Functionally Graded Cathodes for SOFCs

Project Manager: Dr. Lane Wilson
DOE National Energy Technology Laboratory

E. Koep, Q. Wu, H. Abernathy, J. Dong, Y. Liu & M. Liu

Center for Innovative Fuel Cell and Battery Technologies
School of Materials Science and Engineering
Georgia Institute of Technology

Collaborators: T. Orlando and H. Chen
Chemistry and Biochemistry, GT

May 11 — 13, 2004

[ Functionally Graded Electrodes ]



* Technical Issues Addressed

* Objectives & Approach
 Phase | Accomplishments

* Recent Results (Phase ll)

— Further versification and interpretation of IR data

— DFT Calculations and ESD

— In-situ Raman and TERS

— Patterned Electrodes with some sites selectively blocked
— Measurement of Local (micro or nano-scale) properties
— Fabrication of Graded Electrodes

« Applicability to SECA
 Activities for the next 6-12 Months
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Critical Factor: Interfacial Resistance
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Origin of Ry for a Porous MIEC Electrode
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Critical Issues
D

-
* Intrinsic Properties of MIEC Cathodes

— Fundamental processes at the surfaces?

— Effect of surface defects/Nano-struture?

— Effect of ionic and electronic transport?

— In-situ characterization tools and predictive models?

« Effect of Microstructure/Architecture

— Surface area/reaction sites
— Rapid gas transport through pores
— Predictive models for design of better electrodes

 Fabrication of FGE with desired microstructure
and composition
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Objectives
o [TTTTN——

* To develop tools for in-situ characterization of
electrode reactions in SOFCs:

« To gain a profound understanding of the
elemental processes occurring at cathode-
electrolyte interfaces; and

« To rationally design and fabricate efficient
cathodes for low temperature operation to make
SOFC technology economically competitive.
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Technical Approach
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Major Phase | Accomplishments

® Successfully fabricated patterned electrodes (SSC and LSM) with
well-defined geometries for determination of TPB width

¢ Studied SOFC cathode materials using in-situ FTIR emission
spectroscopy under practical conditions, including Pt, SSC, LSC,
LSF, and LSCF

® Characterized surface structures of SOFC materials using Raman
spectroscopy

® Fabricated electrodes with vastly different microstructures and
morphologies using combustion CVD and template synthesis

® Demonstrated functionally graded cathodes of low polarization
resistances at low temperatures.

[ Functionally Graded Electrodes ]



Recent Progress — Phase I

Further versification and interpretation of in-situ vibrational spectra
of cathode materials (thickness and time dependence)

DFT calculation of vibration frequencies of surface oxygen species
(adsorbed O,, O,7, and O,?") — peak assignment

Started study of electron-stimulated desorption (ESD) of oxygen

Dramatically increased sensitivity and spatial resolution in probing
surfaces using tip enhanced Raman scattering (TERS)

Successfully fabricated patterned electrodes for specific site
1solation

Set up for local (micro or nano-scale) electrochemical
measurements (IS) using SPM tips and patterned electrodes

Developed processes for fabrication of electrodes graded in both
composition and microstructure

psitutnite
relogry
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Typical IR Spectra: Bulk and Kinetic Properties
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‘ FITR spectra of SSC film at different O, partial pressure \
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Gas switching from N, to a gas
containing Po, (0.5 to 100%)

Both negative-going baseline
shift and positive-going IR
peak increase with the oxygen
partial pressure.
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IR peak & Baseline shift ~ O, partial pressures
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Corresponding to the IR peak height,
the baseline shift at 825 cm™! is also
saturated when the O, is about 20%.
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Baseline shift and the IR peaks seem to go together!

Lower O, pressure means higher oxygen vacancy in the bulk. Negative-going baseline
shift therefore means decrease in bulk oxygen vacancy concentration
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Validity of Interpretation?

 How do we know that the peaks are
corresponding to species adsorbed on surfaces,
not changes 1n bulk properties?

 If so, can we prove that the peak assignments
are correct?

 How do we know that the baseline shift 1s due
really to changes 1n bulk properties, not in
surface properties ?
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Dependence
IR

Emitted IR
44 ? 444 ? = Adsorbed molecules

O Ommo <— Active bulk <skin depth

* [If the peaks are corresponding to species adsorbed on
surface, the heights of the peaks should be
independent of film thickness.

* If the baseline shift is due really to changes in bulk
properties, 1t should increase with thickness (until the
thickness 1s greater than the skin depth).
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Equilibrium FITR spectra for SSC thin film electrodes \
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IR peak height and baseline shift
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The O, peak height is almost
independent of film thickness.

The baseline shifts at (a)
3020, (b) 2128, and (c¢)
825 cm! increase with
film thickness.

Larger baseline shift is
observed at lower
wavenumber (or longer
wavelength with larger
skin depth).
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Dependence of pd-FTIR ES
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If the peaks are corresponding to species adsorbed on surface and the
baseline shift 1s due really to changes in bulk properties, the rate of peak
height change (rate of surface reaction) should be different from that of
baseline shift (the rate of bulk transport) unless the rates of the two
processes are coincidently identical.
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Rapid scan: Time resolved pd-FTIR on LSC
I
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Conclusions for FTIR Studies

 Indeed, the IR peaks correspond to species adsorbed
on surfaces or a change in surface properties;

 The IR baseline shift is due to a change in bulk
properties of electrode material, most likely to the
change in oxygen vacancy concentration in the bulk
phase;

 However, we are still unable to conclude which peak
corresponds to which species.

- Theoretical Calculation
- Isotope Exchange
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DFT Calculation of O-O vibrations

 Used DFT method (B3LYP) on Q-Chem software
with 6-311+G(3df) basis set

 Calculated theoretical frequency of O-O bond for
free O,, O,, and O,*

Species O, O, O,?%

Frequency, cm-’ 1592 1173 835
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Effect of transition metal cation

« Began calculations of O-O vibrational frequency
when bonded to cobalt cation in SSC or LSC

* Optimized geometry first, then calculated

frequency
_ — n+ _ — n+ _ — n+
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Most Probable Surface Configuration
T

e
For (101) phase

@ Oxygen vacancy @ @ Adsorbed Oxygen
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Effect of transition metal cation

Species CoO,* | Co0,2* | Co0O3* CoO,*
O-0 bond, A 1.3100 | 1.2074 DNC DNC
/Co0-0-0, ° 141.5 70.5 DNC DNC
O-O vibration, cm™' | 1487 467 N/A N/A

*DNC denotes that geometry optimization calculation did not converge

« Calculations reveal superoxo-/peroxo- nature of

oxygen species

* Frequencies unreliable — must include more of

the lattice for better results
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‘ Electron Stimulated Desorption (ESD) |
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‘ 3-Step ESD Model \

Excitation Nuclear Desorption
Separation

~ 101> sec 13 ~ 10" sec
~ 10-"% sec

= Electron excites the target via an inelastic scattering
= Nuclear motion on the excited state potential surface

= Outgoing atom or molecule interacts with surface
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« Structures of adsorbate/adsorbent system

— Local bonding
— Bonding geometry
— Binding energy

 Dynamics of charge transfer
« Site specific desorption

— Defects (for example: oxygen vacancy)
— Local disorder

4
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[ Functionally Graded Electrodes ] @i melee)y



| ESD Experimental Set-Up |

XYZ-Rotation Stage

Sample Holder Loading Cell

Sample Transfer Stage

Prof. Thom Orlando
Chemistry, GT
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\ GDC Sample for ESD Study |

Compostition .

Ce, 4Gd, 0, 45 (gadolinia doped ceria, GDC )

Preparation:
Combustion of metal nitrate

Calcine 1n air at 600°C for 2 h

Cold press into pellets
Fired at 1450°C for 5 h

Characterization:
Relative density: 95% to 97%

XRD: fluorite structure
SEM: grain size about 5 um

I&GeorglﬂUEr"‘S fiunte
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 Electron Energy Dependence of ESD |

O* threshold energy is 22 eV
relevant to the direct
ionization of O0O2s level
followed by an intra-atomic
Auger cascade

The feature around 50 eV is
related to the Auger process
that involves the excitation
of 5s level of cerium and
gadolinium

Ready to study cathode

0 20 40 60 80 100 materials (e.g, SSC)

Electron Energy (eV)

[ Functionally Graded Electrodes ]



FTIR — Isotope Dosing
o [TTTTN——

 Difficulties

— Precise control of Po2

— Fast oxygen exchange at high temperature

. Approach — FTIR in UHV

— Diffuse-reflectance IR (DRIFTS) set up for low temperature FTIR
measurement

— Emission IR set up for high temperature FTIR measurement

Georgiall"= e
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High-Temp Emission IR Spectroscopy

Sequence of Type of of mirrors
mirrors F: flat m1r1:0r .
P: parabolic mirror

Georgial=tiinie
[ Functionally Graded Electrodes ] || @ Technology



Low-Temp (LN) DRIFTS

/
/ [
Vac. Chamber ) / e

y 7

FTI R j CY  DETECTOR

A

A - plain mirror
B - parabolic mirror F=69, 100, 153, 180, 220, 250, 300, 400, 418 mm
C - parabolic mirror F= 43 mm
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Other Tools for in-Situ Studies

* Probing and Mapping Surface Reactions using Raman
Spectro-microscopy

* Tip Enhanced Raman Spectroscopy (TERS)
— Combination of Raman and SPM

e Patterned Electrodes for Isolation of Reaction Sites

* Local (micro or nano-scale) measurement using SPM
tips and patterned electrodes; TERS, Raman mapping
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Raman Spectra of LSC in a Controlled Atmosphere
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Raman Spectra of Cobalt Compounds in Air
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« 3 types of
oxygen
species are
observed

« But the peaks
are week
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Tip-Enhanced Raman Scattering (TERS)

SERS Mechanism
Objective lens - N

< 4

Nano-sized

[llumination Au, Ag or Cu tip within 200 fs
B adsorbed
°c molecules

) A

! A
DR Fermi
IR SERS level

ep
acceleration

Excitation

d-orbital

\. A
K. SHIBAMOTO, et al., ANALYTICAL SCIENCES 2001, VOL.17 SUPPLEMENT
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Our Integrated Raman and SPM

Objectivé

Scanners
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Schematic Arrangement for TERS

Objective
NanonicsProbe.
r ool

*Tip with Ag coating and small diameter (50 nm) for TERS
*Tuning fork technology removing the interruptions of other laser source

Unique Capabilities:
Spatial Resolution: up to 50 nm
Very Sensitive to the Chemical Nature of Surfaces
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Capabilities of Our System

TERS
Raman Laser

[
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! AFM Image
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TERS: Oxygen species Adsorbed on LSM
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Peroxide species (0,%) on LSM surface was not observable with ordinary Raman or FTIR, but
observable with TERS. Mechanism on LSM is different from that on SSC or LSC
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TERS: Carbon deposited on YSZ
B
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Preliminary results: The Raman intensities of the G and D mode are dramatically
enhanced by the AFM tip.
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TERS — A Sensitive Surface Probe

* Dramatically enhanced sensitivity to surface
species (up to 108)

* Increased spatial resolution (up to 20 nm) for
mapping of active sites for electrode reactions

« Unlike IR, TERS is not influenced by gas phase
H,O and CO, and especially sensitive to carbon
and sulfur, making it a powerful tool for
investigation of fuel reforming and anodes of
SOFCs running on hydrocarbon fuels (e.g.,
gasified coal)

Georgiall"= e
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Patterned Electrodes
I —

» Patterned electrodes with the length of TPB
varying in 4 orders of magnitudes

 Patterned electrodes with some reaction
sites selectively blocked

« Combination of patterned electrodes and
SPM tip for performing local (micro- to
nano-scale) electrochemical measurements
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Possible Reaction Sites

Path B.
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(a) Electrolyt
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Typical Micrographs

0.26 um x 50 um

TiO,

LSM Electrode 4

YSZ electrolyte

YSZ
Electrolyte

SEM
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Proof-of-Concept: Effect of Site Blocking
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isolation of different
reaction sites.
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[.ocal Electrochemical Measurements

Impedance Analyzer

Patterned
Electrode

To probe local properties using impedance spectroscopy performed on an SPM
tip and patterned electrodes with micro- or nano-scale spatial resolution

(
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Impedance of an Individual Grain/GB/TPB

WY

Impedance Analyzer
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‘ Graded Electrodes Prepared by Combustion CVD \

LSC-powder spray’

70 wt.% LSC+30

’ _
wt7% GDC S0WE41SC-50wt%GDC- cevh/
T ane T F el o aley | LA SXF
YSZ-substr_ate pe 20-.0..u‘m 2
YSZ

GeorgLItr‘wtrm
I&um i

[ Functionally Graded Electrodes ] logy



Applicablility to SOFC Commercialization

* Generated some basic understanding of
electrode reaction mechanisms

* Developed new tools for in-situ
determination of electrode properties
under practical conditions

- Rational design of efficient electrodes
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1)

2)

3)

4)

Activities for the Next 12 Months

Oxygen isotrope exchange experiments in UHV chamber for study of
detailed reaction mechanisms using vibrational spectroscopy

« FTRI, pd-FTIR, Rapid Scan FTIR
« TERS and Raman Mapping

Refined calculations of vibrational spectra for different cathode
materials to assist interpretation of FTIR and Raman data for
different electrodes

 Oxygen reaction mechanism and Kinetic parameters

 Bulk properties such as vacancy concentration and transport
properties

Local measurements using SPM tips and patterned electrodes to probe
local properties under in-situ conditions

Optimize Templated Synthesis and Combustion CVD for Fabrication
of FGEs
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