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OutlineOutlineOutline
• Technical Issues Addressed

• Objectives & Approach

• Phase I Accomplishments

• Recent Results (Phase II)
– Further versification and interpretation of IR data
– DFT Calculations and ESD
– In-situ Raman and TERS
– Patterned Electrodes with some sites selectively blocked
– Measurement of Local (micro or nano-scale) properties 
– Fabrication of Graded Electrodes

• Applicability to SECA

• Activities for the next 6-12 Months
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Critical Factor: Interfacial ResistanceCritical Factor: Interfacial ResistanceCritical Factor: Interfacial Resistance
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Origin of RP for a Porous MIEC ElectrodeOrigin of ROrigin of RPP for a Porous MIEC Electrodefor a Porous MIEC Electrode

Ions & e’ 
(current flow path)

Mass 
Transport

gas through pores

O2

Electrolyte

Reaction
Zones: 

TPBs & MIEC 
Surfaces

The Concept of FGE

Macro-porous structure
Large pores for fast Transport
High Electronic Conductivity
Compatible with Interconnect

Inter-Mixed Layer
Produce Turbulence Flow

Nano-porous structure
Highly Catalytic Active
Compatible with electrolyte
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Critical IssuesCritical IssuesCritical Issues

• Intrinsic Properties of MIEC Cathodes
– Fundamental processes at the surfaces?
– Effect of surface defects/Nano-struture?
– Effect of ionic and electronic transport?
– In-situ characterization tools and predictive models?

• Effect of Microstructure/Architecture
– Surface area/reaction sites
– Rapid gas transport through pores
– Predictive models for design of better electrodes

• Fabrication of FGE with desired microstructure 
and composition
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ObjectivesObjectivesObjectives

• To develop tools for in-situ characterization of 
electrode reactions in SOFCs;

• To gain a profound understanding of the 
elemental processes occurring at cathode-
electrolyte interfaces; and

• To rationally design and fabricate efficient 
cathodes for low temperature operation to make 
SOFC technology economically competitive. 
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Technical ApproachTechnical ApproachTechnical Approach

Modeling
• Transport in Porous Media

• Active Reaction Sites
• Reaction Pathways 

• Mechanism

Patterned Electrodes
• Reaction Pathway

• Active sites

In-situ Characterization
• FTIR/Raman, TERS
• Micro- or nano-IS

• GC/MS

Fabrication of FGE
• Optimal Microstructure
• Graded in Composition

• Cost-effective/Reproducible

SOFC Performance 
• High Performance

• Long-Term Stability
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Major Phase I Accomplishments

• Successfully fabricated patterned electrodes (SSC and LSM) with 
well-defined geometries for determination of TPB width

• Studied SOFC cathode materials using in-situ FTIR emission 
spectroscopy under practical conditions, including Pt, SSC, LSC, 
LSF, and LSCF

• Characterized surface structures of SOFC materials using Raman 
spectroscopy

• Fabricated electrodes with vastly different microstructures and 
morphologies using combustion CVD and template synthesis

• Demonstrated functionally graded cathodes of low polarization 
resistances at low temperatures.
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Recent Progress – Phase IIRecent Progress Recent Progress –– Phase IIPhase II

• Further versification and interpretation of in-situ vibrational spectra 
of cathode materials (thickness and time dependence)

• DFT calculation of vibration frequencies of surface oxygen species 
(adsorbed O2, O2

-, and O2
2-) – peak assignment

• Started study of electron-stimulated desorption (ESD) of oxygen
• Dramatically increased sensitivity and spatial resolution in probing 

surfaces using tip enhanced Raman scattering (TERS)
• Successfully fabricated patterned electrodes for specific site 

isolation
• Set up for local (micro or nano-scale) electrochemical 

measurements (IS) using SPM tips and patterned electrodes
• Developed processes for fabrication of electrodes graded in both 

composition and microstructure
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Typical IR Spectra: Bulk and Kinetic PropertiesTypical IR Spectra: Bulk and Kinetic Typical IR Spectra: Bulk and Kinetic PropertiesProperties
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FITR spectra of SSC film at different O2 partial pressureFITR spectra of SSC film at different O2 partial pressure
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peak increase with the oxygen 
partial pressure. 
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IR peak & Baseline shift ~ O2 partial pressuresIR peak & Baseline shift ~ OIR peak & Baseline shift ~ O22 partial pressurespartial pressures

The saturated oxygen partial pressure 
for oxygen adsorption is about 20%.

Corresponding to the IR peak height, 
the baseline shift at 825 cm-1 is also 
saturated when the O2 is about 20%. 

0.2

0.22

0.24

0.26

0.28

0.3

0.32

0.34

0.36

0 20 40 60 80 100 120

Oxygen partial pressure (%)

Pe
ak

 h
ei

gh
t 
∆

E/
E

-3.3

-2.8

-2.3

-1.8

-1.3

-0.8

0 20 40 60 80 100 120

Oxygen partial pressure (%)

Ba
se

lin
e 

sh
ift

 ∆
E/

E

Baseline shift and the IR peaks seem to go together!
Lower O2 pressure means higher oxygen vacancy in the bulk. Negative-going baseline 
shift therefore means decrease in bulk oxygen vacancy concentration
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Validity of Interpretation?Validity of Interpretation?Validity of Interpretation?

• How do we know that the peaks are 
corresponding to species adsorbed on surfaces, 
not changes in bulk properties?

• If so, can we prove that the peak assignments 
are correct?

• How do we know that the baseline shift is due 
really to changes in bulk properties, not in 
surface properties ?
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Thickness DependenceThicknessThickness DependenceDependence

Active bulk < skin depth
Inactive bulk

Adsorbed moleculesEmitted IR

• If the peaks are corresponding to species adsorbed on 
surface, the heights of the peaks should be 
independent of film thickness.

• If the baseline shift is due really to changes in bulk 
properties, it should increase with thickness (until the 
thickness is greater than the skin depth).
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Equilibrium FITR spectra for SSC thin film electrodesEquilibrium FITR spectra for SSC thin film electrodes
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• A broad oxide 
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centered at 1124 
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IR peak height and baseline shiftIR peak height and baseline shiftIR peak height and baseline shift

The O2
- peak height is almost 

independent of film thickness. 
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Time Dependence of pd-FTIR ESTimeTime Dependence of pdDependence of pd--FTIR ESFTIR ES
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• If the peaks are corresponding to species adsorbed on surface and the 
baseline shift is due really to changes in bulk properties, the rate of peak 
height change (rate of surface reaction) should be different from that of 
baseline shift (the rate of bulk transport) unless the rates of the two 
processes are coincidently identical.
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Rapid scan: Time resolved pd-FTIR on LSCRapid scan: Time resolved pdRapid scan: Time resolved pd--FTIR on LSCFTIR on LSC
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Conclusions for FTIR Studies Conclusions for FTIR Studies Conclusions for FTIR Studies 

• Indeed, the IR peaks correspond to species adsorbed 
on surfaces or a change in surface properties;

• The IR baseline shift is due to a change in bulk 
properties of electrode material, most likely to the 
change in oxygen vacancy concentration in the bulk 
phase;

• However, we are still unable to conclude which peak 
corresponds to which species.
- Theoretical Calculation
- Isotope Exchange
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DFT Calculation of O-O vibrationsDFT Calculation of ODFT Calculation of O--O vibrationsO vibrations

• Used DFT method (B3LYP) on Q-Chem software 
with 6-311+G(3df) basis set

• Calculated theoretical frequency of O-O bond for 
free O2, O2

-, and O2
2-

83511731592Frequency, cm-1

O2
2-O2

-O2Species
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Effect of transition metal cationEffect of transition metal Effect of transition metal cationcation

• Began calculations of O-O vibrational frequency 
when bonded to cobalt cation in SSC or LSC

• Optimized geometry first, then calculated 
frequency

Co

O

O
n+

Optimize
Co

O

O
n+

or
Co

O O

n+

Start Finish
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Most Probable Surface Configuration

For (101) phase

Oxygen vacancy Adsorbed Oxygen
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Effect of transition metal cationEffect of transition metal Effect of transition metal cationcation

DNCDNC70.5141.5∠Co-O-O, °

N/AN/A4671487O-O vibration, cm-1

DNCDNC1.20741.3100O-O bond, Å

CoO2
4+CoO2

3+CoO2
2+CoO2

+Species

*DNC denotes that geometry optimization calculation did not converge

• Calculations reveal superoxo-/peroxo- nature of 
oxygen species

• Frequencies unreliable – must include more of 
the lattice for better results
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Electron Stimulated Desorption (ESD)

e-

Auger ElectronE-beam

1 2

X-ay

Ionization Auger relaxation
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3-Step ESD Model

e-

Excitation
~ 10-15 sec

Nuclear 
Separation
~ 10-13 sec

Desorption
~ 10-11 sec

Electron excites the target via an inelastic scattering
Nuclear motion on the excited state potential surface
Outgoing atom or molecule interacts with surface



Functionally Graded ElectrodesFunctionally Graded Electrodes

What Can ESD Offer?What Can ESD Offer?What Can ESD Offer?

• Structures of adsorbate/adsorbent system

– Local bonding
– Bonding geometry
– Binding energy

• Dynamics of charge transfer

• Site specific desorption

– Defects (for example: oxygen vacancy)
– Local disorder
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QMS Sample Transfer Stage

XYZ-Rotation Stage

Sample Holder

Turbo

Loading Cell

E-Gun

QMS Sample Transfer Stage

XYZ-Rotation Stage

Sample Holder

Turbo

Loading Cell

E-Gun

QMS Sample Transfer Stage

XYZ-Rotation Stage

Sample Holder

Turbo

Loading Cell

E-Gun

ESD Experimental Set-Up

Prof. Thom Orlando
Chemistry, GT
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GDC Sample for ESD StudyGDC Sample for ESD Study

Compostition :
Ce0.9Gd0.1O1.95 (gadolinia doped ceria, GDC )

Preparation: 
Combustion of metal nitrate
Calcine in air at 600ºC for 2 h
Cold press into pellets
Fired at 1450ºC for 5 h

Characterization:
Relative density: 95% to 97%
XRD: fluorite structure
SEM: grain size about 5 µm



Functionally Graded ElectrodesFunctionally Graded Electrodes

Electron Energy Dependence of ESD 

0 20 40 60 80 100

O+ O+ threshold energy is 22 eV
relevant to the direct 
ionization of O2s level 
followed by an intra-atomic 
Auger cascade

The feature around 50 eV is 
related to the Auger process 
that involves the excitation 
of 5s level of cerium and 
gadolinium

Ready to study cathode 
materials (e.g, SSC)

Electron Energy (eV)



Functionally Graded ElectrodesFunctionally Graded Electrodes

FTIR – Isotope DosingFTIR FTIR –– Isotope DosingIsotope Dosing

• Difficulties

— Precise control of Po2

— Fast oxygen exchange at high temperature

• Approach – FTIR in UHV

— Diffuse-reflectance IR (DRIFTS) set up for low temperature FTIR 
measurement

— Emission IR set up for high temperature FTIR measurement 



Functionally Graded ElectrodesFunctionally Graded Electrodes

High-Temp Emission IR SpectroscopyHighHigh--Temp Emission IR SpectroscopyTemp Emission IR Spectroscopy
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Low-Temp (LN) DRIFTSLowLow--Temp (LN) DRIFTSTemp (LN) DRIFTS

FTIR
A

B

B

C

A - plain mirror
B - parabolic mirror F=69, 100, 153, 180, 220, 250, 300, 400, 418 mm
C - parabolic mirror F= 43 mm

DETECTOR

Vac. Chamber

3P

2P
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6.
02
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D
etector

1.70”3”

FTIR
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Other Tools for in-Situ StudiesOther Tools for inOther Tools for in--Situ StudiesSitu Studies

• Probing and Mapping Surface Reactions using Raman 
Spectro-microscopy

• Tip Enhanced Raman Spectroscopy (TERS)

– Combination of Raman and SPM

• Patterned Electrodes for Isolation of Reaction Sites
• Local (micro or nano-scale) measurement using SPM 

tips and patterned electrodes; TERS, Raman mapping
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Raman Spectra of LSC in a Controlled AtmosphereRaman Spectra of LSC in a Controlled AtmosphereRaman Spectra of LSC in a Controlled Atmosphere
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Raman Spectra of Cobalt Compounds in AirRaman Spectra of Cobalt Compounds in AirRaman Spectra of Cobalt Compounds in Air
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• 3 types of 
oxygen 
species are 
observed

• But the peaks 
are week
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Tip-Enhanced Raman Scattering (TERS)

Nano-sized 
Au, Ag or Cu tip

Sample 

Objective lens

e-e-

Illumination

SERS

K. SHIBAMOTO, et al., ANALYTICAL SCIENCES 2001, VOL.17 SUPPLEMENT

SERS Mechanism
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Our Integrated Raman and SPMOur Integrated Raman and SPMOur Integrated Raman and SPM

Objective

Scanners
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Schematic Arrangement for TERSSchematic Arrangement for TERSSchematic Arrangement for TERS

45o

•Tip with Ag coating and small diameter (50 nm) for TERS
•Tuning fork technology removing the interruptions of other laser source 

Unique Capabilities:
Spatial Resolution: up to 50 nm
Very Sensitive to the Chemical Nature of Surfaces
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Capabilities of Our SystemCapabilities of Our SystemCapabilities of Our System

TERS

AFM Image
Raman Mapping

To be 
Obtained
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TERS: Single Crystal SiliconTERS: Single Crystal SiliconTERS: Single Crystal Silicon
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TERS: Oxygen species Adsorbed on LSMTERS: Oxygen species Adsorbed on LSMTERS: Oxygen species Adsorbed on LSM
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Peroxide species (O2
2-) on LSM surface was not observable with ordinary Raman or FTIR, but 

observable with TERS. Mechanism on LSM is different from that on SSC or LSC
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TERS: Carbon deposited on YSZTERS: Carbon deposited on YSZTERS: Carbon deposited on YSZ
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Preliminary results: The Raman intensities of the G and D mode are dramatically 
enhanced by the AFM tip.
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TERS – A Sensitive Surface ProbeTERS TERS –– A Sensitive Surface ProbeA Sensitive Surface Probe

• Dramatically enhanced sensitivity to surface 
species (up to 108)

• Increased spatial resolution (up to 20 nm) for 
mapping of active sites for electrode reactions

• Unlike IR, TERS is not influenced by gas phase 
H2O and CO2 and especially sensitive to carbon 
and sulfur, making it a powerful tool for 
investigation of fuel reforming and anodes of 
SOFCs running on hydrocarbon fuels (e.g., 
gasified coal)
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Patterned ElectrodesPatterned ElectrodesPatterned Electrodes

• Patterned electrodes with the length of TPB 
varying in 4 orders of magnitudes

• Patterned electrodes with some reaction 
sites selectively blocked

• Combination of patterned electrodes and  
SPM tip for performing local (micro- to 
nano-scale) electrochemical measurements
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Possible Reaction SitesPossible Reaction SitesPossible Reaction Sites
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A Photolithographic Process for Isolation of Reaction SitesA Photolithographic Process for Isolation of Reaction SitesA Photolithographic Process for Isolation of Reaction Sites

YSZ electrolyte

PhotoresistPhotoresist Undercut

PMGI PMGI50µm

Photoresist

Ti-coating

YSZ electrolyte

LSM patterned electrode

Ti coating

PMGIPMGI

LSM electrode 

0.26 µm LSM
Ti-coating

YSZ electrolyte

LSM patterned electrode 0.26µm

YSZ electrolyte

LSM patterned electrode

YSZ electrolyte

LSM patterned electrode
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Typical MicrographsTypical MicrographsTypical Micrographs

YSZ electrolyte

LSM microelectrode

TiO2
coating

TPB

Edge of 
TiO2

µm

YSZ electrolyte
LSM Electrode

TiO2

0.26 µm x 50 µm

3.0 µmYSZ 
Electrolyte
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Proof-of-Concept: Effect of Site BlockingProofProof--ofof--Concept: Effect of Site BlockingConcept: Effect of Site Blocking
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• The surface of the 
patterned (0.26x50µm) 
LSM electrode 
contributes 
significantly to oxygen 
reduction.

• The micro-fabrication 
technique is effective in 
isolation of different 
reaction sites.
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Local Electrochemical Measurements

Impedance Analyzer

SPM
Controller

Patterned 
Electrode

Impedance Analyzer

SPM
Controller

Patterned 
Electrode

To probe local properties using impedance spectroscopy performed on an SPM 
tip and patterned electrodes with micro- or nano-scale spatial resolution 
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Impedance of an Individual Grain/GB/TPB
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2

Patterned Electrode

1
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Patterned Electrode

Impedance Analyzer
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Graded Electrodes Prepared by Combustion CVD

GDC

70 wt.% LSC+30 
wt.% GDC

LSC

YSZ
YSZ-substrate

GDC-CCVD
50wt%LSC-50wt%GDC-CCVD

LSC-powder spray
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Applicability to SOFC CommercializationApplicability to SOFC CommercializationApplicability to SOFC Commercialization

• Generated some basic understanding of 
electrode reaction mechanisms

• Developed new tools for in-situ
determination of electrode properties 
under practical conditions

• Rational design of efficient electrodes
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Activities for the Next 12 MonthsActivities for the Next 12 MonthsActivities for the Next 12 Months

1) Oxygen isotrope exchange experiments in UHV chamber for study of 
detailed reaction mechanisms using vibrational spectroscopy

• FTRI, pd-FTIR, Rapid Scan FTIR

• TERS and Raman Mapping

2) Refined calculations of vibrational spectra for different cathode 
materials to assist interpretation of FTIR and Raman data for 
different electrodes 

• Oxygen reaction mechanism and kinetic parameters

• Bulk properties such as vacancy concentration and transport 
properties

3) Local measurements using SPM tips and patterned electrodes to probe 
local properties under in-situ conditions

4) Optimize Templated Synthesis and Combustion CVD for Fabrication 
of FGEs
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