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We develop mathematical model of hydrodynamically-induced self-organization of concentrated
ensembles of swimming bacteria Bacilus Subtilis in thin fluid film. Starting from elementary stochas-
tic interaction rules between self-propelled objects, we derive a set of equations for the local con-
centration and orientation of swimmers, coupled to the Navier-Stokes Equation for the fluid. We
demonstrate that this system exhibits formation of self-organized large-scale patterns with the typ-
ical scale determined by the density of bacteria.

PACS numbers: 87.16.-b, 05.65.+b,47.55.+r

Recent experiments [4, 5, 8] demonstrated significance
of self-induced hydrodynamic flows produced by flagella
of swimming bacteria. The characteristic scale of these
flows typically exceed by the order of magnitude the size
of individual element. The large-scale collective flows
emerging in dense ensembles swimming particles in con-
fined geometries are important for a variety of fundamen-
tal and technological reasons, ranging from understand-
ing of the onset of coherent motion in groups of locally
interacting objects (flocks, schools, herds [10, 11]), to po-
tential microfluidic and biomedical devices [6].

Despite significant knowledge accumulated in experi-
ments, [4, 5, 8, 9, 13], the intrinsic mechanisms of self-
organization were not well-understood. One of the most
intriguing questions, the origin of nontrivial characteris-
tic scale of large-scale flows and its dependence on system
parameters, remains unanswered. Simplified direct sim-
ulations of ensemble of swimming particles, while clearly
identifying the significance of pure hydrodynamic inter-
action [7], do not provide a clear answer on the mecha-
nisms of scale selection and the nature of transition from
random motion in low density system of swimmers to col-
lective motion at higher densities. Various phenomeno-
logical models of organization of self-propelled particles
[10–12] do not account for long-range hydrodynamic in-
teractions and, therefore, have only limited applicability
to the system under study.

Motivated by recent experiments on self-organization
of swimming bacteria Bacilus Subtilis in two-dimensional
fluid films [4], in this Letter we derive continuum model
governing self-organization of ensembles of hydrody-
namic self-propelled particles. The model is formulated
in terms of two-dimensional stochastic Master equation
for the probability density P (r, φ) finding a bacteria at
certain orientation angle φ at the position r derived from
microscopic interaction rules. The Master equation pro-
vides a link between microscopic scale (individual bac-
teria) and macroscopic scale (collective motion), which
is described by the set of equations for local bacteria
density and orientation. The macroscopic equations are
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FIG. 1: Sequence of experimental images illustrating “inelas-
tic collisions” between bacteria Bacillus Subtilis. Colliding
bacteria (highlighted) swim from left to right: a) before the
collision; (b) collision; (c) after collision. See Movie 1 in [18]

obtained by coarse-graining of the Master equation. The
system is supplemented by the two-dimensional Navier-
Stokes equation for the fluid flows with additional forcing
term due to oriented bacteria swimming. The model re-
veals characteristic scale selection mechanism due to the
deflection of swimming direction of the bacteria by the
self-induced shear flow. The results are in qualitative
agreement with the experiment [4].

Master Equation. We approximate bacteria by iden-
tical polar self-propelled rods of length l and diameter
d0. The model is derived from the following elementary
interaction rules: (a) individual bacteria swim with the
velocity v0 with respect to ambient fluid in the direction
given by its unit orientation vector n = (cos φ, sin φ); (b)
in the case of collision of two bacteria with the angles
φ1,2 the pair continue to swim in the direction of average
orientation φ̄ = (φ1 + φ2). We call this process, by anal-
ogy with physics of grains, fully inelastic collision. This
assumption is justified by experimental observations, see
Fig. 1. The underlying reason for the inelastic collisions
between the bacteria lays in the dipole nature of the ve-
locity field. We also assume that the bacteria experi-
ence rotational and translational diffusion, mostly due
to tumbling and and small-scale hydrodynamic flows. In
addition, we include advection of bacteria by the fluid.

Using the analogy between motion of bacteria and the
dynamics of inelastically colliding polar rods [1, 2], the
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Master equation describing the evolution of probability P (r, φ):

∂tP (r, φ) +∇ ((v0n + v)P (r, φ)) +
1
2
Ω∂φP (r, φ) = Dr∂

2
φP (r, φ) + ∂iDij∂jP (r, φ) +

∫ ∫
dr1dr2

∫ φ0

−φ0

dw

× W (r1, r2)P (r1, φ1)P (r2, φ2)
[
δ

(
r1 + r2

2
− r,

φ1 + φ2

2
− φ

)
− δ (r2 − r, φ2 − φ)

]
(1)

The first two terms in the r.h.s. of (1) describe angular
and translational diffusion of rods with the diffusion ten-
sor Dij = 1

Dr

(
D‖ninj + D⊥(δij − ninj)

)
. Dr, D‖, D⊥

are known in polymer physics: D‖ = kBTe

ξ‖
, D⊥ =

kBTe

ξ⊥
, Dr = 4kBTe

ξr
where ξ‖, ξ⊥, ξr are correspond-

ing drag coefficients. For rod-like molecules, ξ‖ =
2πηsl/ log(l/d0); ξ⊥ = 2ξ‖; ξr ≈ πηsl

3/3 log(l/d0) where
ηs is shear viscosity and Te is effective temperature [14].
However, in contrast to polymer molecules, the effective
temperature Te is determined mostly by small-scale hy-
drodynamic flows and tumbling of bacteria, and can con-
siderably exceed the thermodynamic temperature.

Terms∇vP (r, φ)+ 1
2Ω∂φP (r, φ) account for the advec-

tion of particles by hydrodynamic flow v and rotation of
the orientation vector in the shear flow with the vorticity

Ω = ∂yvx − ∂xvy (2)

The last term of Eq.(1) describes short-range binary in-
teraction of rods. We assume that after the interaction,
the two rods acquire the same orientation and the same
spatial location in the middle of their original locations,
consistent with experimental data on interaction of bac-
teria, see Fig. 1. Two δ-functions in the collision integral
describe “annihilation” of particle with the angle φ1 and
“creation” of particle with the angle (φ1 +φ2)/2. The in-
teraction kernel W is localized in space (here we neglect
anisotropy of the kernel essential for self-organization of
microtubules [1, 2]. We assume for simplicity the follow-
ing form: W = g

b2π exp
[
− (r1−r2)

2

b2

]
with b ≈ l = const

and g = const is the interaction cross-section. This form
implies that only nearby bacteria interact effectively.

We introduce the following coarse-grained variables:
local density ρ(r) =

∫ π

−π
P (r, φ)dφ and local orienta-

tion vector τ = 〈n〉 =
∫ π

−π
n(r)P (r, φ)dφ/2π. These

quantities are related to corresponding Fourier harmonics
Pk = 〈e−ikφ〉. The zeroth harmonic P0 = ρ/2π = const,
and the real and imaginary parts of P1 represent the com-
ponents τx = 〈cos φ〉, τy = 〈sin φ〉 of the average orien-
tation vector τ . Spatially-homogeneous Eq. ( refmas-
ter3) exhibit onset of oriented state above critical den-
sity ρc = Dr/(4/π − 1)/g (see for detail [1]). New the
threshold of the orientational instability Eq. (1) can be
significantly simplified by means of standard bifurcation
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FIG. 2: Representative flow patterns obtained by solution of
Eqs. (3),(4),(8) for ρ0 = 3.8, D0 = 50, ν = 3 .... . Red color
corresponds to maximum of |τ , and blue to minimum. Arrows
depict the flow velocity v field. See also Movie 2 [18]

analysis and the description can be reduced to the pair of
coupled equations for ρ and τ . Since near the threshold
P (r, φ) depends slowly on spacial variable r, we perform
Fourier expansion of Eq. (1) in φ and truncate the se-
ries at |n| > 2 and keep only leading terms in expansion
on space gradients of P (r, φ). Omitting calculations (see
[1, 2]), rescaling space by l, and and changing variables
t → Drt, ρ → gρ/Dr, one obtains.

∂tρ + ∇vρ = D0∇2ρ− v0π∇τ (3)

∂tτ + v∇τ +
1
2
Ω× τ = (ερ− 1)τ −A0|τ |2τ

+D1∇2τ + D2∇∇ · τ − v0

4π
∇ρ (4)

Eq. (3) describes advection of the bacteria by hydrody-
namic velocity v and diffusive spreading with the diffu-
sion coefficient D0. Here D1 = (D‖+D⊥/2)/2Drl

2, D2 =
(D‖−D⊥)/2Drl

2. In the limit of small density ρ and for
the case of pure thermal diffusion of particles the diffu-
sion coefficients D0 = (D‖ + D⊥)/2Drl

2. However in
our case this connection is not obvious, especially for
larger densities due to diffusive-type contribution from
the collision integral in Eq. (1). Since in experiments
no significant density fluctuations were observed, we will
treat D0 À D1,2 as independent parameter in order to
suppress density variations. In Eq. (4) the first term in
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the r.h.s. describes the orientation instability, ε = 0.276,
A0 = 2.81 for fully inelastic particles [1, 2]. The terms
proportional to v0 are due to swimming of bacteria with
respect to fluid.

For the hydrodynamic velocity v we obtain the Navier-
Stokes equation with forcing due to swimming of bacteria

∂tv + v∇v = ν∇2v −∇p− βv + ατ (5)
∇v = 0 (6)

where ν is the viscosity, p is the pressure, βv accounts
for the damping due to friction with the walls, ατ with
α ∼ v0 models the forcing due to bacteria swimming.
The damping βv is generated by the thin film visco-
elasticity resulting in the partial slip condition for the ve-
locity on the surface of the film. While our experiment, as
well as of Ref. [5], are performed in the free-hanging film
geometry, the surfactant accumulated on both surfaces
of the fluid film play the role of semi-flexible walls re-
sulting in nontrivial velocity profile across the film. The
forcing term in Eq. (5) is different from that for the
self-propelled particles proposed in Ref. [3], where the
force is represented by the divergence of certain three-
dimensional stress tensor σij . However, integration of
the stress tensor over the cross-section of the film pro-
duces similar terms ∼ τ due to the boundary effects.

In order to exclude pressure and satisfy continuity con-
dition Eq. (6) we introduce stream function φ

vx = ∂yφ, vy = −∂xφ, Ω = ∇2φ (7)

Thus, from Eqs. (2,5) one obtains

∂tΩ + v∇Ω = ν∇2Ω− βΩ + α (∂yτx − ∂xτy) (8)

Eqs. (9,8) and (7) form closed system. For the low
Reynolds number flow the advection term v∇Ω can be
neglected comparing to the viscosity term ν∇2Ω, but we
keep it since similar term is included in Eq. (9). While
the Reynolds number Re of individual bacteria is exceed-
ingly small, for the collective flows Re of the order of one
and, thus, the inertia effect are not negligible.

To simplify the analysis we consider constant density
approximation ρ = ρ0 = const valid for large bacterial
diffusion D0. Then Eq. (4) reduces to

∂tτ + v∇τ +
Ω× τ

2
(9)

= (ερ− 1)τ −A0|τ |2τ + D1∇2τ + D2∇∇ · τ

Eqs. (4, 8) have steady-state uniform solution corre-
sponding to homogeneous stream of bacteria in a certain
(e.g. x) direction: τx = τ0 =

√
(ερ− 1)/A0 = const,

τy = 0, vy = 0, vx = V = ατ0/β. To examine the sta-
bility, we represent perturbations in the form (τ ,Ω) ∼
exp[λt + ikx], where λ is the growthrate and k is the
modulation waveguide. Linearized Eqs. (4, 8) are:

λτx = −ikV τx − 2τ2
0 τx − (D1 + D2)k2τx (10)

λτy = −ikV τy − 1
2
Ωτ0 −D1k

2τy (11)

λΩ = −ikV Ω− νk2Ω− βΩ− ikατy (12)

Equation for τx splits off and we need to deal with only
equations for τy, Ω. They yield the following expression
for the growthrate λ:

λ1,2 =
1
2

(−(D1 + ν)k2 − β − 2ikV

±
√

((D1 − ν)k2 − β)2 − 2ikτ0α

)
(13)

The instability occurs if the parameter ατ0 is greater
than some critical value. Onset of instability can be ob-
tained in the limit k → 0. Expansion yields

Reλ =
(

α2τ2
0

β3
−D1

)
k2 + O(k4) (14)

Eq. (14) produces long-wave instability for α2τ2
0 > β3D1.

Using that V = ατ0/β is the collective steady-state swim-
ming velocity, we obtain simple condition V > Vd, where
Vd =

√
βD1 is the “decoherence” velocity. Since β ∼

ν/d2, d is the film thickness, we obtain Vd =
√

νD1/d.
The selected wavenumber km can be obtained in the limit
of large collective swimming speed V . Expanding Eq.
(13) for ατ0 À 1 we obtain

Re(λ) ≈ 1
2

(
−(D1 + ν)k2 − β +

√
|k|τ0α

)
+ ... (15)

Then from Eq. (15) one derives (for (D1 + ν)k2 À β)

k3/2
m =

√
τ0α

4(D1 + ν)
(16)

Since α ∼ νv0l/d, l is the length of bacteria and d is the
film thickness (here we used expression for the drag force
F ∼ ηv0l and included the scaling of orientation τ with
the film thickness d) , and τ0 ∼ √

ρ− ρc, ρc is the critical
density of the orientation instability, we obtain

km ∼
[
v0l(ρ− ρc)1/2

dν2

]1/3

(17)

Thus, the typical length scale of the instability ∼ 1/km

scales with the film thickness at the threshold as d1/3, in
qualitative agreement with the simulations of [7].

We conducted numerical studies of full system (3),(4),
and (8). The calculations were performed in a rather
large domain (up to 200 × 200 bacteria sizes) and in
the range of densities ρ, and in periodic boundary condi-
tions. Typical flow pattern and |τ | distribution is shown
in Fig. 2. Remarkably, the correlation over the entire
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FIG. 3: Typical hydrodynamic velocity v̄ (upper panel) and
velocity correlation length L vs density for three different level
of noise S. for the following values of parameters: domain size
200× 200, v0 = 0.2, D0 = 50, ν = 3,

cell between the fields τ and v happens to be close to
zero, in agreement with experiment. However, there is
always local correlation between τ and v due functional
coupling through Eq. (8).

The following quantities were evaluated in numer-
ical studies: typical hydrodynamic velocity v̄ =√
〈v2〉 − 〈v〉2, and radial velocity correlation functions

K(r), defines as (θ is a polar angle)

K(r) =
∫ 2π

0

dθ〈v(r′)v(r + r′)〉 (18)

The correlation length was extracted from K(r) by ex-
ponential fit K(r) ∼ exp(−x/L)+ const. The results are
comprised in Fig. 3. The overall picture of the tran-
sition bears strong feature of the second order phases
transition: the typical velocity v̄ ∼ √

ρ− ρc, and the
correlation length diverges at the critical density, con-
sistent with the prediction of Eq. (16). The first order
phase transition was found for a broad class of models of
self-propelled particles Ref. [10]. However, the models
considered in Ref. [10] do not include long-range effect
of hydrodynamic interaction, which possibly could alter
the type of transition.

In order to include effect of fluctuation, we added ran-
dom force ζ(x, y, t), 〈ζ(x, y, t)ζ∗(x′, y′, t′)〉 = 2Sδ(x −
x′)δ(y− y′)δ(t− t′), S is the noise strength, to the equa-
tion for orientation (4). Results of calculations for various
noise strength shown in Fig. 3. As one sees, relatively
small noise (S = 1.2 × 10−7 smears the transition and
removes the divergence of the correlation length. For
strong enough noise (S ∼ 10−5), one observes only a
gradual increase of the correlation length with the den-
sity, in agreement with experiment.

We derived a model for the large-scale flows generated
by ensembles of swimming bacteria. We show that the
onset of coherence is attributed to the collective hydrody-
namic interaction between individual objects. Our the-
ory identifies non-trivial mechanism of typical scale selec-
tion of emergent pattern. With certain modifications, it
can be applied to broader class of system, both biological
[13] and inanimate [15, 16]. Our theory provides alterna-
tive approach to the description of active hydrodynamic
systems (active gels) put forward in Re. [17]. We thank
Michael Graham, Frank Jülicher, Karsten Kruse, Hugues
Chate, and Eberhard Bodenschatz for useful discussions.
This work was supported by the U.S. DOE, grants W-
31-109-ENG-38.
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