
OWL for Space Mission Systems development at

JPL with semantic architecture styles

Nicolas F. Rouquette1, Gary M. Wasserman123, and Vanessa D. Carson14

1 Jet Propulsion Laboratory
California Institute of Technology

4800 Oak Grove Drive
Pasadena, California 91109, USA

{nicolas.f.rouquette,gary.m.wasserman,vanessa.d.carson}@jpl.nasa.gov
2 Department of Computer Science

University of California, Davis
3 Kestrel Institute
3260 Hilview Avenue

Palo Alto, California 94304
4 Department of Mathematics

University of Southern California
Los Angeles, California 90089-2532

Abstract. The Jet Propulsion Laboratory has over 40 years of experi-
ence in engineering complex space mission projects for NASA. This paper
presents a perspective on the challenges involved in using OWL for repre-
senting the diverse heterogeneous viewpoints involved in the engineering
and operation of space missions.

1 Introduction

Over more than 50 years, the Jet Propulsion Laboratory has had a solid track
record of successes across a wide range of robotic space missions for NASA and
other agencies. These accomplishments have enabled us to stretch the frontiers of
scienti�c knowledge about space by leaps and bounds. Each leap in science raises
expectations for corresponding leaps in engineering capability and know-how to
baseline current capabilities as a stepping stone to deliver the additional capabil-
ities necessary to tackle the next round of scienti�c inquiry. What makes NASA
and space exploration so unique are the severe constraints under which this spiral
of scienti�c and engineering knowledge growth takes place: inherently high-risk
one-of-a-kind engineering artifacts designed with increasingly tight budgets and
whose return-on-investment is measured on a single multi-year product launch
and where product families arise from opportunistic success instead of architec-
tural intent. This complex environment creates unique short-term and long-term
application opportunities for ambitious vision of the semantic web. Currently,
the success of space missions depends critically on intangible factors such as
experience, wisdom, craft, and particularly a spirit of out-of-the-box thinking
to anticipate where the limits of our scienti�c knowledge are such that we can



engineer space systems that, while operating safely within these limits, will give
us precious window seats on the scienti�c discoveries ahead. Limited budget
and schedule resources mandate improvements in engineering practices for space
mission design, development and operations.

The overarching challenge is thus a complex optimization problem. The con-
trolled variable is the engineering methodology itself. Convincing engineers to
switch methodology would require a strong incentive that outweighs the prac-
tical inconveniences and setbacks for doing so. Ultimately, the e�ectiveness of
an engineering methodology depends on the degree to which it helps engineers
evaluate, compare non-functional attributes such as reliability and assurance in
terms of the characteristics of the design itself and of the engineering work that
produced it. The major hurdle in this area stems from the intrinsic heterogene-
ity of the various kinds of models involved in a typical space mission project
life-cycle. The semantic web provides the only perspective in which we can unify
the multitude of scienti�c, engineering and organizational objectives involved in
a space mission. The optimization analogy from control systems makes sense
only in the context of an overall architecture for describing space missions that
accounts for enough viewpoints from science and engineering such that the opti-
mization problem can be precisely stated. Without a single unifying perspective,
it make sense, therefore, to view this problem from the semantic web perspective
where plurality is the norm. Within a narrow �eld of engineering, the heterogene-
ity inherent in specialized engineering model representations can be resolved by
mapping the semantics of each specialized model representation to a common
upper ontology that provides a coherent, semantics-preserving abstract repre-
sentation of all specialized models [1]. On a broader scale, it is unlikely that a
single upper ontology can accommodate the multitude of concerns and objec-
tives found across the many disciplines involved in a space mission project. In
[1], the authors contrast their Product Speci�cation Representation Language
(PSRL) ontology with the closely related Process Speci�cation Language (PSL)
ontology[2] as a distinction between specifying the manufactured product itself
and the manufacturing of that product. The concerns and objectives that re�ect
the di�erent viewpoints used for a particular concept (e.g., �product� in PSRL
& PSL) induce yet another level of semantic heterogeneity across the multi-
tude of viewpoint-speci�c ontologies. Handling semantic heterogeneity involves
a pervasive concept identi�cation problem: how to distinguish when two onto-
logical representations from di�erent viewpoints refer to the same individual or
to distinct individuals.

Concept identi�cation criteria is one of the important issues in ontology de-
velopment discussed in the OntoClean methodology[4] for analyzing relationships
among taxonomic concepts in a practical manner with tool support for concept
annotation and reasoning. This methodology represents a step in the right di-
rection for tackling semantic heterogeneity across viewpoints. To capture subtle
di�erences among viewpoints such as distinguishing a product as an engineered
artifact in PSRL's viewpoint vs. the outcome of a process in PSL's viewpoint, we
need ontological knowledge about how particular descriptions of a concept in a



given viewpoint relate to the concept itself, i.e., the criteria that give its identity
as a recognizable trait across all descriptions. These issues have been extensively
researched within the WonderWeb project's development of the DOLCE library
of foundational ontologies[6]. DOLCE makes an important distinction between
descriptions of generic state of a�airs involving a set of inter-related individ-
uals and a particular situation of this state of a�airs occurring at a speci�c
time. The methodology for applying DOLCE's Description&Situation ontology
is more complex than OntoClean since it forces the ontology developer to think
carefully about the ontological nature of each domain-speci�c concept separately
from other semantic representations of that concept for purposes of description
and situation across multiple viewpoints.

The separation of description and situation in formal ontology is particu-
larly relevant to the �Recommended Practice for Architectural Description of
Software-Intensive Systems description� standard[9]. This standards explains
heterogeneity in architecture descriptions and models using concepts of multiple
viewpoints, concerns and objectives across stakeholders. On a practical level, het-
erogeneity leads to an entropy of multiple specialized models and descriptions of
systems di�cult to map to one another because schedule pressures prevent most
engineers to take the necessary steps to seek out common ontological abstractions
like PSRL in mechanical engineering. Experience in applying the IEEE-1471 rec-
ommendations gives hope that reducing the entropy of descriptions involved [11]
can be practical. Little is available to switch from a recommendation to useful
methodology guidance. Beyond IEEE-1471[10], the RM-ODP standard[13] of-
fers a conceptual framework that, although incompletely addressing the space
domain, provides nonetheless a useful categorization of concepts for ontology
development[14]. Work on formalizing RM-ODP in logic [15] argues for de�ning
modeling elements using a combination of basic modeling concepts (e.g., object,
action, state) and speci�cation concepts (e.g., type, instance, composition). Their
approach shows a step in the right direction towards formalizing heterogeneous
models with enough rigor to properly re�ect the di�erences across viewpoints in
the RM-ODP, the source of heterogeneity. In fact, it is tempting to consider re-
placing the basic modeling concept ontology in [15] with DOLCE's richer upper
ontology since the former seems to be a subset of the conceptual taxonomy of
the latter. A richly axiomatized concept taxonomy might seem more complex to
use in practice than an informal taxonomy or even an ad-hoc folksonomy; how-
ever, the value the former is in the degree to which all ontological considerations
relevant to the application domain have already been factored in a way that pro-
vides useful guidance and an authoritative reference for modeling. Earlier work
at JPL on the Mission Data System project[23] would suggest extending the
speci�cation concept ontology to properly account for the multiple themes[21]
as distinct viewpoints on the central notion of �state�. DOLCE's top-level dis-
tinction between endurants and perdurants provides a semantic basis for making
the distinction between �state� and �state type� where the former refers to an
endurant (i.e., it is an characteristic of a system at a particular time) and the
latter refers to a perdurant concept that describes the class of endurant states



whose characterization of a system is speci�ed in terms of semantically equiv-
alent domain-speci�c information criteria (e.g., temperature, voltage, current,
etc..).

MDS includes concepts of architecture like estimation, control, determina-
tion that, when combined with domain-speci�c typing combine to form an ar-
chitecture style rich in constraints[23]. At JPL and elsewhere[16,17,18], signif-
icant e�orts were made to capture the MDS architecture style using a variety
of formalisms, ADLs[25,28]and code generation techniques to maintain the con-
sistency between an architecture speci�cation and its implementation. The JPL
architecture framework closely mimicked UCI's xADL framework using advanced
generic programming techniques in C++ and a code generation techniques[20]
most of which are currently found in UML 2.0's notion of structured classes
with ports and in OMG's Model-Driven Architecture initiative for model-based
transformation. SRI's approach[18] based on Maude's Equational and Rewriting
Logic[30] makes a strong case for using formal Architecture Description Lan-
guages instead of informal ones. Their conclusions combine synergistically with
those reached in [19]. Perhaps ACME and its constraint language, Armani[27],
can be seen as early precursors[28] of a trend towards formalizing ADLs in a prac-
tical tool-supported methodology. This trend has gained signi�cant momentum
in recent years with assume-guarantee reasoning techniques[31] whose applica-
bility to space mission systems has already been demonstrated[32]. Perhaps the
outcome of this trend may be an emphasis on specifying architecture components
in formal logic[33] to better relate the speci�cation and operational aspects of
components as modules as suggested in [29] for the Maude system.

A highly rigorous methodology like [33] seems very attractive in light of ear-
lier experiences [19] suggesting that, for ADLs, formal methodologies can yield
practical advantages over informal methodologies. Yet, even [19] would require
extensions to provide adequate methodology support for MDS-like speci�ca-
tions. At JPL, the C++ framework for state analysis was designed to facilitate
design-time and runtime veri�cation based on ideas borrowed from xADL such
as the distinction between the prescribed and described architecture. The former
is equivalent to a DOLCE perdurant description concept. The latter is equiva-
lent to a DOLCE endurant situation concept that re�ects the architecture of the
system at a particular time. Runtime architecture description in xADL requires
introspection mechanism to ensure that the architecture description re�ects the
system's current architecture con�guration across runtime operations that mod-
ify the architecture � e.g., creating and deleting components/connectors, bind-
ing component/connector ports and a partial implementation of OMG's Corba3
concept of interceptors with the capability to add/remove interceptors on com-
ponent/connector ports for wrapping method calls (before, after, around, mod-
ify) and for handling/rerouting exceptions thrown. Interception is a powerful
mechanism that is somewhat unique to JPL's C++ implementation of the MDS
framework for State Analysis compared to other implementations in C++[16],
Java[20,17,19] and Maude[18]. At the time this feature was designed generic
programming techniques in C++[34] based on static metaprogramming[36] were



notorious for their excessive template stress factor on C++ compilers. The ini-
tial motivation for adding interception to MDS turned out to be a particularly
important feature in subsequent investigations of dynamic processor schedul-
ing techniques in MDS[37]. Here, interception provides a useful mechanism that
decouples the design of a software architecture (without interception) from ar-
chitecture aspects woven into the architecture to add extra functionality (e.g.,
dynamic scheduling) compared to the original architecture (e.g., static schedul-
ing). In particular, weaving a dynamic scheduler requires intercepting the activ-
ity of major components to include usage measurements as well as extracting
from the architecture prescription metadata about dynamic scheduling proper-
ties such as a-priori utility ranking in our experiments.[37]. While powerful, the
C++ runtime system for MDS and the metaprogramming tool support were
unwieldy and di�cult to scale. In part, these issues re�ect the antiquated nature
of C++'s runtime system that has, since then, been signi�cantly extended in a
recent revision of the standard. On one hand, the new C++ CLI would make a
number of architecture issues like interception support for dynamic scheduling
dramatically simpler. On the other hand, there would still be fundamental issues
of insu�cient formalism in State Analysis' architecture.

2 Architecture style squabbles that amount to things

that matter

Motivated to �nd ways to increase both rigor and pragmatism, later work switched
to term-rewriting[39] techniques using a high-performance infrastructure[40] that
makes generative programming positively rewarding and extremely agile despite
being harder to advocate with project managers. DMS is a language/domain
neutral infrastructure for transformation. Initial experiments focused on reverse
engineering the xADL architecture prescription and description models used for
JPL's Rocky7 experimental rover into ACME models where JPL and CMU col-
laborated to develop an architecture style for State Analysis. Master students
from CMU developed a simpli�ed version of State Analysis[17] whose main con-
ceptual di�erence with JPL's State Analysis database and its C++ runtime
system in MDS is in the strategies for handling type information associated to
the State Analysis speci�cation concepts: state, estimator, controller, measure-
ment, command, etc... In [17], the state analysis concepts are implicitly typed
in the sense that the domain-speci�c information that distinguishes a tempera-
ture state from a position state is in the values stored in the state object, e.g.
instead of being part of the signature of the state object. Speci�cally, the ar-
chitecture style for State Analysis in [17] uses a set of component types that
is domain-agnostic, i.e.,: StateVariableT, EstimatorT, ControllerT, ... In con-
trast, the initial C++ implementation in MDS used a set of generic component
types parameterized by the domain, i.e.,: template<type T> class StateVari-

able<T>;, template<type T> class Estimator<T>;, ... Initial e�orts at JPL to
develop an architecture style for State Analysis in ACME attempted to follow
the C++ generic approach. Unfortunately, this quickly led to unwieldy and com-



plex architecture styles; paradoxically because these e�orts made naive use of
Acme's Armani language for modeling architecture style constraints in logic[27],
a speci�cation-level variant of the infamous architecture mismatch pitfall[26]. At
the time, this mismatch was viewed in the context of language wars at JPL: C++
detractors jumping on assertions that template metaprogramming amounts to
madness5 and Java detractors claiming rampant object-oriented polymorphism
pay little attention to important architecture matters that induce high risk for
spaghetti-like re-entrant callbacks and fragile base classes that jeopardize over-
all reliability[35]. These skirmishes of implementation-level programming argu-
ments hide an important issue in formal architecture speci�cations: how to decide
whether domain-speci�c type information must be part of the architecture style
or separated from the architecture style.

In the MDS project at JPL, C++ detractors reached enough critical mass
to make a signi�cant revision of the C++ implementation framework. Inspired
from the GoldenGate collaboration project with Sun to develop and demon-
strate a framework for State Analysis in Real-Time Java, the C++ framework
was refactored using a polymorphic base class for domain-speci�c state values.
This simpli�ed the State Analysis concepts from static metaprogramming using
C++ templates to dynamic polymorphism using C++ RunTimeTypeInference
(RTTI) mechanism: i.e., from: template<type T> class StateVariable<T>; to
simply: class StateVariable;. However, this shifted the problem to the imple-
mentation of achievers, i.e., controllers and estimators. An estimator typically
processes input measurements from sensors and queries state variables to com-
pute updates for the state variables it is estimating whereas a controller typically
queries state variables to evaluate its control law and compute output commands
to actuators.[23]. In a polymorphic architecture style for State Analysis, whether
it is implemented in Java, C++ or any other language, it is architecturally im-
portant to ensure that the prescribed architecture is properly wired to ensure
that an achiever that queries a state variable of a given domain-speci�c type
(e.g., temperature) will in fact be connected to query a variable of that kind.
With the C++ framework, this requirement was enforced as early as possible
to avoid checking it at every computation. Thus, the C++ compiler could en-
force that static architecture prescriptions were type consistent and the runtime
architecture framework could enforce that any component/connector binding
operation is type consistent, whether such operations occurred at the initial
construction of the runtime architecture from the prescription model or from
subsequent changes due to runtime modi�cations via editing bindings or inter-
ception rerouting. With the simpli�ed state analysis design, the compiler and
the runtime architecture framework have a polymorphic view of state values
disconnected of any domain-speci�c type information. In this case, the respon-
sibility for domain-speci�c type consistency shifts to the implementation of the

5 Stanley Lippman brie�y consulted at JPL and upon review of the author's C++ code
had only one friendly adjective to describe the programming style behind it: mad.

This is considerably more gentle than other descriptions associated with Alexan-
drescu's style[34] from which the MDS code was largely inspired.



achievers (i.e., controllers and estimators). Therefore, a practical consequence
is that implementers have to include runtime type checking code to ful�ll type
consistency requirements.

Conceptually, type checking code is an incidental detail that a particular
implementation strategy like runtime polymorphism turns into an essential im-
plementation matter. However, the underlying issue is beyond static vs. runtime
polymorphism. Hopefully, a convincing argument for this view on typing can be
made using the Graph State Variable framework from State Analysis[22]. The
GSV framework is intended to support modeling domain-speci�c notions of state
where the domain includes notions of functional relationships among states in
that domain. The most common application of this framework pertains to mod-
eling the position of uncoupled physical objects using a 6-degree of freedom
(6-dof) representation for state position and orientation where relative motion
constraints among physical objects are modeled using functional relationships
on state position & orientation. In this domain, the GSV framework provides a
uni�ed state interface to update knowledge about the 6-dof state of a set of phys-
ical objects and provides mechanisms to query their relationships. In the robotics
domain, the Denavit-Hartenberg convention[24] is commonly used to design ar-
ticulated mechanisms such as robotic arms. In this context, an application of the
GSV framework would have as state information the 4 transformation parame-
ters that the D-H convention uses for describing each the characteristics of each
link (length, twist and angle) and of its articulation (joint angles). Clearly, the
6-dof and D-H domains have very di�erent type information associated to each
state. More importantly, the arithmetic properties of functions of state types
like associativity, commutativity and invertability depend on the properties of
the state domain. In the 6-dof domain, the choice of a frame of reference for in-
ferring position and orientation relationships among distant objects depends on
several considerations including an analysis of orders of magnitude in the numer-
ical computations involved and avoiding non-essential state variables since that
would otherwise add super�uous statistical error terms. This is a well-trodden
territory for interplanetary spacecraft navigation where reference frames are ad-
justed to the nearest planet to the spacecraft such that maneuvers near that
planet are computed with adequate precision and certainty. For example, navi-
gation maneuvers shortly after launch are computed using earth-relative position
information while orbit insertion maneuvers for the Cassini spacecraft in 2004
were computed relative to Saturn and the entry-descent-landing maneuvers for
MER in January 2004 were computed relative to Mars. In an application of the
GSV framework for the D-H domain, similar considerations for adjusting frame
perspective apply; additionally, D-H induces speci�c architecture di�erences. In
robotics, transformation matrices that describe linkages are often non-invertible.
This means that to position a robotic arm like MER's such that the science in-
strument at the end of the arm is located within a speci�c distance from a target
observation site, it is not realistic to use the GSV framework to compute the in-
verse kinematics of the robotic arm to infer the joint angles required to achieve
that positioning. Instead, it is necessary to have a closed feedback loop between



forward kinematic computations that update knowledge about the location of
the end of the arm and the robotic arm and control decisions that command
the arm actuators to eventually reach the desired positioning. In other words,
domain speci�city amounts to much more than the type information with which
state knowledge is represented (e.g., 6-dof vs. D-H parameters): domain speci-
�city has a strong in�uence on decisions governing what constitutes sensible
architecture patterns in that domain. It is unlikely that type systems alone can
adequately capture this kind of domain-speci�c information in a parametric man-
ner. In highly formalized notions of architecture like [33] were domain genericity
stems from parametric speci�cation capabilities, it seems that handling complex
issues of architecture heterogeneity across domains requires additional speci�ca-
tion modeling capabilities beyond the �exibility that type parameters provide to
a speci�cation language.

3 From graphs to formal logic

The background for handling heterogeneity via architecture styles stems from
earlier work on analyzing the Entity-Relational schema that de�nes MDS' State
Analysis Database[23] as if it were a formal speci�cation. Using the DMS toolkit
as a platform for agile language transformation techniques, initial experiments
focused on reverse engineering the xADL-like architecture prescription and de-
scription models into Acme architecture styles. Although similar to techniques
used in [19], scaling up to handle all of the implementation details of the actual
C++ implementation showed two things. First, at the implementation level, the
architecture has an overwhelming abundance of incidental information that hides
the essential aspects of the architecture in ways that make understanding chal-
lenging. Second, this experiment con�rmed other reports that DMS is truly a
scalable infrastructure[40] for large-scale transformations operating on thousands
of complex objects. Subsequently, the experimental strategy focused on analyzing
the ER schema from the conceptual level instead of enforcing consistency directly
at the implementation level. Initially, the ER schema was analyzed as a graph.
To make this practical and e�cient, the ER schema was �rst transformed into an
architecture style in Acme according to various interpretation rules and the Acme
architecture style was subsequently transformed into a graph description fed into
Mathematica's Combinatorica package. Other transformations produced a visu-
alization speci�cation as input to Tom Sawyer's Graph Layout Toolkit library
whose Graph editor was integrated into Mathematica's interactive environment.
This transformation machinery made it possible to explore several strategies for
mapping the ER schema into and architecture style. On a practical level, vi-
sualization transformation and constrained layout with GLT made it possible
to incorporate the notation guidelines from State Analysis into the automatic
layout. Despite this technological wizardry, the overall methodology was insu�-
ciently simple relative to our intuitions about the conceptual complexity of state
analysis. The ER schema involves well over 30 concepts while conceptually less



than a dozen concepts are necessary to capture the conceptual essence of state
analysis.

The goal of these experiments was to �nd a criteria that would conceptually
factor out of the ER schema a list of essential concepts that would constitute
the core of state analysis. Intuitively, the idea was to provide an rigorous ba-
sis to explain how ER-level distinctions like STATE_VARIABLE_TYPE and
STATE_VARIABLE can be described as variations of the same concept. This
problem can be approached as a kind of bipartite graph matching. This ap-
proach made sense in the context of analyzing graphs of equations modeling the
steady-state behavior of a physical plant for designing high-performance numer-
ical simulation algorithms whose computations faithfully re�ect the causality of
the model. In the context of ER schemata, there is no single preference criteria
like causality that would make bipartite graph matching a useful hammer for
breaking to the schema down into its core constituent concepts.

Finally, a more productive track appeared in experimenting with yet another
transformation from the Acme architecture style to theorem provers and con-
straint languages. The inspiration for this approach arose from discussions at an
HDCP meeting at CMU with Daniel Jackson and Greg Morris on modeling State
Analysis in Alloy. Experiments with the Simplify theorem prover and SAT-based
speci�cation techniques like Alloy and SAL led to mixed results: the separabil-
ity of the ER schema depends greatly on the degree to which domain speci�c
knowledge is available as axioms and constraints. Earlier, CMU had modeled
many engineering constraints of state analysis using Armani constraints. How-
ever, the Armani rules have to be applied on a case-by-case basis according to
the domains used. In a similar manner, the formalization of State Analysis' ER
schema would require some form of second-order reasoning to associate axioms
and constraints to �rst-order formalizations of state analysis' concepts.

4 A semantic architecture style for heterogeneous view

speci�cations

These observations lead us to postulate that formal ontology development for
space missions would require integrating in a practical, tool-supported method-
ology a number of important ideas from the literature.

1. Architecture Style & Modeling Paradigm: the limits of type parametricity6

Originally, State Analysis was investigated as if an architecture style could
precisely de�ne what it is. While it is possible to have a lightweight, semi-
formal architecture style that re�ects the main concepts[17,19], re�ning these
architecture styles to large-scale implementations leads to a lot of practi-
cal problems due to the con�icts between downward type restrictions due
to architecture re�nement and implementation-level type variability due to
domain speci�city that breaks type hierarchies. Methodologies like State
Analysis[23], IEEE-1471[10] and RM-ODP yield architecture styles once they

6 Cite Vanderbilt stu� on metamodeling?



have been tailored to the speci�c concerns of a particular domain. Here, we
use the term modeling paradigm to distinguish a generic methodology where
domain specialization is beyond simple notions of generic typing with type
parameters.

2. Heterogeneity & Compositionality: the rationale for category theory
Heterogeneity makes modeling signi�cantly harder because inherent to het-
erogeneity is the notion of multiple viewpoints[9]. A viewpoint forces mod-
ellers to follow modeling practices similar to denotational semantics due to
the necessity of distinguishing between a speci�c interpretation of a con-
cept in a given viewpoint and the essence of that concept independent of
any viewpoint. This is a similar approach to a formalization of the RM-
ODP framework[15] that proposes a matrix organization for categorizing
the relationships between the concepts in the universe of discourse (essential
concepts) and models of that universe (constructed by specifying viewpoint-
speci�c concepts). This approach is very similar to algebraic speci�cation
techniques based on category theory applied to modeling[44].

3. Viewpoint integration & semantics: is there enough �bration in the ontology?
Perhaps the most surprising terminology from category theory is the con-
cept of �bration7. Hints of �bration can be seen in the context of the
RM-ODP standard[14] to precisely establish correspondences among view-
point concepts and between viewpoint concepts and those in the universe of
discourse[15]. The precise explanation of �bration as it pertains to modeling
is formalized in [41] as requirements on an abstraction mechanism for entity-
relation information models[42] whose extension for behavior modeling[43]
closely resembles the issues of viewpoint integration in RM-ODP. More im-
portantly, this methodology clearly demonstrates the utility of richly axiom-
atized upper-ontologies like SUMO and DOLCE in the construction of an
ontology where the organization of the ontology is structurally consistent
with the relations among the concepts of the ontology.

4. Viewpoint locality & Architecture modularity: semantic compatibility &
compositionality
Clean humor aside, how does category theoretic �bration help in ontol-
ogy development for heterogeneous engineering models? Even proponents
in category theory recognize the practical limitations of the approach[45]: if
viewpoints are interchangeable in the sense of information preserving corre-
spondences between them, then the mathematical approach provides a good
strategy for modularizing these viewpoints; however, if correspondences loose
information in one direction, then it is unclear what methodological guidance
this approach can o�er.

5. Category theory & Formal speci�cations: SpecWare to the rescue!
With mounting evidence of the bene�ts of category theory, the issue of rig-
orous ontological development merits a review of current practices and tool

7 This terminology alone can raise skepticism in the reader in no doubt in�uenced
from commercials touting the bene�ts of �ber-rich cerals about the real purpose of
this paper, whether it is to kill trees or to convince that this paper is a good source
of intellectual �ber.



support. OWL-centric ontology development yields a substantial value if
concepts are organized as a classi�cation taxonomy (Rector), especially if
the ontology is OWL-DL where e�cient implementations of classi�ers are
available and where complete OWL-DL is theoretically possible (Handbook)
and practically available (Pellet). However, OWL does little to support a
category theoretic style of ontological modeling with notions of products,
co-products and �bration[46] despite the many theoretical bene�ts these
approaches would provide. There is great promise in formal speci�cation
tools that make category theory a practical reality like Kestrel's SpecWare
system[47] used to demonstrate how speci�cations can be parametrized in
terms of domain theories in a compositional way[49].

6. Formal speci�cations & Architecture Description Languages: Acme resem-
bling SpecWare with Armani[27] disguised as SNARK in a poor man's cloth-
ing

JPL's experience in modeling State Analysis with Acme might have had a
mixed success in terms of practical adoption; however, from a research stand-
point, it provides a convincing case that formal architecture description lan-
guages are necessary to tackle the intrinsic complexity of heterogeneous en-
gineering models as an issue of formal speci�cation, composition and re�ne-
ment. Turns out these are the very same characteristics that the SpecWare
system provides. However, while there have been promising demonstrations
like [49], it is clear there is still room for practical improvements to make
the methodology even more pragmatic[48]. Additional mechanisms would
also be required to provide support for �bration analysis in the style of the
requirements described in [41].

7. Viewpoint correspondences, modeling purpose and work�ow: Architecture
Speci�cations tied to Semantic Web services

Modeling methodologies are unanimous on at least one point: speci�cations
make sense only if there is a well-de�ned purpose behind them. IEEE-1471
and RM-ODP describe this on the basis of the stakeholders' objectives and
concerns that provide the rationale for architecture descriptions and view-
based modeling. State Analysis describes this with the concept of goal as the
rationale for the behavior of controllers and estimators. In requirements en-
gineering, the KAOS methodology (reference...) also places a great emphasis
on goals as the starting point for requirements elicitation and development.
For pragmatic reasons, it is important for whatever engineering methodology
to provide an abstraction mechanism by which users can get a bird's eye view
of complex heterogeneous viewpoints and understand their relationships in
terms of modeling work�ows that are related to the work�ows relevant to the
real-world systems being modeled and the objectives stakeholders have about
such systems as functional issues of system state determination, knowledge,
control and planning. So far, the cleanest architecture methodology for tieing
architecture, work�ows and functionality together seems to be the OWL-S
speci�cation for web services, particularly recent e�orts to de�ne a solid
foundation for them in SWSL with the FLOWS methodology.



5 From methodology organization to ontological content:

many vexing issues ahead

The previous section presented cogent arguments towards a rigorous methodol-
ogy for heterogeneous model-based engineering. Most of the cogent arguments
presented were about organizing the methodology in a su�ciently rigorous and
formal manner to enable rich semantic analyses across heterogeneous engineer-
ing models. This section focuses on the ontological concepts of the methodology
itself: i.e., what kinds of abstractions apply across heterogeneous engineering
domains and applications.

5.1 Identity and referential ambiguity

The OntoClean methodology[4] emphasizes the notion of identity criteria as an
essential property of ontologies to ensure that the interpretation of statements
about an ontology are unambiguous in terms of which individuals or sets of
individuals they refer to. A great deal of complexity in heterogeneous modeling
stems from the referential ambiguity that occurs when interpreting statements
across di�erent views. Much of this ambiguity stems from unidenti�ed view-
speci�c contexts that are necessary to resolve ambiguities. Instead of a traditional
modeling approach based on hierarchical containment, State Analysis advocates
a heterarchical8 organization where items can be grouped arbitrarily according to
each modeling viewpoint. The basic modeling concepts involved are: item and
group. Following the OntoClean methodology, it makes sense to require that
these concepts carry a global identity criteria to avoid referential ambiguity due
to context. For pragmatic purposes, it makes sense to require that both items
and groups provide an identity criteria in a way that ensures each hierarchical
reference to an item is unambiguously interpretable.

To illustrate these points, we use a simpli�ed example of a vehicle. One pos-
sible approach for a globally unique identity criteria would use a composition
of two criteria: functional role and location placement. Functional roles could
be further decomposed in terms of steering (yes/no) and driving (yes/no). Lo-
cation roles could be further decomposed in terms of lateral (left/right) and
longitudinal (front/back) sides. For a typical 4-wheel automobile, these criteria
su�ce: the front wheels are typically steerable and driving wheels. The driv-
ing role provides no useful identity criteria for an all-wheel drive vehicle. While
location role might su�ce for a particular viewpoint, it may be impractical in an-
other viewpoint. For example, front-driving vs rear-driving vehicle designs make
a substantial di�erences to the analysis of acceleration, braking, and stability;
pragmatically, it makes sense to handle these di�erences in separate viewpoints
so that the analysis techniques can be specialized accordingly without the un-
necessary complexity of handling issues beyond the scope of each viewpoint's
area of concern. In such circumstances, it is therefore essential to ensure that a
particular vehicle is analyzed according to the functional viewpoint applicable

8 See: http://en.wikipedia.org/wiki/Heterarchy



to that vehicle. Without the ability to relate location and functional roles for a
vehicle's wheels, ambiguities arise where a vehicle might be analyzed according
to a di�erent functional viewpoint than the vehicle's functional characteristics.

This example illustrates the point that State Analysis' notions of items and
groups are an incomplete conceptual basis to support heterogeneous modeling
with multiple, inter-related viewpoints. The item-group relations involve a com-
bination of two modeling concerns. Although modeling part-whole relations is
reasonably well understood from a philosophical perspective[51,4,6], the onto-
logical patterns documented so far[50] support simple hierarchies whereas heter-
archies would require additional support for modeling the semantic constraints
across hierarchies. Additional semantics are necessary to make consistent distinc-
tions between parthood as a hierarchical organizational criteria and kinding as a
semantic clustering criteria. This idea is brie�y mentioned in [50, see Pattern 3]
where the editors suggest scripting tools as a practical solution. This suggestion
in fact points to a larger issue of ontology development within OWL-DL where
part of the semantics of an ontology is not expressible within the ontology itself
due to the limitations of OWL-DL and must consequently be de�ned outside the
ontology itself.

5.2 A calculus for ontological development

How often would an ontology developer need various scripting tools to apply
various ontology construction patterns like [50]? To appreciate the importance
of this issue, it is important to take a broader perspective on heterogeneous
modeling. Since the set of viewpoints is inherently open to future additions,
the basic development methodology for de�ning a new viewpoint will inevitably
involve a combination of composition and re�nement from existing ontologies.
The underlying issue inherent in viewpoint modeling is the thorny notion of
context[8].

In the WonderWeb project, a great deal of attention went into formalizing
a reasonably pragmatic approach for modeling context with the ontology of de-
scriptions and situations[5]. This approach avoids the devastating problems that
would derail a naive approach based on simple ontology import mechanisms
where semantic incompatibilities among similar concepts across viewpoints are
inherently unavoidable in open heterogeneous modeling. According to its au-
thors, DOLCE is a pragmatic compromise between overly simplistic approaches
like ontological imports and theoretically complex approaches based on formal
contexts and bridging axioms. While a step in the right direction, DOLCE, in
its current form[6], presents a new set of practical challenges for ontology devel-
opment.

Recent work in DOLCE[7, see 3.3] points to the need for a powerful cal-
culus with operations for reifying concepts and for augmenting and embedding

ontologies like the Description & Situation (D&S) ontology. D&S is particularly
signi�cant because it could signi�cantly facilitate e�orts towards formalizing ex-



isting concept terminologies within an organization9. Without such a calculus,
it will be di�cult for practitioners to replicate the compelling examples from
DOLCE. For example, [6, sec. 12.5] discusses how D&S is repeatedly applied to
a core ontology of services. A similar augmentation would be sensible to special-
ize the ontology for an Architecture Description Language (e.g., [27]) according
to the architecture modeling requirements of a speci�c viewpoint. This capabil-
ity would provide architects with a potentially rigorous approach for detecting
and resolving architecture mismatches[26] across heterogeneous viewpoints. For
pragmatic purposes, if the ontologies are kept within OWL-DL, the calculus itself
would clearly have to operate within OWL-Full. What rationale would warrant
the e�ort of developing this kind of calculus?

There are, at least, two important reasons for having an ontology calculus.
First, describing the rei�cations, augmentations and embeddings is important
for veri�cation and validation purposes: the embedding itself de�nes the log-
ical context for asserting the truth value of statements about an augmented
ontology[8]. This makes the validity of such statements logically dependent on
the validity of the embedding context itself. This argument motivates for an
explicit, declarative description of an embedding context. Second, for con�gura-
tion management purposes, it makes sense to automate the embedding process
to simplify the maintenance and evolution of ground ontologies prior to aug-
mentation and embedding. The combination of these two reasons points to a
perspective on ontology development in a broader context yet.

5.3 Modularity, functionality and behavior

A calculus for ontologies makes sense from a con�guration management perspective[53]
where changes to various ontologies are warranted for various business reasons.
If an ontology calculus is used, then it makes sense to �replay� the processes that
engineers use to augment, extend and embed various ontologies for diverse view-
point modeling purposes. An ontology calculus that supports both speci�cation
and execution of operations performed would be an useful application target
for ontologies like PSL[2] that have rigorous semantics for process-related con-
cepts. FLOWS[3] would be especially attractive since it subsumes the concepts
of existing standards (e.g., OWL-S) and formalizes notions like message and
channel that are particularly important for Architecture Description Languages
like [25,27].

6 Conclusion

Originally, the goal of this paper was to present a �rst cut for an ontology to
convey the concepts necessary to account for heterogeneous viewpoint modeling
according to [9,13]. Substantial progress[14,15] has been made in this area since

9 In NASA's case, see for example: http://sweet.jpl.nasa.gov/ontology and
http://nasataxonomy.jpl.nasa.gov



the availability of these standards; however, the modeling issues have yet to
be investigated within the broader scope of formal ontologies[6,7], architecture
description languages[27,25], algebraic methods for relating viewpoints in terms
of re�nements[42], multiple views[45], criteria for modularity[51], relationships
among views, modularity and context[45,15,8]. Clearly, there are many complex
issues.

Recent advances, especially from open-source tools, give pragmatic reasons
to remain optimistic and hopeful that signi�cant progress could be made in
the near term in ways that leverage established tools and languages like UML
and OWL to improve methodologies according to recommended practices in
a mathematically sound manner as suggested in [12]. However, this optimism
depends on the availability of an ontology calculus that can be automated to
make any experimental progress independently reviewable, repeatable and ana-
lyzable everytime foundational ontologies evolve and viewpoint libraries change.
Such a calculus would signi�cantly help strengthen existing synergies among
experimental research, academic research in formal logic (e.g., common logic),
mathematics (e.g., category theory) and theoretical computer science (e.g., co-
algebraic speci�cation techniques) in a way that facilitates the maturation of
proven methodologies into commercially-supported ontology development tools.

7 Acknowledgements

The work described in this paper was performed at the Jet Propulsion Labo-
ratory, California Institute of Technology, under a contract with the National
Aeronautics and Space Administration, a speci�c, joint collaboration agreement
with the Kestrel Institute with additional support from external collaborations
with Carnegie Mellon University and NASA Ames under NASA's O�ce of Space
Exploration Code T program. We wish to thank fellow engineers across several
projects at JPL, CMU, Kestrel Institute, Mindswap, NASA, Mitre and Semantic
Designs who have contributed with valuable insights and comments pertaining to
this work: Jonathan Aldrich, Matthias Anlau�, John Anton, Ira Baxter, Patrick
Cassidy, Ken Clark, Robert Clark, Alessandro Coglio, David Cyrluk, Daniel Dvo-
rak, David Garlan, Cordell Green, Klaus Havelund, Doug Jensen, Rajeev Joshi,
Gerard Holzmann, Cheng Hu, Mark Kordon, Meemong Lee, Michael Mehlich,
Kenny Meyer, Bijan Parsia, Robert Rasmussen, Kirk Reinholtz, Andrew Schain,
Marcel Schoppers, Bradley Schmerl, Peter Shames, Joseph Skipper and Doug
Smith.

References

1. Patil, L., Dutta, D., Sriram, R: Ontology-Based Exchange of Product Data Se-
mantics. IEEE Trans. on Automation Science and Engineering, Vol. 2, No. 3, July
2005 213�225.

2. Gruninger, M., Menzel, C.: Process Speci�cation Language: Principles and Appli-
cations. AI Magazine 24(3) (2003) 63�74.



3. Battle, S., Bernstein, A., Boley, H., Grosof, B.., Gruninger, M., Hull, R., Kifer, M.,
Martin, D., McIllraith, D., McGuinness, D., Su, J, Tabet, S.: Semantic Web Ser-
vices Ontology (SWSO) Draft version 1.1 (2005) http://www.daml.org/services/
swsf/1.1/swso/

4. Welty, C., Guarino, N.: Supporting ontological analysis of taxonomic relationships.
Data & Knowledge Engineering 39 (2001) 51�74.

5. Gangemi, A., Mika, P.: Understanding the Semantic Web through Descriptions
and Situations. Int. Conf. on Ontologies, Databases and Applications of SEmantics
(ODBASE 2003), Catania, Italy, Nov. 3-7, 2003. http://www.loa-cnr.it/Papers/
ODBASE-CONTEXT.pdf

6. Masolo, C., Borgo, S., Gangemi, A., Guarino, N., Oltramari, A.: WonderWeb Deliv-
erable D18: Ontology Library (�nal). IST Project 2001-33052 WonderWeb: Ontol-
ogy Infrastructure for the Semantic Web. http://wonderweb.semanticweb.org/
deliverables/documents/D18.pdf

7. Gangemi, A., Borgo, S., Catenacci, C., Lehmann, J.: Task Taxonomies for Knowl-
edge Content: D07. Deliverable of the EU FP6 project �Metokis�. May 4, 2005.
http://www.loa-cnr.it/Papers/D07_v20a.pdf

8. Menzel, C.: The Objective Conception of COntext and Its Logic. Minds and Ma-
chines, 9 (1999), 29-56. http://philebus.tamu.edu/cmenzel/Papers/mm-paper.
pdf

9. IEEE Computer Society: IEEE Recommended Practice for Architectural De-
scription of Software-Intensive Systems description. http://standards.ieee.org/
reading/ieee/std_public/description/se/1471-2000_desc.html

10. Hillard, R.: IEEE-1471 and Beyond. Position paper for SEI's First Architecture
Representation Workshop (2001) 16-17. http://www.enterprise-architecture.
info/Images/Documents/IEEE%201471-%20Beyond.pdf

11. Land, R.: Applying the IEEE-1471-2000 Recommended Practice to a Software
Integration Project. Int. Conf. on Software Engineering Research and Practice
(SERP'03), CSREA Press, Las Vegas, Nevada, June 2003. http://www.mrtc.mdh.
se/index.phtml?choice=publications&id=0529

12. Gnilloud, G., Frank. W.F.: Use Case Concepts from an RM-ODP Perspective.
Journal of Object Technology, vol 4, no 6, Special Issue: Use Case Modeling
at UML-2004, August 2005, 95�107. http://www.jot.fm/issues/issue_2005_08/
article8.pdf

13. ISO/IEC 10746-1,2,3,4, ITU-T Recommendation X.901, X.902, X.903, X.904:
Open Distributed Processing - Reference Model. OMG (1995-96).

14. Wegmann, A., Naumenko, A.: Conceptual Modeling of Complex Systems Using
an RM-ODP Based Ontology. Proc. of the 5th IEEE Int. Enterprise Distributed
Object Computing Conference - EDOC 2001, Seattle, USA (2001) 200-211.

15. Naumenko, A., Wegmann, A.: A Formal Foundation of the RM-ODP
Conceptual Framework. EPFL-DSC Technical Report N. DSC/2001/040,
http://lcawww.ep�.ch/Publications/Naumenko/TR01_040.pdf, July 2001.

16. Boehm, B.E.W., Bhuta, J., Garlan, G., Gradman, E., Huang, L., Lam, A.,
Madachy, R., Medvidovic, N., Meyer, K., Meyers, S., Pérez, G., Reinholtz, W.K.,
Roshandel, R., Rouquette, N.: Using Empirical Testbeds to Accelerate Technology
Maturity and Transition: The SCRover Experience, Proceedings of ISESE, 2004,
117�126.

17. Garlan, D., Reinholtz, W.K., Schmerl, B., Sherman, N., Tseng, T.:Bridging the Gap
between Systems Design and Space Systems Software. 29th Annual IEEE/NASA
Software Engineering Workshop (SEW-29), Greenbelt, MD, USA (2005). http:
//www.cs.cmu.edu/~able/publications/polaris/



18. Denker, G., Talcott, C.: Formal Checklists for Remote Agent Dependability. In 5th
Int. Workshop of Rewriting Logic and Its Applications, Barcelona, Spain, March
27-28, 2004. http://www.csl.sri.com/~denker/publ/DenTal04.pdf

19. Roshandel, R., Schmerl, B., Medvidovic, N., Garlan, D., Zhang, D.: Understanding
Tradeo�s among Di�erent Architectural Modeling Approaches. Proc. of the 4th.
Working IEEE/IFIP Conf. on Software Architectures, Oslo, Norway, June 11-14,
2004. http://www.cs.cmu.edu/~able/publications/WICSA4-scrover/

20. N. Rouquette, UML/MDA Reality Check:Heterogeneous Architecture Styles, in-
vited presentation at UML 2003.

21. Dvorak, D., Rasmussen, R.D., Reeves, G., Sacks, A.: Software Architecture Themes
in JPL's Mission Data System. Proceedings of the AIAA Guidance Navigation and
Control Conference, AIAA-99-4553, 1999.

22. Bennett, M., Rasmussen, R.D.: Modeling Relationships Using Graph State Vari-
ables. Proceedings of the IEEE Aerospace, 2002.

23. Ingham, M.D., Rasmussen, R.D., Bennett, M.B., Moncada, A.C.: Engineering
Complex Embedded Systems with State Analysis and the Mission Data System.
Proceedings of the 1st AIAA Intelligent Systems Conference, 2004.

24. Spong, M., Vidyasaga, M.: Forward Kinematics: The Denavit-Hartenberg
Convention. Robot Dynamics and Control, ch. 3, Wiley, 1989 http://www4.

cs.umanitoba.ca/~jacky/Teaching/Courses/74.795-Humanoid-Robotics/

ReadingList/chap3-forward-kinematics.pdf

25. Dashofy, E. van der Hoek, A., Taylor, R.N.: An Infrastructure for the Rapid De-
velopment of XML-Based Architecture Description Languages. Proceedings of the
ICSE 2002 International Conference on Software Engineering, Orlando, Florida,
May 2002.

26. Garlan, D., Allen, R., Ockerbloom, J.: Architectural Mismatch or, Why it's hard to
build systems out of existing parts. Proc. of the 17th Int. Conf. on Software Engi-
neering, ICSE-17, April 1995; revised in IEEE Software, Vol 12, Issue 6, Nov 1995
17-26. http://www.cs.cmu.edu/~able/publications/archmismatch-icse17/

27. Allen, R.J., Garlan, D.: A Formal Basis for Architectural Connection. ACM Trans.
on Software Engineering and Methodology, July 1997. Revised 1998. http://www.
cs.cmu.edu/~able/publications/wright-tosem97-revision/

28. Schmerl, B.: xAcme: CMU Acme Extensions to xArch, ABLE technical report,
http://www-2.cs.cmu.edu/~acme/pub/xAcme/guide.pdf, 2001.

29. Meseguer, J., Braga, C.O.: Modular Rewriting Semantics of Programming
Languages. Submitted for publication. http://maude.cs.uiuc.edu/papers/

abstract/MBModSem_2003.html

30. Clavel, M. Duran, F., Eker, S., Lincoln, P., Mari-Oliet, N., Meseguer, J., Talcott, C.:
The Maude 2.0 System. Proc. of the 14th Int. COnf. on Rewriting Techniques and
Applications (RTA 2003), Nieuwenhuis (Ed.), Lecture Notes in Computer Science,
Vol. 2706, June 2003, 76-87. http://www.csl.sri.com/papers/1558/

31. Henzinger, T.A., Minea, M., Prabhu, V.: Assume-guarantee Reasoning for Hi-
erarchical Hybrid Systems. Proc. of the 4th Int. Workshop on Hybrid Sys-
tems: Computation and COntrol (HSCC), Lecture Notes in Computer Sci-
ence, 2004. 272�290. http://www-cad.eecs.berkeley.edu/~tah/Publications/
assume-guarantee_reasoning_for_hierarchical_hybrid_systems.html

32. Giannakopoulou, D., Pasareanu, C., Barringer, H.: Assumption Generation for
Software Component Veri�cation. Proc. 17th IEEE Conf. on Automated Software
Engineering, ASE-2002.



33. Lau, K.K., Ornaghi, M.: Specifying Compositional Units for Correct Program De-
velopment in Computational Logic., In M. Bruynooghe and K.-K. Lau, eds. Pro-
gram Development in Computational Logic, Lecture Notes in Computer Science,
3049, 2004 1-29. http://www.cs.man.ac.uk/~kung-kiu/pub/lopstr-book.pdf

34. Alexandrescu, A.: Modern C++ Design: Generic Programming and Design Pat-
terns Applied. Addison-Wesley, 2001.

35. Szyperski, C., Gruntz, D., Murer, S.: Component Software: Beyond Object-
Oriented Programming. Second Edition, Addison-Wesley, 2002.

36. Czarnecki, K., Eisenecker, U.W.: Generative Programming - Methods, Tools and
Applications. Addison-Wesley, 2000.

37. Clark, R., Jensen, E.D., Rouquette, N.: Software Organization to Facilitate Dy-
namic Processor Scheduling. Proceedings of the 18th International Parallel and
Distributed Processing Symposium, 2004.

38. van den Brand, M.G.J, Klint, P., Vinju, J.J.: Term Rewriting with Traver-
sal Functions, CWI Technical Report SEN-R0121, ISSN 1386-369X, 2001 http:

//db.cwi.nl/rapporten/abstract.php?abstractnr=1079
39. Terese: Term Rewriting Systems. Cambridge Tracts in Theoretical Computer Sci-

ence, Vol 55, Cambridge University Press, 2003.
40. Baxter, I., Pidgeon, C., Mehlich, M.: DMS: Program Transformations for Practical

Scalable Software Evolution. Proceedings of ICSE, p. 625-634, 2004.
41. Colomb, R., Dampney, C.N.G., Johnson, M.: The use of category-theoretic �bra-

tion as an abstraction mechanism in information systems. Acta Informatica, 38, 1,
(2001) 1�44.

42. Colomb, R., Dampney, C.N.G.: An approach to Ontology for Institutional Facts in
the Semantic Web. Technical Report 15/02, ISIB-CNR, Padova, Italy, November
2002.

43. Colomb, R.: Extending Ontology to Behavior in Communities of Interoperating
Information Systems Agents. Technical Report 21/02, ISIB-CNT, Padova, Italy,
November 2002.

44. Johnson, M., Dampney, C.N.G.: On Category Theory as a (meta) Ontology for
Information Systems Research. In Formal Ontology in Information Systems. Welty
C., Smith, B. (Eds). ACM Press, (2001) 59-69.

45. Dampney, C.N.G., Johnson, M.: Enterprise Information Systems: Specifying the
links among project data models using category theory. Proc. of the Int. Conf. on
Enterprise Information Systems, (2001) 619�626.

46. Johnson, M. Rosebrugh, R.: Coproducts in Categorical Information System Spec-
i�cation. Proc. of SCI2001, Vol XIV (2001) 145-150.

47. McDonald, J. Anton, J.: SpecWare - Producing Software Correct by Construction.
Kestrel Institute Technical Report KES.U.01.3, March 2001. ftp://ftp.kestrel.
edu/pub/papers/specware/specware-jm.pdf

48. Pavlovic, D., Pepper, P., Smith, D.R.: Colimits for Concurrent Collectors
49. Pavlovic, D., Smith, D.R.: Composition and Re�nment of Behavioral Speci�ca-

tions. Proc. of 16th Annual Int. Conf. on Automated Software Engineering, Nov
26-29 (2001). ftp://ftp.kestrel.edu/pub/papers/pavlovic/CRBS.ps

50. Rector, A., Welty, C.: Simple part-whole relations in OWL Ontologies. W3C Work-
ing Draft, Semantic Web Best Practices and Deployment Working Group, Jan-
uary 15, 2005. http://www.cs.man.ac.uk/~rector/swbp/simple-part-whole/

simple-part-whole-relations-v0-2.html
51. Odell, J.J.: Six Di�erent Kinds of Composition. Journal of Object-Oriented Pro-

gramming, Vol 5, No 8, January 1994. http://www.conradbock.org/compkind.
html



52. Kendall, E.: Ontology De�nition Metamodel, second revised submission. OMG
ad/05-04-13, May 31, 2005. http://www.omg.org/cgi-bin/doc?ad/2005-04-13

53. Chandra, C.: Analytical Modeling of Logistics for Re-Con�gurable Supply Chain
in Mass Customization of Vehicles. Report Brief. Inst. for Adv. Vehicle Systems,
College of Eng. and Comp. Science, Univ. of Michigan, Dearborn, MI. Technology
Day, June 9, 2004.


