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ABSTRACT . A statistical inference method known as epsilon machine re-
construction is introduced as a modeling procedure for turbulent transport
processes in a climate model. Observational data on the atmospheric bound-
ary layer obtained with a radar wind profiler, a radio-acoustic sounding system,
and a Raman lidar system was assembled to construct this type of model for
use within the unresolved (sub-grid) scales of a numerical climate model. An
ensemble of 500 single-column model runs using the inferred sub-grid turbu-
lent transport models demonstrated comparable performance to an identical
ensemble of runs using the standard, eddy-diffusivity parameterizations for the
turbulent transport. The primary advantages of the epsilon machine models
are that they are a less biased modeling framework for complex processes such
as turbulent transport, and that they are more memory efficient.
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1. Introduction

Atmospheric general circulation models (AGCMs), also referred to as ‘climate
models’, are the principle tools used to understand and predict human influences
on the Earth’s climate system. The resolution of AGCM’s is typically quite crude:
with horizontal resolutions on the order of hundreds of kilometers, vertical res-
olutions on the order of kilometers and temporal resolutions of tens of minutes.
Even so, the complexity of these models and the need for very long simulations
and/or ensembles of simulations, make them among the most computationally
demanding of computer applications. Also, many critical physical processes such
as thermodynamics and clouds, radiative transfer and turbulent transport, op-
erate on much finer spatial and temporal scales than is utilized in these models.
These processes cannot be represented explicitly and must be approximated,
hence the term subgrid parameterization. In general, AGCM’s do a reasonably
good job of simulating the global mean state of the atmosphere, but have difficul-
ties in getting the correct amount of variability and in simulating specific aspects
of the atmospheric general circulation, such as the El Niño-Southern Oscillation
(e.g. Hack et al. (1998)). Thus if we are to have full confidence in our predictions
of climate change, and more importantly the regional impacts of climate change,
we must do a better job representing the physical processes occurring on subgrid
scales and make optimal use of the computational resources applied to this task.

1.1. THE PROBLEM: SUBGRID PARAMETERIZATIONS

As noted above, the climate system is modeled with a combination of dy-
namical and empirical modeling frameworks, and the available computational
resources are simply allotted to meet the requirements of this modeling frame-
work. Specifically, climate models today allocate most of the active computa-
tional memory to the symbols of the modeling grammar (e.g. the 32-bit or 64-bit
floating point representations of the physical fields) rather than to the syntax of
the modeling grammar. This is because the modeling syntax is relatively sim-
ple and static throughout the model run. On the grid points of the model, the
principle syntax is the set of Navier Stokes equations of fluid dynamics. On the
sub-grid scale of the model, the syntax is a set of empirical models known as
physical parameterizations.

Few will argue that the set of Navier Stokes equations is not the correct mod-
eling syntax for the resolved scale of the model. However, the syntax used for
modeling sub-grid processes is generally subject to argument. While these pa-
rameterizations are often guided by sound physical principles such as similarity
scaling, these same guidelines can become biases when the physical symmetries
that they are based on become spontaneously broken (a symmetry is said to
be spontaneously broken if it is consistent with the equations of motion and
the boundary conditions but is not present in the solution). As a flow parame-
ter is changed, such as increasing the Reynolds number, the various symmetries
permitted by the equations of motion (and the boundary conditions) are often
successively broken. In some flow regimes, such as at very high Reynolds number,
there is a tendency for the symmetries to be restored in a statisitcal sense far
from the boundaries, and statistical parameterizations generally work well in this
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case. However, in other flow regimes, such as near bifurcations of the dynamical
attractor, the symmetries are broken in both an instantaneous and statistical
sense and the statistical parameterizations will fail. In this case, a new modeling
syntax for the sub-grid process is needed.

Unfortunately, in gathering observational data on the sub-grid processes, there
is a tendency to immediately filter the data into statistical means and moments
or other linear measures of variability in order to fit a favored parameterization,
and the memory content of the data (i.e. the memory allocation required to
model the variability) is lost. A more scientific approach to the problem would
be to let observational data on the sub-grid process tell us what active memory
is required for a given observational window on the data. A potential outcome
of this type of approach to sub-grid modeling is that a more efficient modeling
syntax for the sub-processes will be found that requires less active memory than
do the existing parameterizations. If this were to occur for enough of the sub-grid
parameterizations, it is conceivable that memory resources previously tied up in
sub-grid modeling could be made available for increasing the resolution and/or
accuracy of the resolved-scale portion of the model.

1.2. THE SOLUTION: EPSILON MACHINES

Such a modeling approach is proposed and tested here for the first time for
sub-grid turbulent transport processes. The method is based on rigorous statis-
tical inference of causal pattern in observational data. It is a symbolic dynamic
modeling procedure known as “epsilon machine reconstruction” (Crutchfield and
Young, 1989; Crutchfield, 1994; Crutchfield, 1992). In general, the causal pat-
terns found in the data will contain both stochastic and deterministic structure,
and the epsilon machine statistical inference method is designed to capture this
dual nature. The value of adding stochastic structure to an approximate model
of a nonlinear dynamic system has been clearly illustrated in Palmer (2000). The
underlying true dynamical attractor of the system is more thoroughly explored
with such a model structure. The stochastic component of the epsilon machine
brings this value to the model, but with the added advantage that deterministic
as well as stochastic structure is inferred from observational data rather than
imprinted onto the model a priori.

The platform we have selected for our initial evaluation of this new, empirical,
sub-grid, modeling methodology is the single column version of the National Cen-
ter for Atmospheric Research (NCAR) Community Climate Model (or SCCM).
The sub-grid processes we model are the vertical transport of momentum, heat,
and moisture. The standard physical parameterization for these processes is
based on the assumption of local eddy diffusivity supplemented with an algo-
rithm that accounts for “non-local” transport by large scale convective turbu-
lence in the boundary layer (Kiehl et al., 1996). For the five lowest vertical levels
in the model, we replaced this entire parameterization with an algorithm built
from observational data using the epsilon machine statistical inference method.
The momentum transport algorithm was constructed from wind-profiler data,
the heat transport algorithm from radio acoustic sounding (RASS) data, and
the moisture transport from Raman lidar data.

Comparison of the model performance using the standard parameterizations
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and the epsilon machine algorithms was then made. Using an ensemble of 500
model runs for each comparison case, the model performance was measured
by the ensemble mean of the model predicted temperature minus the observed
temperature at a fixed level of the model. On the basis of this performance
measure, the models with the epsilon machine algorithms performed as well as
those with the standard parameterizations.

In the following sections we review the epsilon machine statistical inference
method, propose a recipe for applying the method to the sub-grid modeling
problem, and report results of the SCCM experiments.

2. The Epsilon Machine Statistical Inference Method

Epsilon machine reconstruction refers to a new complex systems modeling pro-
cedure that builds a model, called an epsilon machine (Crutchfield and Young,
1989; Crutchfield, 1992; Crutchfield, 1994), directly from observational data.
“Machine” refers to a finite state machine as the basic framework of the model.
A finite state machine is simply a set of transition rules between a finite number
of states. Examples are Markov chains and regular grammars in formal lan-
guage theory (Hopcroft and Ullman, 1979). These can be thought of as discrete
analogues to the transition rules for continuous systems encoded as differential
equations. “Reconstruction” refers to the manner in which the machines are built
from observational data. The first two reconstruction steps shift the representa-
tion of the data from a string (e.g. a time series, or spatial sequence) to a tree
representation, and then to a finite state machine (Crutchfield, 1992).

Two features of the machine reconstruction program make it a compelling new
method for sub-grid modeling of complex processes in the climate system. The
first is the nature of the constructed epsilon machine. The epsilon machine is a
particular type of finite state machine known as a stochastic automata (Hopcroft
and Ullman, 1979). Such machines have both deterministic and probabilistic
structure. This is exactly what is needed to remove the arbitrary selection of
one or the other of these modeling frameworks in sub-grid climate modeling.
The second feature is that machine reconstruction builds models directly from
observational data. This is similar to training an artificial neural network to find
a causal pattern in data, except that in the case of the neural network, once it is
trained on the data it is a fixed, deterministic algorithm and the discovered causal
pattern is hidden from the modeler. On the contrary, the reconstructed epsilon
machine represents an active and synergistic combination of deterministic and
stochastic structure, and this computational structure is displayed to the modeler
(Crutchfield and Young, 1989; Crutchfield, 1992; Crutchfield, 1994).

Once the machines are constructed, we may compute a fundamental measure
of complexity for the underlying dynamical system that produced the data. This
measure of complexity is termed “statistical complexity” and is defined as the
entropy of the recurrent causal states of the machine (Crutchfield and Young,
1989; Crutchfield, 1992; Crutchfield, 1994):

C = −
∑

p(v)log2(p(v)), (1)

where p(v) is the probability of occurrence of the recurrent states, v, of the ma-
chine. This measure of complexity can be shown to be equal to the computational
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memory required to run the epsilon machine model. The statistical complexity is
zero for both a pure random process, and for a pure deterministic process, both
of which, as illustrated below, can be represented as a single-state machine.

The machines themselves can be represented as digraphs where the vertices
are the machine states and the edges represent the transitions between the states
(Crutchfield, 1992). The edges are labeled with the symbol that is emitted on the
transition and with the probability of the transition. For example, 0|0.5 indicates
the transition is made on a symbol 0 with 0.5 probability. Examples of machines
for two simple processes, the random coin-flip process and the periodic process
with a period of two symbols, are shown in Figure 1. Machine representations of
these processes and many more are discussed at length in (Crutchfield and Young,
1989; Crutchfield, 1992; Crutchfield, 1994). The machines represent probabilistic
structure in a process as branching of edges, and deterministic structure as non-
branching edges. The branching in the machine representation of the periodic
process shown in Figure 1b represents the uncertainty in phase when the machine
is in the start state (here the start state is labeled state-1).

The “machine reconstruction” procedure for producing a stochastic automa-
ton representation of a string generated by a more general process is a straight
forward computer programming problem, and is outlined in Crutchfield (1992).
Briefly, it consists of first producing a parse tree representation of the string by
sliding a window of fixed length through the string and laying down a branch of
the tree at each window position. The states of the automaton are simply invari-
ant subtrees found within the parse tree and the state transition probabilities
and transition symbols are determined by the total number of state transitions
found in the construction of the parse tree.

The importance of representing the complexity of a process in this way rests
primarily in its lack of bias: probabilistic and deterministic structure is discovered
in the data rather than imprinted onto the data. The epsilon machine represen-
tations captures pattern and regularities in the data in a way that reflects the
causal structure of the process (Crutchfield and Young, 1989; Crutchfield, 1992;
Crutchfield, 1994).

3. Epsilon Machines as Sub-grid Models

We propose the following six steps for using an epsilon machine as a model of
a sub-grid process. We elaborate further on these steps later in the text.

1 Process Selection: Identify a sub-grid process whose standard parameteri-
zation in the model is suspect.

2 Dynamical Variables: Identify relevant dynamical variables governed by the
sub-grid process.

3 Observational Data: Obtain a set of appropriate observational data on the
sub-grid process, and select a spatial or temporal order and data sequence
length in which to look for causal pattern.

4 Coarse-Graining: Coarse grain the data into a finite set of symbols with
respect to a partition that yields the maximum entropy for the chosen
sequences.



6 Palmer et al.

Figure 1: Example of finite-state machine representation of (a) an unbiased random string
of zeros and ones, and (b) a periodic string of zeros and ones with a period of two sym-
bols. The edge labels identify the transition symbols and transition probabilities, e.g. 0|0.5
indicates the transition is made on a symbol 0 with probability 0.5.
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5 Epsilon Machine Reconstruction: Reconstruct the coarse grained data, first
into a parse tree and then into a stochastic finite state machine whose states
are invariant subtrees found in the parse tree. Compute the transition rates
between the machine states. This is the basic epsilon machine reconstruc-
tion procedure documented in the literature (Crutchfield, 1992).

6 Epsilon Machine Sub-grid Model: Replace the suspect parameterization with
the epsilon machine transition matrix. The transition symbol encodes the
coarse-grained value of the sub-grid process dynamical variable given to the
resolved scale portion of the model. The machine is returned to the start
state if the machine and resolved scale portions of the model fail to satisfy
any imposed boundary conditions.

If one is using the machine to model the temporal order of the sub-grid
process, a single machine transition is made at each model time step
beginning with the machine in the start state.

If one is using the machine to model the spatial order of a sub-grid
process, then at each model time step the machine begins in the start
state and makes all of the transitions needed to span the modeled sub-
grid spatial domain.

These steps establish a general procedure for unbiased modeling of a sub-grid
process based on coarse-grained observational data for the process. An expanded
discussion of each step is provided in the next section which describes our par-
ticular application of the steps to sub-grid turbulent transport processes.

The epsilon machine model of a sub-grid process captures the same deter-
ministic and stochastic structure found in the data under a given observational
window on the process. In practice, the observational window is a narrow view
of the process which can distort the model of the process (Crutchfield, 1994).
The coarse graining of the data and the model output, the use of relatively
short sequences as candidate causal structure imposed by limited data records,
and even the choice of casual states as invariant sub-trees found in the parse
tree all represent epsilon machine model constraints. However, epsilon machine
modeling is designed to allow all of these constraints to be systematically re-
laxed as increased amounts of observational data and computational memory
become available. Keeping these resources in focus is an important modeling
discipline that allows conditioned performance comparisons to be made based
on equal allocation of a given resource. In particular, by being able to specify
the computational memory of an epsilon machine, the performance comparison
of an epsilon machine model and parameterization model of a sub-grid process
should ultimately be conditioned on equal total memory allocation (symbols plus
syntax).

4. Application to a Climate Model

Below we describe our application of the above six steps to modeling of sub-
grid, vertical transport of momentum, heat, and moisture in a single-column
climate model. The single column model we use is a one-dimensional version



8 Palmer et al.

of the National Center for Atmospheric Research (NCAR) Community Climate
Model (Kiehl et al., 1996) known as the SCCM (Hack et al., 1999). The SCCM
was designed as a platform for testing various parameterizations in the climate
model without the need to run the entire climate model over all of the hor-
izontal grid points of the globe. Only a single vertical column is modeled by
the SCCM. The horizontal advection of fields that would normally be computed
over the horizontal grid points of the full climate model is replaced by time-
dependent boundary conditions specified on the single column and assimilated
into the SCCM during a model run. These boundary conditions are obtained
from measured fields during an intensive observation period (IOP) conducted at
the location of the modeled column.

The period we chose for running the SCCM is known as the summer 1995
SCM IOP (Hack et al., 1999). This data set is derived from observations made
at the Atmospheric Radiation Measurement (ARM) site in Oklahoma from July
18 to August 4, 1995. The data we used for building our epsilon machine models
was obtained in the same general area as this IOP and during the same season,
but were not part of the assimilation or validation data used for the SCCM run
for this IOP.

4.1. PROCESS SELECTION (STEP 1)

We identified the sub-grid parameterizations for vertical transport of momen-
tum, heat, and moisture in the NCAR single column climate model (SCCM) as
our “suspect” parameterizations. The standard parameterization for these pro-
cesses in the SCCM model as well as in the complete NCAR global climate model
is a model based on the diffusion equation. In these parameterizations an “eddy
diffusivity” constant is computed which is designed to represent local as well as
nonlocal vertical transport.

The eddy diffusivity parameterization is a reasonable model of turbulent trans-
port when the time and spatial scales over which transport is modeled take place
in the dissipation range or even in the inertial sub-range of turbulence. However,
in climate models such as the SCCM, the temporal and spatial scales of the sub-
grid process to be modeled are typically much larger than these scales, so the
diffusivity parameterization is suspect primarily because of its failure to properly
model the temporal and spatial variability of the transport process, in particular,
the stochastic component of the variability.

One way to demonstrate this failure is to plot the diffusivity parameterization
at each 20-minute time step that it is invoked in the model for a particular IOP,
together with a similar plot of observational data for the same sampling time
for a climatologically similar location and time. Such a plot is shown in Figure 2
for momentum transport. The figure plots the time rate of the change of hori-
zontal wind speed during the model time step vs. the second derivative of the
wind speed with respect to height for the four lowest levels used in the SCCM.
The model run was for the IOP mentioned above using the standard SCCM
eddy diffusivity parameterizations, and the observational data were radar wind
profiler data obtained at Lamont, Oklahoma, during the same 18-day period for
which the model was run. For the chosen graph coordinates, the diffusivity pa-
rameterization, with a fixed diffusivity constant, would produce a single straight
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Figure 2: Plot of diffusivity parameterization implemented every 20 minutes during the
SCCM run described in the text compared to observation data from radar wind profilers
for 18-minute time steps.

line. The 20-minute sampled, model generated points on the plot are seen, as
expected, to lie mostly along several straight lines corresponding to different
model-selected diffusivity constants including zero for night-time periods when
the boundary layer is below the top of the lowest level of the model. The ob-
servational data that were sampled at roughly the same interval (18 minutes) is
seen to show no support for the linear relationship generated by the diffusivity
equation used in the parameterization. The observational data for dv/dt appear
randomly distributed in relation to d2v/dz2.

If the sampling time were reduced sufficiently to enter the inertial sub-range
of the boundary layer turbulence or the dissipation range, a diffusivity equation-
based relationship would ultimately appear in the observational data. However,
for current climate model resolutions and time steps, the parameterizations for
vertical transport based on the diffusivity equation is simply not validated by
the observations.
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4.2. DYNAMICAL VARIABLES (STEP 2)

The dynamical variable that is given to the resolved scale portion of the SCCM
by the diffusivity parameterization for sub-grid vertical transport of a field is the
change in field that occurs at each time step of the model at a given verti-
cal level. These field differences are the dynamical variables chosen for epsilon
machine modeling. Only the field differences themselves are used to build the
epsilon machine models; i.e., the models are univariate models. Multivariate ep-
silon machines can also be built. For example, if the plot in Figure 2 had shown
evidence of a residual dependence of dv/dt on d2v/dz2, one might have chosen
to construct a bivariate model for these two dynamical variables. Appendix A
presents a brief description of how a multivariate epsilon machine model could
be built and used as a sub-grid model.

4.3. OBSERVATIONAL DATA (STEP 3)

The observational data that were used to build epsilon machine models for sub-
grid vertical transport are measured vertical profiles for winds, temperature, and
humidity. These data were obtained from a wind profiler radar, a radio acoustic
sounding system (RASS), and a Raman lidar system respectively. The wind and
RASS profilers are Doppler radar systems that utilize a back scattered signal
from Bragg structures in the atmospheric boundary layers caused by natural
turbulent variability in the first case and a co-directed sound wave in the second
case (Martner et al., 1993). The Raman lidar determines the profile of the water
vapor mixing ratio based on the principle of Raman scattering by molecules. It
determines the range resolved ratio of the backscatter by water vapor (at 408
nm) to backscatter by nitrogen (at 387 nm) (Goldsmith et al., 1998).

The wind and temperature data were obtained with a 404 MHz radar wind
profiler and RASS system operated by the NOAA Forecast Systems Laboratory
at Lamont, Oklahoma, and Purcell, Oklahoma, respectively, during the same
18-day period of the SCCM model run (19 July - 5 August, 1995). As men-
tioned above, these data were not used as part of the validation measures for
the model output, nor as part of the boundary condition data. The Raman li-
dar is operated at the central facility of the Department of Energy’s Southern
Great Plains (SGP) Cloud and Radiation Testbed (CART) near Lamont, OK
(see http://www.arm.gov). The moisture data were obtained over 26 days from
July (10, 14, 17-23, 25) and August (6-7, 13-20, 25, 27-31) of 1998. Thus, these
data correspond to the same season and location as for the model run, but are
from a different year. Quality control checks were made on all of the observa-
tional data to eliminate spurious signals from aircraft, birds, and other random
interference.

All of the data are processed into samples of field differences that occur over
an approximate 20 minute time step as required by the resolved scale portion
of the SCCM. We chose to build the epsilon machine using these samples in a
spatial (height) domain rather than the temporal domain because of the many
data gaps that existed in the temporal domain. Under this condition, time can
be considered as merely an exemplar index of the height-ordered data sequences
in which we searched for causal pattern. The sequence length chosen for our
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search for pattern was 2 height-ordered samples. The total number of height
levels chosen to parse the data into was the five lowest levels used in the model.
These levels are approximately 500 m, 750 m, 1000 m, 1750 m, and 2750 m above
the ground.

The choice of sequence length is constrained by total number of exemplars in
the data record as follows. For maximum entropy patterns, one expects to see a
statistical fluctuation of the occurrence of a given height ordered sequence of D
symbols in the data given by

δ = [SD/N ]1/2, (2)

where S is the number of symbols chosen to coarse grain the data into, and N
is the total number of parse tree branch exemplars in the data (Hanson, 1993).
Below, we will choose binary coarse graining of the data, i.e. S = 2. For our data
records, N is near 400 for the wind profiler and RASS data, and near 3000 for
the Raman lidar data. Thus, a choice of D = 5 keeps the expected statistical
fluctuation of pattern down to about 28% for the wind profiler and RASS data
and about 10% for the lidar data. The 2-symbol word length is chosen at D/2 or
half the parse tree depth as the recommended optimal length for finding causal
structure in the parse tree (Crutchfield, 1992).

4.4. COARSE-GRAINING (STEP 4)

For these first experiments we choose the simplest of the possible coarse grain-
ing symbol sets, the two symbols 0,1. This symbol set has been used for all of the
epsilon machine models presented thus far in the literature. However, the epsilon
machine reconstruction method allows the use of an arbitrary set of symbols.

Once a symbol set is selected, the partition chosen for coarse graining the
data into the symbol set must be chosen. The ideal partition is what is known as
a generating partition. A generating partition defines a partition for which the
resulting coarse-grained symbols can be shown to encode the entire dynamics
generated by the original algorithm that produced the real-valued data. For ex-
ample, the logistic map, which is commonly used chaotic analytical model, has
a binary generating partition, at x=1/2 (Crutchfield and Young, 1989; Crutch-
field, 1994). For experimental data where the real-valued algorithm is not known,
one cannot prove the existence of a generating partition. However, a theorem of
Kolmogorov (1958) states that if a data series does have a generating partition,
then that partition will also be a maximum entropy partition. This result sug-
gests the use of a maximum entropy partition for symbolic dynamic modeling of
experimental data (Young, 1999). In practice, once our sequence length of two
symbols was selected in accordance with the discussion below Eq. 2, we chose
a binary partition to be near the median value for the data set and confirmed
that it was a local maximum entropy partition by explicit computation of the
entropy of the sequences by varying the partition value about the median.

4.5. EPSILON MACHINE RECONSTRUCTION (STEP 5)

Using the coarse-grained data format described above, epsilon machines were
constructed from the vertical profile data in accordance with the procedure de-
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scribed in Crutchfield (1992). Recall that the epsilon machines are constructed
to locate the causal structure between length-2 subsequences of symbols ordered
in height, where the symbols encode the field difference that occurs in the 20-
minute SCCM time step. For all four field difference data sets (horizontal wind
speed components, temperature, and moisture) the reconstructed epsilon ma-
chine was found to be the single state, purely random process machine shown in
Figure 1a; i.e., no deterministic structure was found in the vertical profiles for
the described observation window onto the data.

4.6. REPLACEMENT OF SCCM PARAMETERIZATIONS (STEP 6)

The standard diffusivity parameterizations for vertical transport of momen-
tum, heat, and moisture that are invoked at each time step in the SCCM were
replaced by the epsilon machine algorithm at the vertical levels that the epsilon
machine was designed to model (the four lowest levels in the SCCM.) Like the dif-
fusivity equation, the epsilon machine algorithm provides a value for the change
of the field during a time step, at each of the four levels. Thus, at each time step
of the model, the epsilon machine was set to the start state and then was run
through four state- transitions producing four symbols that encode the change
of the field at the four lowest levels of the model. The symbols 0,1 encode one
of two distinct values of the modeled dynamical variable (field differences over
the 20-min time step). In practice we chose the two encoded values to be equal
to the median value of the modeled field difference plus or minus its standard
deviation. The standard diffusivity parameterization was retained for the levels
higher than the lowest four levels chosen for epsilon machine modeling.

5. SCCM Performance Comparisons

The SCCM used here employs the standard “physics packages” of the NCAR-
CCM version 3.6. As described in the SCCM, version 1.2 users guide (Hack et al.,
1999), on the resolved scale of the model, the vertical advection of water vapor is
evaluated explicitly using a semi-Lagrangian procedure, whereas the temperature
and momentum are advected with an Eulerian finite difference scheme. However,
the large-scale forcing (including the horizontal flux divergence) is prescribed
from input data sets. The forcing data were derived from the 1995 ARM SCM
IOP described earlier (one of the standard input options of the NCAR-SCCM).

In executing our numerical experiments we adopted the approach of Hack and
Pedretti (2000). These authors have shown that in order to minimize uncer-
tainties inherent in the single-column model framework, ensemble averages are
required. The initial conditions were perturbed randomly over 500 realizations.
Maximum temperature perturbations were |Tpert|max < 0.9deg.C, and the wa-
ter vapor mixing ratio perturbations (in the boundary layer) were of the order
|qpert|max < 6% of the local values.

In the present study we examine five cases, each averaged over 500 member en-
sembles: (i) a control run using the standard eddy diffusivity parameterizations;
(ii) replacing the momentum term with our inferred model; (iii) replacing the
thermal diffusivity parameterization with our inferred model; (iv) replacing the
moisture diffusivity parameterization with our inferred model; and finally, (v) a
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Figure 3: Time series of the ensemble mean temperature error for the control run, and the
four numerical experiments: respectively, the epsilon machine representation of the vertical
diffusion in the ABL of momentum; sensible heat; water vapor; and lastly momentum, heat
and vapor combined. (a) For a model layer in the upper troposphere (247 mb) and (b) for
one in the lower troposphere (909 mb).
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run in which all of the eddy diffusivity parameterizations (momentum, thermal
and moisture) were replaced with our corresponding inferred models. For each
case and each realization, the modeled temperature is subtracted from the ob-
served temperature (truth) to form a model error. Time series of the ensemble
averaged model errors are presented in Figure 3.

For this case (the summer 1995 IOP) it has been shown that the model so-
lutions bifurcate beyond about 200 hours (Hack and Pedretti, 2000), reflecting
the strong nonlinearities in the model, and this is seen also in our model runs
shown in Figure 3. The variations between the ensemble mean time series shown
in Figure 3, is within the mean variations between the individual members of
the ensemble of time series (not shown). Thus, the there is no statistically sig-
nificant difference between the performance of the inferred, “coin-flip” models of
vertical transport and the conventional eddy diffusitivity parameterization. As
is expected, the difference in performance between the model runs with different
momentum transport models is small, compared to the difference seen for the
more strongly coupled thermal and moisture sub-grid models.

6. Conclusions

The climate system, with its plethora of nonlinear dynamic modes and cou-
plings, is characterized by broken symmetries, even for statistical averages. The
dynamical equations used in numerical climate models that are invoked at the
grid points of the model capture this nonlinear behavior as well as can be ex-
pected, i.e., within the limits to predictability imposed by chaos. However, the
parameterizations invoked in the models to capture the behavior of sub-grid
processes often fail to perform reliably in modeling such complex, nonlinear pro-
cesses as turbulent transport, especially at the longer time scales used in climate
models. A new modeling framework is needed for these sub-grid processes that
does not assume that the usual symmetries are satisfied by the flow, either in
an instantaneous or a statistical sense. A modeling framework that accomplishes
this will, in general, contain both deterministic and stochastic structure. Ideally,
the stochastic and deterministic structure of the model should be inferred from
observations rather than imprinted a priori.

We have put forth a six-step approach to such sub-grid process modeling,
and have applied the approach to modeling of sub-grid turbulent transport of
momentum, heat, and moisture in a single column climate model. We inferred
our sub-grid process models from observational data using the epsilon machine
statistical inference method put forth by Crutchfield and Young (1989). For the
observational window used, this inference procedure resulted in a random two-
alternative “coin-flip” model for the sub-grid turbulent transport of momentum,
heat, and moisture at the lowest four vertical levels of the model. When the
standard diffusivity parameterizations for these processes were replaced by the
inferred, purely random model, the model runs showed comparable performance
as measured by the ensemble mean of 500 model realizations of temperature at
two model levels.

Sub-grid models based on epsilon machine and on parameterizations have fun-
damentally different structures and philosophies. For a meaningful comparison
to be made of these two methods, it is essential that we define a conditional
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comparison, the most appropriate condition for comparison being that of equal
computational memory. In the SCCM experiments described above, the inferred
sub-grid model for turbulent transport uses (in principle) only one bit of active
memory as opposed to many hundreds of bits used by the standard paramter-
izations. This suggests that the inferred sub-grid model structures can be used
to better optimize the application of computational resources in climate models.
For example, the released memory allocation accompanying the shift to this type
of inferred model structure for the many other sub-grid processes may ultimately
enable model resolution to be improved for the same total memory allocation
and computational speed.
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A. Multivariate Epsilon Machine Modeling

In the general, “multivariate” case, there will be several “diagnostic” variables
for the sub-grid process, as well as several associated “prognostic” variables from
the resolved scale portion of the climate model. In the most direct epsilon ma-
chine approach to sub-grid modeling, a set of simultaneously measured values for
all of these variables is first represented as a single string. If there is an underly-
ing nonlinear dynamic system governing the sub-grid process that involves these
variables, then a theorem of Kolmogorov (1958) implies that the most efficient
partition for the data for describing this underlying dynamical system is the
maximum entropy partition. Finding this partition generally requires a global
search process, and is the first step in building the epsilon machine model for the
sub-grid process (Young, 1999). For n-dimensional, multivariate data, the max-
imum entropy partition is found (approximately) by coarse graining the data
with respect to a trial hyperplane partition of dimension n-1. In other words,
the data is binned into a finite set of symbols, each of which corresponds to the
position of the n-dimensional data point relative to the partition. The simplest
coarse graining is to assign a 0 or 1 to the data point, depending on whether a
particular data point is on either side of the partition (Young, 1999).

The constructed epsilon machine can now be used as a multivariate sub-grid
model in the following way. Say the dynamical portion of the larger model has
reached a point where it requires a value for a sub-grid process variable. Con-
sider, for example, that the sub-grid variable is surface stress. The resolved scale
portion of the large model has computed, among other variables, a value for the
horizontal wind speed at a grid point. (The standard sub-grid parameterization
for surface stress simply multiplies this wind speed with a drag coefficient to
obtain the needed sub-grid stress value.) In order for the epsilon machine model
to provide a stress value, the current state of the sub-grid, wind-stress system, as
described by the machine, must be known. If the epsilon machine model is being
interrogated for the first time, then the current machine state is set to the start
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state. Next, the machine makes a transition from the start state in accordance
with the transition probabilities specified for the machine. The epsilon machine
is left in a new state and has emitted a specified symbol in accordance with the
transition matrix defined for the machine. This symbol encodes a sector of wind
and stress data relative to the maximum entropy partition. The current value
of the wind speed from the resolved-scale portion of the model is then used to
define a subset of stress values within this sector by referring to the original
wind-stress data set. A median value from this subset of stress values is then
given to the dynamic model.

If there are no data points in the identified sector at the current wind-speed
value, then the epsilon machine is returned to the start state (state of total
ignorance.) This action is an unbiased representation of the fact that the epsilon
machine model of the wind-stress system and the resolved scale portion of the
model have lost synchronism. Otherwise, the machine simply makes the next
transition in synchronism with the time step taken by the dynamic portion of
the model. The implementation of this cooperative operation of the sub-grid
model with the dynamical model is not possible with the standard sub-grid
parameterization schemes.
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