distribution in θ. The emittance is defined to
be the square root of the determinant of the covariance
matrix 〈zz

T 〉−〈z〉〈z〉T (〈f〉 is the average of the quantity
f over the distribution, and z is the phase space vector).
For z = z1, the emittance is 〈J〉. For z = MCz1, the
result to lowest order is

〈J〉 +
1

2
〈2z

T
1 z3 + z

T
2 z2〉 −

1

2
〈z2〉T 〈z2〉. (24)

The fourth order moments needed are

〈x4〉 = 〈p4〉 =
3

2
〈J2〉 〈x2p2〉 =

1

2
〈J2〉 (25)

〈x3p〉 = 〈xp3〉 = 0. (26)

Thus, the emittance growth is

3

4
〈J2〉(9g2

30 + 5g2
31 + 5g2

32 + 9g2
33 − 6g30g32 − 6g31g33)

− 1

2
〈J〉2[(g31 + 3g33)

2 + (g32 + 3g30)
2]. (27)

This is only necessarily nonnegative when 〈J2〉 >

(4/3)〈J〉2. Mathematically, one must have 〈J2〉 > 〈J〉2.
For the Gaussian distribution e−J/ǫ/ǫ, 〈J〉 = ǫ and
〈J2〉 = 2ǫ2. At the opposite extreme, for an “airbag”
distribution δ(J − ǫ), 〈J〉 = ǫ and 〈J2〉 = ǫ2. A “wa-
terbag” distribution (uniform phase space density) has
〈J2〉 = (4/3)〈J〉2.

For the analysis, I will restrict the discussion to 〈J2〉 >
(4/3)〈J〉2. The minimum emittance growth as a function
of a is shown in Fig. 4. For a close to its minimum value
of 1/24, the emittance growth is proportional to (a −
1/24)−2. Larger values of 〈J2〉/〈J〉2 give larger values for
the emittance growth. For a given values of 〈J2〉/〈J〉2,
the emittance growth is proportional to 〈J〉2.

The optimal b is shown in Fig. 5. The reason for the
sudden change near 0.41 is shown in Fig. 6. For small
b, the minimum emittance growth occurs at the smallest

10
-3

10
-2

10
-1

10
0

a - 1/24

10
-1

10
0

10
1

10
2

10
3

10
4

10
5

∆ε
/(

ε2 )

<J
 2

> = 2.0 ε2

<J
 2

> = 1.4 ε2

FIG. 4: Emittance growth, minimized over b and A. ε is 〈J〉.
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FIG. 5: Value for b which gives the minimum emittance
growth.

allowed b. The optimal b is independent of the ratio
〈J2〉/〈J〉2.

If the time of flight were not perfectly parabolic (as in
the real case shown in Fig. 1), there would potentially
be relative corrections of the order of the relative size
of the difference from a parabola, due to the distortion
of the orbit about which the expansion is performed and
changes to the derivatives about that. The addition of f4

terms to the map will give no contribution to the emit-
tance growth. Specific quantitative results will be left to
a subsequent paper.

2. Boundary Distortion

If instead we wish to minimize the distortion of a circle
due to MC , first compute the change in the radius of the
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FIG. 6: Emittance growth as a function of b for various values
for a.

circle under MC to lowest order:

∆r2 = 2∆J = 2zT
1 z2 = −2g31x

3 + (6g30 − 4g32)x
2p

− (6g33 − 4g31)xp2 + 2g32p
3. (28)

Replacing x and p by J and θ using Eq. (24), this becomes

− 4
√

2J3[g31 cos3 θ + (3g30 − 2g32) cos2 θ sin θ

+ (3g33 − 2g31) cos θ sin2 θ + g32 sin3 θ]. (29)

To find the extrema of this, take the derivative with re-
spect to θ:

−4
√

2J3[(3g30−2g32) cos3 θ+(6g33−7g31) cos2 θ sin θ

− (6g30 − 7g32) cos θ sin2 θ − (3g33 − 2g31) sin3 θ]. (30)

To find the zeros of this, divide by cos3 θ or sin3 θ, and
you will get a third order polynomial in tan θ or cot θ
respectively. The zeros of this can be found analyti-
cally, and the resulting zeros used to find the extrema
of Eq. (29). Note that the distortion of the radius of the
circle is proportional to the square of the radius of the
circle.

Figure 7 shows the minimum ellipse distortion as a
function of a. The value of ∆J/(2J)3/2 is proportional
to (a − 1/24)−1 for a close to 1/24.

The b which gives this minimum distortion is identical
to the b which gives the minimum emittance growth that
was shown in Fig. 5.

The comments in the subsection on emittance growth
regarding a time of flight which is not perfectly parabolic
also apply to the boundary distortion calculation.

3. Boundary Distortion with Linear Transform

If one is interested only in the distortion of the outer
boundary of the ellipse, one need not require that an el-
lipse with nonzero size have the same center, orientation,

10
-3

10
-2

10
-1

10
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a - 1/24

10
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10
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10
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10
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/(

2J
)3/

2

FIG. 7: Distortion of the ellipse, minimized over b and A.

and aspect ratio as an infinitesimally small ellipse. We
thus want to look at the quantity

[z − z0(J)]T B(J)[z − z0(J)] − 2J, (31)

and minimize it to lowest order in J , while simultaneously
finding z0(J) and B(J), varying both the transformation
A as well as z0(J) and B(J). Note that z0(0) = 0 and
B(0) = I, the identity matrix. Substituting z = z1 +z2,
z0(J) = z02J , and keeping terms to third order, Eq. (31)
becomes

(2J)3/2

(

3

2
(g33 − g31) cos 3θ − 3

2
(g30 − g32) sin 3θ

− 1

2
(3g33 + g31) cos θ − 1

2
(3g30 + g32) sin θ

)

− (2J)3/2
z

T
02

[

cos θ
− sin θ

]

. (32)

Thus, the cos θ and sin θ terms can be eliminated if

z02 =
1

2

[

−3g33 − g31

3g30 + g32

]

. (33)

The cos 3θ and sin 3θ terms can be eliminated by the free-
dom in choosing A (there are 2 free parameters there).
One should find an A such that g32 = g30 and g31 = g33.
The result is that all the third order terms will be elimi-
nated, and

z02 = 2

[

−g33

g30

]

(34)

If we consider the fourth order terms, and write B(J) =
I + B2J , then the fourth order terms are

2J2
[

cos θ − sin θ
]

B2

[

cos θ
− sin θ

]

+ 8J2[(g2
33 − g2

30) cos 2θ + 2g30g33 sin 2θ]. (35)
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Thus, if

B2 = 4

[

g2
30 − g2

33 2g30g33

2g30g33 g2
33 − g2

30

]

, (36)

the fourth order terms are eliminated. Note that if the
problem did not have the symmetry it does, there would
be g4 terms which would lead to nonzero cos 4θ and sin 4θ
terms, and the fourth order terms could not be removed.
Since the parabola is not perfectly symmetric, one might
argue that it is important to include those fourth order
terms from the broken symmetry. However, the symme-
try breaking is small in the FFAG designs under consid-

eration, and for the large phase space we wish to trans-
mit, the magnitude of the coefficients of the fourth order
terms may be less than the magnitude of the coefficients
of the fifth order terms by more than a factor of the mag-
nitude of the phase space variables. If this is true, the
symmetric approximation is still important. This paper
will discuss only the symmetric case, and the asymmetric
case will be addressed in a subsequent paper.

To determine the magnitude of the ellipse distortion,
we will need to determine the change in the square of the
radius to fifth order in the phase space variables. This
requires computing MCz1 to fourth order, which is

1

6

[

g3,
[

g3, [g3,z1]
]

]

+ [g5,z1] =
(

−(5g2
30 + g2

33)g33x
4 + 8(g2

30 − g2
33)g30x

3p + 6(3g2
30 − g2

33)g33x
2p + 16g30g

2
33xp3 + (3g2

33 − g2
30)g33p

4

(g2
33 − 3g2

30)g30x
4 − 16g2

30g33x
3p + 6(g2

30 − 3g2
33)g30x

2p2 + 8(g2
30 − g2

33)g33xp3 + (g2
30 + 5g2

33)g30p
4

)

+

(

−g51x
4 − 2g52x

3p − 3g53x
2p2 − 4g54xp3 − 5g55p

4

5g50x
4 + 4g51x

3p + 3g52x
2p2 + 2g53xp3 + g54p

4

)

, (37)

where I made use of the fact that g30 = g32 and g31 = g33.
Including a fourth order term z40J

2 in z0(J), the fifth
order terms in Eq. (31) will be

∆r2 = 2(2J)5/2(r50 cos5 θ + r51 cos4 θ sin θ

+ r52 cos3 θ sin2 θ + r53 cos2 θ sin3 θ + r54 cos θ sin4 θ

+ r55 sin5 θ) −
√

8J5
z

T
04

(

cos θ
− sin θ

)

, (38)

where

r50 = g33(3g
2
30 − g2

33) − g51 (39)

r51 = −3g30(g
2
30 − 3g2

33) + 2g52 − 5g50 (40)

r52 = −2g33(3g
2
30 − g2

33) − 3g53 + 4g51 (41)

r53 = −2g30(g
2
30 − 3g2

33) − 3g52 + 4g54 (42)

r54 = −3g33(3g
2
30 − g2

33) + 2g53 − 5g55 (43)

r55 = g30(g
2
30 − 3g2

33) − g54 (44)

Rewrite this as a sum of terms linear in cos nθ and sinnθ,
and choose z04 so as to eliminate the cos θ and sin θ
terms:

z04 =
1

2

(

−g51 − g53 − 5g55

g54 + g52 + 5g50

)

. (45)

Now, finding the maximum value of ∆r2 is straightfor-
ward. Take the derivative of the fifth order terms in ∆r2

with respect to θ, divide by cos5 θ or sin5 θ, and find the
zeros of the polynomial in tan θ or cot θ. Substitute the
resulting θ values into fifth order terms in ∆r2 to get
maximum value of ∆r2.

10
-3

10
-2

10
-1

10
0

a - 1/24
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2J
)5/

2

FIG. 8: Distortion of the ellipse, allowing the center and el-
lipse shape to change with J , minimized over b and A.

The resulting minimum distortion is shown in Fig. 8,
and the b corresponding to that minimum distortion is
shown in Fig. 9. The distortion of the radius is propor-
tional to the fourth power of the radius (it was propor-
tional to the square of the radius if the J-dependent shift
and ellipse shape change were not included) and for small
a, is approximately proportional to (a − 1/24)−3.

Depending on how the ellipse is viewed physically, the
nonzero z0(J) may imply that one is not accelerating all
the way from p = 0 to p = 1. In that case, one can adjust
a after the calculation to correct for this.
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FIG. 9: Value for b which gives the minimum ellipse distortion
when the center and ellipse shape are allowed to change with
J .
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FIG. 10: Relative inaccuracy in the calculation of ∆J vs. the
desired value of ∆J/J , for the boundary distortion without
the amplitude-dependent linear transformation.

IV. ACCURACY OF THE CALCULATION

Since this calculation only keeps the lowest-order terms
relevant to the desired result, there must be an inaccu-
racy in the estimate of the ellipse distortion and the emit-
tance growth.

For the ellipse boundary distortion without the
amplitude-dependent linear transformation, Fig. 10
shows the relative inaccuracy in the calculation. The cal-
culation is done by choosing a value for a, choosing b and
an ellipse orientation to give the minimum value for ∆J ,
tracking 1001 points on the ellipse (spaced equally on a
circle then transformed to the ellipse), calculating the ac-
tual value of ∆J , and taking the maximum value. ∆J is
calculated from the tracking data based on the expected
ellipse (i.e., I did not try to find an ellipse that best fit
the tracking data). The calculation was done for a from
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a = 0.25

a = 0.05

FIG. 11: Relative inaccuracy in the calculation of ∆J vs. the
desired value of ∆J/J , for the boundary distortion with the
amplitude-dependent linear transformation. Different curves
are for different values of a, uniformly spaced from 0.05 to
0.25.

0.05 to 0.15, and the result was nearly independent of a,
so only a single curve is shown in Fig. 10.

Figure 11 shows the result for the same calculation but
for the calculation of the ellipse boundary distortion with
the amplitude-dependent linear transformation. In this
case, the results do depend on a, but the inaccuracies are
qualitatively similar for different a. The sharp rise near
zero is expected from the fact that ∆J/J ∝ (2J)3/2, and
the relative correction should be proportional to (2J)1/2

(this also explains the linear behavior in Fig. 10). Despite
the initial rapid rise, the inaccuracy levels off quickly
and stays around 10% or lower (lower for larger a) un-
til the desired inaccuracy gets to around 5–6%; at that
point, the inaccuracy begins to increase very rapidly (less
rapidly for larger a). As one is willing to tolerate a larger
ellipse distortion, the higher order terms begin to become
more important, until a point where they cause a rapid
reduction in the accuracy of the estimate made here.

For emittance growth, the accuracy of the calculation
is shown in in Fig. 12. The emittance growth is computed
by integrating 105 particles distributed uniformly in θ
and in J according to the distribution [19]

7

9ǫ

(

1 − 2J

9ǫ

)5/2

. (46)

This distribution function leads to a one-dimensional dis-
tribution (in either x or p) which has no particles beyond
3σ. The inaccuracy in the calculation quickly becomes
extremely large. This is due to the large-amplitude tails
in the distribution, which are more strongly affected by
the higher-order terms and contribute disproportionately
to the emittance growth, as can be seen in Fig. 13. To
reduce this effect, one can apply the following iterative
procedure to the final distribution: find the second-order
covariance matrix; remove all particles outside of a kσ el-
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FIG. 12: Relative inaccuracy in the calculation of the emit-
tance growth ∆ǫ vs. the desired value of ∆ǫ/ǫ, for two differ-
ent values of a. Error bars show 1σ uncertainties due to the
finite number of particles integrated.
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FIG. 13: Initial (white circles) and final (black circles) dis-
tributions, where the desired emittance growth is 10%. The
grey ellipse denotes the 3σ boundary, and that same bound-
ary for the final distribution is shown surrounding the black
circles.

lipse, where k is a given constant; repeat these two steps
until no particles are cut. The results of this cutting
procedure are shown in Fig. 14. The value of k has an
extremely strong effect on the result, and there does not
seem to be a clear way to choose the best value for k.
The poor accuracy of the emittance growth calculation
without the cutting procedure, the lack of a good choice
for the cutting amplitude, and the fact that for some dis-
tributions, the emittance growth calculation leads to a
reduction in the calculated emittance, leads one to con-
clude that emittance growth does not seem to be a good
criterion for the optimization of a machine design, except
possibly when only very small emittance growths are de-
sired (in the range of 1–2%) and for Gaussian or nearly
Gaussian distributions.
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FIG. 14: Relative inaccuracy in the calculation of the emit-
tance growth ∆ǫ vs. cutting amplitude k, for a = 0.10 and a
desired emittance growth of 10%. Error bars show 1σ uncer-
tainties due to the finite number of particles.

V. OTHER CRITERIA FOR OPTIMIZATION

In real machines, there may be criteria other than just
the longitudinal distortion that determine the optimal
parameters to use.

For example, for small values of a, the minimum lon-
gitudinal distortion occurs when b takes on its minimum
value, 1/3 − 2a. One can compute the change in u (and
thus the total arc length covered) in accelerating from
p = 0 to p = 1 as a function of a and b; it is the integral

∫ 1

0

6 dp
√

36a2 − (2p − 1)2[(2p − 1)2 − 3b]2
. (47)

This integral can be done in terms of an elliptic integral;
it is

3
(

3(q0 − b)(q0 − 3b)3
)1/4

F
(

φ(1, q0, b),m(q0, b)
)

(48)

where F is the incomplete Jacobi elliptic integral of the
first kind, and

q0 = [(3a +
√

(3a)2 − b3)1/3

+ (3a −
√

(3a)2 − b3)1/3]2 (49)

φ(q, q0, b) =

cos−1

(

(q0 − q)
√

q0 − 3b − q
√

3(q0 − b)

(q0 − q)
√

q0 − 3b + q
√

3(q0 − b)

)

(50)

m(q0, b) =
1

2
− 3

4

q2
0 − 6q0b + 6b2

√

3(q0 − b)(q0 − 3b)3
. (51)

Note that in the equation for q0, one should take the real
solution of the cube root. A more restricted version of
this result appears in [20].
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FIG. 15: Change in u as a function of b, for a evenly spaced
between 0.06 and 0.14.

The change in u is shown in Fig. 15 as a function of b
for various a. It is clear from that figure that the smallest
change in u, and therefore the smallest time in the FFAG,
does not occur when b is at its minimum value. For
muon machines, where muon decay must be minimized,
or for machine’s where the machines repetition rate must
be maximized, one may not want to use the minimum
b, even though that does give the smallest longitudinal
distortion for a given a. Using the machine parameters
referred to in section II, the decay loss at the minimum b
is about 8.3%, whereas choosing the minimum ∆u results
in a decay loss of about 7.7%.

Instead, one may choose a different figure of merit,
which combines the longitudinal distortion with some
other quantity. For instance, one could combine the de-
cay loss with the longitudinal distortion by imagining
that any area outside of the ellipse is loss. If there is only
one harmonic in θ in the ellipse distortion, and higher-
order terms in ∆J/(2J) are ignored, then the fractional
loss can be written as

∆Ndecay

N
+

2

π

∆J

2J
.

For this merit factor, for a 10–20 GeV muon FFAG,
201.25 MHz RF with an average gradient of 1.5 MV/m,
and a normalized longitudinal acceptance (transmitted
ellipse area divided by π) of 150 mm, Fig. 16 shows the
b which minimizes the above fractional loss, and Fig. 17
shows the minimum loss as a function of a. I use the
ellipse distortion with the amplitude-dependent shift of
the center to compute this. For sufficiently small a, the
minimum b is still optimal, since the distortion “losses”
far exceed the decay losses. As a gets larger, however, the
decay losses become more important, and the optimal b
is no longer the minimum, as can be seen from Fig. 15.
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FIG. 16: Value of b which minimizes the fractional loss for
the muon FFAG described in the text.
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FIG. 17: Fractional loss as a function of a for the muon FFAG
described in the text.

VI. CONCLUSIONS

I have described a method for quantifying the longitu-
dinal distortion of a phase space ellipse in a dynamical
system. A Dragt-Finn expansion is used to facilitate the
lowest-order minimization of the distortion. The method
is applied to linear non-scaling FFAGs, where longitudi-
nal phase space distortion is an important design con-
sideration. It yields a procedure for choosing important
FFAG design parameters. Using emittance growth to
characterize the distortion in this system appears to be
problematic, whereas distortion of an ellipse seems to
work well.

Finally, this method has broader applicability to
single-pass systems, by changing the similarity transfor-
mation on the map by A with separate initial and final
transformations.
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