
MULTI-SCALE LINEAR SOLVERS FOR VERY LARGE SYSTEMS

DERIVED FROM PDES�

KLAUS LACKNERy AND RALPH MENIKOFFz

Abstract. We present a novel linear solver that works well for large systems obtained from
discretizing PDEs. It is robust and, for the examples we studied, the computational e�ort scales
linearly with the number of equations. The algorithm is based on a wavelength decomposition that
combines conjugate gradient, multi-scaling and iterative splitting methods into a single approach.
On the surface, the algorithm is a simple preconditioned conjugate gradient with all the sophisti-
cation of the algorithm in the choice of the preconditioning matrix. The preconditioner is a very
good approximate inverse of the linear operator. It is constructed from the inverse of the coarse
grained linear operator and from smoothing operators that are based on an operator splitting on the
�ne grid. The coarse graining captures the long wavelength behavior of the inverse operator while
the smoothing operator captures the short wavelength behavior. The conjugate gradient iteration
accounts for the coupling between long and short wavelengths. The coarse grained operator corre-
sponds to a lower resolution approximation to the PDEs. While the coarse grained inverse is not
known explicitly, the algorithm only requires that the preconditioner can be a applied to a vector.
The coarse inverse applied to a vector can be obtained as the solution of another preconditioned
conjugate gradient solver that applies the same algorithm to the smaller problem. Thus, the method
is naturally recursive. The recursion ends when the matrix is su�ciently small for a solution to be
obtained e�ciently with a standard solver. The local feedback provided by the conjugate gradient
step at every level makes the algorithm very robust. In spite of the e�ort required for the coarse
inverse, the algorithm is e�cient because the increased quality of the approximate inverse greatly
reduces the number of times the preconditioner needs to be evaluated. A feature of the algorithm
is that the transition between coarse grids is determined dynamically by the accuracy requirement
of the conjugate gradient solver at each level. Typically, later iterations on the �ner scales need
fewer iterations on the coarser scales and the computational e�ort is proportional to N rather than
N logN , where N is the number of equations. We have tested our solver on the porous
ow equation.
On a workstation we have solved problems on grids ranging in dimension over 3 orders of magnitude,
from 103 to 106, and found that the linear scaling holds. The algorithm works well, even when the
permeability tensor has spatial variations exceeding a factor of 109.

Key words. multigrid, conjugate gradient, linear solver, porous
ow

AMS subject classi�cations. 65F10, 65N22, 65N55

1. Introduction. We present a novel linear solver that works well for large sys-
tems obtained from discretizing PDEs. It is robust and for the examples we studied,
the computational e�ort scales linearly with the number of equations. The algorithm
is based on a wavelength decomposition which combines conjugate gradient, multi-
scaling and iterative splitting methods into a single approach. On the surface, the
algorithm is a simple preconditioned conjugate gradient with all the sophistication of
the algorithm in the novel choice of the preconditioning matrix. The preconditioner
is an approximate inverse of the linear operator constructed from the inverse of the
coarse grained linear operator and a smoothing operator based on an iterative expan-
sion of the operator on the �ne grid. To transform the coarse grained operator to
the �ne grid, it is pre- and post-multiplied by restriction and prolongation operators.
The coarse graining captures the long wavelength behavior of the inverse operator

�THIS WORK WAS PRESENTED AT THE FIFTH COPPER MOUNTAIN CONFERENCE
ON ITERATIVE METHODS, APRIL, 1998.

yTheoretical Division, Mail Stop B-216, Los Alamos National Laboratory, Los Alamos, NM 87544
(ksl@lanl.gov).

zTheoretical Division, Mail Stop B-214, Los Alamos National Laboratory, Los Alamos, NM 87544
(rtm@lanl.gov).

1

2 K. LACKNER AND R. MENIKOFF

while the smoothing operator captures the short wavelength behavior. The conjugate
gradient iteration accounts for the coupling between long and short wavelengths.

The coarse grained operator corresponds to a lower resolution approximation to
the PDEs. While its inverse is not known explicitly, the conjugate gradient algorithm
only requires that the preconditioner can be applied to a vector. The inverse is
obtained as the solution of another preconditioned conjugate gradient solver that
applies the same algorithm to the smaller problem. Thus, the method is naturally
recursive. The recursion ends when the matrix is su�ciently small for a solution to
be obtained e�ciently with a standard solver.

Basing a preconditioner on the inverse of a simpler problem is akin to using an
incomplete factorization. As with an incomplete factorization, our preconditioner
only requires knowledge of sparse matrices. But rather than a simple forward and
backward substitution used to evaluate the inverse of the product of a lower and
upper triangular matrix, our preconditioner requires an iterative method. Despite
the extra e�ort required for the coarse inverse, the algorithm is e�cient because the
increased quality of the approximate inverse greatly reduces the number of times the
preconditioner needs to be evaluated. In the cases we studied the computational e�ort
is dominated by the operations performed on the �nest scale.

As with the multigrid method, by utilizing several scales we obtain rapid conver-
gence of long wavelengths. In contrast to the way multigrid algorithms are typically
applied, the recursive use of the conjugate gradient algorithm at each stage enforces
an accurate transition from one scale to the next. In particular, the algorithm nat-
urally accounts for the coupling between the long and short wavelengths introduced
at every level of re�nement. Thus, it avoids the accumulation of errors that stem
from the interaction terms between the di�erent levels. In addition, the transition
between levels is determined dynamically rather than preprogrammed with a V-cycle
or W-cycle. The algorithm is robust and works well without �ne tuning even when
the PDE is far from diagonal in Fourier space.

2. Algorithm. Let the linear system be given by

Ax = b :(2.1)

With a preconditioning matrixM�1, the system to be solved is

(M�1A)x =M�1b :(2.2)

Our aim is to determine a good approximate inverse of A that can be used forM�1.
This reduces the condition number of the system and hence enhances the convergence
rate of any iterative solver. We use a conjugate gradient algorithm since it has the
advantage that convergence can greatly be enhanced even if the preconditioner fails
to account for a small number of modes.

To develop an approximate inverse, we start with a standard operator splitting
of the form, see for example [2],

A = P �Q :(2.3)

We assume that A and P are symmetric and positive de�nite. The inverse is given
formally by

A�1 = (I �P�1Q)�1P�1 =

1X
n=0

(P�1Q)nP�1 :(2.4)

Multi-Scale Linear Solvers 3

The series converges when jjP�1Qjj < 1, where jj � jj denotes the L2 matrix norm.
Truncating the series after n terms de�nes an approximate inverse

eA�1n =

nX
k=0

(P�1Q)kP�1 :(2.5)

Moreover, eA�1n is positive de�nite if jjP�1Qjj < 1. Frequently, the matrix arising
from discretizing a PDE is diagonally dominated and it can be shown that standard
splittings, such as Jacobi or Gauss-Seidel, do indeed satisfy jjP�1Qjj < 1. For these

systems with the Jacobi splitting or the Gauss-Seidel splitting eA�1n is symmetric posi-
tive de�nite and can be used as a preconditioner for the conjugate gradient algorithm.
However, jjP�1Qjj typically approaches 1 as the resolution of the discretization in-

creases. Then, the convergence of the series for A�1 is very slow and eA�1n is not an
e�ective preconditioner.

We can construct a better preconditioner with the aid of the following identity

A�1 = (P�1Q)mA�1(QP�1)m +

2m�1X
k=0

(P�1Q)kP�1(2.6)

for any integer m � 1. This identity can be proved as follows. From the de�nition of
the splitting, (2.3), we obtain

(QP�1)A = A(P�1Q) :(2.7)

Multiplying the �rst term on the right-hand side of (2.6) by A we obtain

(P�1Q)mA�1(QP�1)mA = (P�1Q)mA�1A(P�1Q)m = (P�1Q)2m :

Multiplying the second term on the right-hand side of (2.6) by A we obtain

2m�1X
k=0

(P�1Q)kP�1(P �Q) =
2m�1X
k=0

(P�1Q)k �
2mX
k=1

(P�1Q)k = I � (P�1Q)2m :

The sum of these two equations yields the identity on the right-hand side. Hence the
right-hand side of (2.6) is A�1.

Equation (2.6) forms the basis for combining two approximate inverses of A into
one that is better than either. The second term on the right-hand side of (2.6) is

the �rst approximate inverse, eA�12m�1. The �rst term on the right-hand side of (2.6)

represents the error in using eA�12m�1 as an approximate inverse for A. Substituting a

second approximate inverseW for A�1 in the error term can be expected to yield an
improved approximate inverseM�1,

M�1 = (P�1Q)mW (QP�1)m +

2m�1X
k=0

(P�1Q)kP�1 :(2.8)

Under reasonable assumptions M�1 is a better approximate inverse than either W

or eA�12m�1.
To measure how wellM�1 approximates A�1 we use the quantity

�(M�1) = jjI �M�1Ajj
A
:

4 K. LACKNER AND R. MENIKOFF

If � < 1, an upper bound on the condition number of the preconditioned operator
M�1A can be obtained in terms of �, see for example [10, Proposition 2.2]. The
convergence rate of the conjugate gradient algorithm is related to the condition num-
ber. Consequently, � provides a bound on the convergence rate. Smaller values of �
correspond to better convergence rates.

To compute �(M�1) we begin by subtracting (2.8) from (2.6) which yields

A�1 �M�1 = (P�1Q)m(A�1 �W)(QP�1)m :(2.9)

Multiplying (2.9) on the right by A and applying (2.7) leads to a formula for the error
ofM�1 as an approximate inverse of A,

I �M�1A = (P�1Q)m � (I �WA) � (P�1Q)m :(2.10)

We note that jj(P�1Q)2mjj
A
= jj(P�1Q)jj2m

A
since P�1Q is symmetric with respect

to the inner product (u; v)
A
= (u;Av). Consequently, from (2.10) with W = 0 we

obtain �(eA�12m�1) = jj(P�1Q)jj2m
A

. Then from (2.10) we obtain the bound

�(M�1) � �(eA�12m�1) � �(W) :(2.11)

Hence, M�1 is a better approximate inverse than either of its components provided

that each component is a reasonable approximate inverse satisfying �(eA�12m�1) < 1
and �(W) < 1.

For large systems jjP�1Qjj is near 1 and forM�1 to be an e�ective preconditioner
W and P�1Q need to be complementary in the sense that they approximate opposite
ends of the spectrum of A. To see this we note that the condition number is the ratio
of the largest and smallest eigenvalues of M�1A. If P�1Q acts to reduce the large
eigenvalues (short wavelengths) and W acts to increase the small eigenvalues (long
wavelengths) then the range of spectrum of M�1A is squeezed from both ends and
the condition number with the combined approximate inverse can be much smaller
than the condition number with either of its components. This heuristic can be made
rigorous by applying the error analysis used in multigrid theory, see for example the
review article by Xu [10].

Equation (2.8) forms the basis for a number of approximation schemes. Tatebe [9]
showed thatM�1 is symmetric positive de�nite ifW , P andQ are symmetric, P+Q
positive de�nite and W positive. Since W need be only positive and not positive
de�nite, the coarse grained inverse can be used for W even though its null space is
non-empty. Also note that jjP�1Qjj < 1 implies that P +Q is positive de�nite.

2.1. Polynomial Preconditioner. The simplest choice is W = P�1. In this
case, M�1 corresponds to a conventional polynomial preconditioner; i.e., M�1 =eA�12m. Similarly, usingW = eA�12m�1 merely increases the number of terms in the series;
i.e.,M�1 = eA�14m�1. The disadvantage of this choice forW is that at high resolution,

jjP�1Qjj is typically close to 1 and therefore M�1 is a poor preconditioner. The
underlying reason is that with the standard splittings P connects only neighboring
grid points and consequently M�1 provides a poor approximation of A�1 at long
wavelengths. This is born out by experience showing that the number of iterations
grows rapidly with the dimension of the system.

Multi-Scale Linear Solvers 5

2.2. Multigrid Preconditioner. A better choice is that advocated by Tatebe
[9] which aims to account for the long wavelengths by basing the preconditioner on
a single step of a multigrid algorithm. Let Gk be a sequence of successively coarser
grids,Rk+1;k and Ek;k+1 be the restriction and prolongation operators connecting the
grids Gk and Gk+1, Ak the coarsened operator on the grid Gk, and P k and Qk the
splitting of Ak. Here k = 0 corresponds to the �nest mesh and kmax to the coarsest
mesh. The preconditioner can be de�ned recursively as

M�1
k = (P�1k Qk)

m(Ek;k+1M
�1
k+1Rk+1;k)(QkP

�1
k)m +P�1k

2m�1X
j=0

(QkP
�1
k)j :(2.12)

On the coarsest mesh, the problem can be solved exactly. Thus, the recursion ends
withM�1

kmax
= A�1kmax . The standard multigrid algorithm usesM�1

0 as an approximate
inverse in conjunction with a plain iterative solver.

If the restriction and prolongation operators are chosen to be adjoints of each
other, RT

k+1;k = Ek;k+1, the coarse grained approximate inverse at every level,W k =

Ek;k+1M
�1
k+1Rk+1;k is symmetric. For many systems, Tatebe [9] has shown that with

a Jacobi smoother or a Gauss-Seidel smoother the multigrid approximate inverseM�1
0

is both symmetric and positive de�nite. Thus, it can be used as a preconditioner for
the conjugate gradient algorithm.

We note that (2.12) is the same approximate inverse as de�ned by Algorithm 3.8
in Xu's review1 [10] when the multigrid smoother is identi�ed with the approximate

inverse eA�1m�1. In addition, Xu pointed out [10, Proposition 2.2 and 2.3] that using

M�1 as a preconditioner for a conjugate gradient algorithm results in a substantially
faster convergence rate than what could be achieved with an optimum over-relaxed
iterative scheme. The advantage of the conjugate gradient scheme over the plain
iterative scheme, un+1 = un+M

�1(f�Aun), standardly used in multigrid algorithms
can be even more dramatic. The plain iteration scheme diverges if M�1A has an
eigenvalue greater than 2, even when the condition number ofM�1A is quite modest.
In contrast the convergence of the conjugate gradient algorithm depends only on the
condition number and hence makes for a more robust algorithm. A numerical example
in subsection 4.3 illustrates this point.

In the multigrid terminology, (2.12) is a V-cycle. A W-cycle corresponds to
replacingM�1

k+1 on the right-hand side of (2.12) with

M�1
k+1 + (I � M�1

k+1Ak+1)M
�1
k+1 :

In e�ect, the �rst two terms in the expansion

A�1 =
�
I � (I �M�1A)

�
�1
M�1

are used to improve the approximation for the coarse inverseA�1k+1. The improvement
results from partially coupling the short and long wavelengths at every level. Tatebe
discussed both V-cycle and W-cycle multigrid preconditioners in conjunction with
the conjugate gradient algorithm. Our method, discussed below, makes the coupling
between short and long wavelengths even stronger.

1There is a misprint in [10]. Step 3 of Algorithm 3.8 should be the same as Step 2 of Algorithm 3.6
with v2 substituted for v1.

6 K. LACKNER AND R. MENIKOFF

ForM�1
0 to be a good approximate inverse ofA, the splitting must be chosen such

that P�1k Qk smoothes the shorter wavelengths to complement W k which operates
only on the longer wavelengths. The Jacobi splitting for the Laplace operator provides
an example which illustrates this point. The standard Jacobi splitting does not damp
the shortwave lengths associated with the checker board mode and does not work well
in conjunction with multigrid algorithms. However, the Jacobi splitting with weight
factor of 1

2
does damp short wavelengths, including the checker board mode, and does

work with the multigrid algorithm.
The underlying rationale for the multigrid algorithms is a wavelength decompo-

sition. To put the multigrid preconditioner in perspective, we note that the plain
multigrid algorithm is known to be super-convergent (scales proportional to N) for
the Laplace operator. The Laplace operator has the property that it is diagonal
in Fourier space and hence all the wavelengths are decoupled. In general, di�erent
wavelengths are coupled and the multigrid algorithm can be expected to scale only
as N logN . Stronger coupling between wavelengths increases the di�culty of the
problem. For harder problems, the multigrid algorithm does not provide su�cient
coupling between wavelengths and convergence may be slow or even fail ifM�1A has
an eigenvalue greater than 2. Using a single multigrid step as a preconditioner for a
conjugate gradient algorithm extends the range of problems that can be solved [9, 1].

When the system is large enough to require many coarsening levels, the number
of iterations needed to fully couple the long and short wavelengths can increase. This
e�ect has been observed in [1, tables III, IV and V].

2.3. Recursive Multiscale Conjugate Gradient. The di�culty with the
multigrid preconditioner can be overcome by de�ning the preconditioner in terms
of the exact inverse of the coarsened operator Ac as follows

M�1 = (P�1Q)m(EA�1c R)(QP
�1)m +P�1

2m�1X
j=0

(QP�1)j ;(2.13)

In e�ect, W = EA�1c R and the evaluation of A�1c on a vector is computed by
applying the same algorithm to the coarse grained operator. Again the recursion
ends by solving the problem exactly on the coarsest level. Using the exact inverse
A�1c for W is the best preconditioner based on a single level of scaling. Instead of
using A�1c , Tatebe's scheme uses an approximation to the coarse inverse given by
M�1

1 from (2.12). This approximation to the coarse inverse gets worse as the number
of levels increases.

An important feature of our preconditioner is that the long and short wavelengths
are coupled at each level by a conjugate gradient solver before proceeding to the next
�ner grid. This prevents truncation errors from the coarsening of the operator at
each level from accumulating. In particular, if the coarsened operator does poorly on
a few modes, which typically occurs when the coe�cients of the underlying PDE are
discontinuous, then these modes will be corrected by the conjugate gradient solver
with only a small penalty.

The e�ciency of the recursive multiscale algorithm is due to the high quality of
the approximate inverse. By accounting for extremes in the spectrum, both short
and long wavelengths, the preconditioned matrix M�1A has a low condition num-
ber and consequently only a small number of iterations is needed for the conjugate
gradient solvers at every level. Our M�1 is a special case of a multigrid scheme. It
is particularly simple in that it involves only 2 levels with an exact coarse inverse.

Multi-Scale Linear Solvers 7

Consequently, multigrid theory provides an upper bound on the condition number of
M�1A. We expect the high quality of the preconditioner to result in a low number
of iterations. Of course the reduction in the iterations must overcome any increase
in the cost per iteration. The numerical examples below show that this is indeed the
case.

The conjugate gradient algorithm relies on a simple recursion relation for the
conjugate directions. The orthogonality of the conjugate directions is a consequence
of the linearity of the preconditioner. A potential drawback of a preconditioner that
depends on a linear solver is that the preconditioner is only a linear operator if the
coarse grained inverse is solved accurately. In the numerical experiments described
below we have found that the coarse grained inverse only need be solved to an accuracy
comparable to that desired for the overall solution on the �ne grid. This may be
explained by following heuristic argument. Suppose the error from the inaccuracy in
the coarse grained inverse is random. Then for a large problem, dimension O(106), the
component of the error along a particular vector is likely to be small. Thus the error
in orthogonality for the �rst few iterations, O(10), is small. If only a small number of
iterations are required because of the quality of the approximate inverse then the e�ect
of small non-linearities of the preconditioner, introduced by the recursive solvers, is
negligible.

Other multiscale schemes that also use a conjugate gradient algorithm at every
level have been developed, in particular, the cascadic conjugate gradient and the
cascadic multigrid schemes [7, 4]. In contrast to our algorithm these are \one-way
multigrid" methods in which the coarse grids are used to determine initial guesses for
iterative algorithms on the next �ner grid until a solution is obtained at the desired
grid resolution. Though the approximate inverse in these methods is not strictly
linear, convergence of the scheme has recently been proven for a large class of elliptic
problems. The cascadic multiscale schemes are e�cient when the short wavelengths
have a minimal e�ect on the long wavelengths. Since our approach is to fully couple
the short and long wavelengths before proceeding to the next level, we expect it to
be more e�ective on di�cult problems in which wavelengths are strongly coupled.

3. Implementation. To validate the algorithm we have implemented the solver
in an object oriented C++ based code. The implementation is general enough to allow
at every level for an arbitrary choice of solver and an arbitrary preconditioner. We
have tested the code with the conjugate gradient solver using the three preconditioners
described in the previous section: polynomial preconditioner, multigrid preconditioner
and the recursive multiscale preconditioner. In addition, the implementation includes
the standard multigrid algorithm. This enabled us to compare the algorithms while
using the same prolongation, restriction, splitting and coarsening operators.

As a test case we used the porous
ow equation

r � (K � rP) = S :(3.1)

Here, K is a permeability tensor, P is the pressure and S is a source. We considered
only a diagonal tensor and used the linear system derived from the standard 5-point
stencil for the �nite di�erence operator on a two-dimensional regular grid. In the
discretization P and S are cell centered �elds whereas the components of K are face
centered; from the cell centers Kxx is o�set by a 1=2 cell in the x-direction and
Kyy is o�set by a 1=2 cell in the y-direction. The face centered components of the
permeability �eld are obtained as the harmonic mean of the adjacent cell centered
values. This discretization is a special case of support operator di�erencing [8] and

8 K. LACKNER AND R. MENIKOFF

results in a matrix that preserves the positivity and symmetry of the di�erential
operator.

The discrete operator can be decomposed asA =D+U+L whereD is diagonal,
U is strictly upper triangular and L is strictly lower triangular. In terms of these
matrices, we have used two operator splitting A = P � Q: the symmetric Gauss-
Seidel splitting for which P = (D + L)D�1(D + U) and Q = LD�1U , and the
Jacobi splitting with weight factor of 1

2
, P = 2D and Q =D �U �L. As is typical

of multigrid algorithms, the Gauss-Seidel splitting works better and is used for the
results presented below.

We allow for both Dirichlet and Neumann boundary conditions. Each point on the
boundary can be independently chosen to satisfy one or the other condition. The type
of boundary condition a�ects the discretizedK �eld along the boundary. In addition,
the value of the boundary condition enters as a source term in the boundary cells of
the discretized equations. The boundary source terms are large and under coarsening
scale di�erently than the source terms in the interior. To avoid complications from the
boundary source terms, we transform to a problem with zero boundary conditions.
This is accomplished by generating a smooth �eld Pbf that matches the boundary
conditions. We then solve the problem for �P = P�Pbf with zero boundary conditions
but an additional source term �r � (K � rPbf).

The coarse grained permeability tensor is based on the transmissivities, Txx =
�y

�x
Kxx and Tyy = �x

�y
Kyy where �x and �y are the width and height of a grid

cell. Physically these are extensive rather than intensive quantities. The transmis-
sivity behaves like a conductance, in contrast to the permeability which behaves as a
conductivity. The Txx component is taken as

1

T c
xx

=
X
i

1P
j Txx(i; j)

(3.2)

where the sum is over �ne cells contained within a coarse cell, and i and j are the
indices corresponding to the x- and y-directions respectively. When a �ne cell only
partially overlaps a coarse cell the value of Txx associated with the �ne cell is multiplied
by the fraction of the height in the overlap and divided by the fraction of the width in
the overlap. This is the scaling for the conductance of a sub-cell when the conductivity
is constant within the cell. A similar construction is used for Tyy with the sums over
i and j interchanged. The coarsened permeability is an approximation analogous
to treating resistances transverse to the
ow direction in parallel and then these
collective resistances in series. (Recall that resistances in parallel are computed like
conductances in series and vice versa.)

The coarse grained operator remains diagonal. Despite its simplicity, it satis�es
three properties that enable it to be quite useful. (i) Even if K on the �nest grid
is a scalar, the coarsened K is typically not scalar. (ii) The e�ect of the boundary
conditions on the boundaryK's are properly accounted for. (iii) The Laplace operator
is preserved under coarsening.

It is noteworthy that the scale factor between grids is not limited to a factor of
two, nor for that matter to an integer. Consequently, the number of grid points in a
linear dimension does not have to be a power of the scale factor. Typically, we scaled
between successive grid levels by a linear factor of 4 which reduces the dimension of
the problem at each level by a factor of 16. The e�ective scale factor between adjacent
levels tends to vary slightly in order to maintain an integer grid dimension.

The restriction operator is taken as the adjoint of the prolongation operator. For

Multi-Scale Linear Solvers 9

the prolongation operator we use the tensor product of 1-D linear interpolations. A
piecewise constant interpolation works nearly as well. In contrast to the piecewise
constant interpolation, a linear interpolation requires a boundary condition. For both
Dirichlet and Neumann boundaries, we chose a zero slope for the boundary interpo-
lation. While this correctly captures the Neumann condition, it introduces a small
error for the Dirichlet case. However, the viability of the piecewise constant interpo-
lation suggests that the error is small and can be neglected. Numerical experiments
con�rm this suggestion. For a Neumann boundary, since �P near the boundary can
be large, a zero boundary condition is highly detrimental to the convergence of the
algorithm. The fact that the zero slope interpolation condition is acceptable for both
the Dirichlet and Neumann case greatly simpli�es the implementation of boundary
conditions that can vary between Dirichlet and Neumann from cell to cell.

The degree m of smoothing is related to the scale factor. Since the smoothing
operator P�1Q typically connects only neighboring grid points we have chosen m to
be the same as the scale factor. As a result the preconditioning matrix fully couples
every �ne grid cell. Smaller values of m would require a larger number of conjugate
gradient iterations for problems in which the short wavelengths dominate the solution.

Our implementation of the conjugate gradient algorithm is conventional, as out-
lined in [3, x2.3.1, Figure 2.5]. We base the convergence criterion on the norm of the
residual rather than the norm with respect to the preconditioner. This is because
applying the preconditioner is the most expensive operation in the conjugate gradient
step. It is performed at the beginning of the cycle and hence is out of date when the
check for convergence is made at the end of the cycle. A convergence criterion of the

same type is applied on every level. The criterion for convergence on the kth level is

jj~rjj2

Nk

< fk � �2(3.3)

where ~r is the residual, Nk is the number of grid points, � is the desired root mean
squared error of the residual on the �nest level, and f is an adjustable parameter that
allows us to tighten the error criterion on the coarser levels. The algorithm appears
not to be very sensitive to the choice of f . In practice we found f = 0:1 works well.
As f increases the number of iteration on the �ne level gradually increases, while too
small a value of f results in unnecessary iterations on the coarse levels.

4. Numerical Examples. We have tested our solver algorithm on several ex-
amples of the porous
ow equations. The examples below use both Dirichlet and
Neumann boundary conditions, typically, constant pressure P = 1 on the left and
P = 0 on the right, and no
ow on the top and bottom. We generated random
log-normal permeability �elds with either a Gaussian auto-correlation function or a
power law auto-correlation function

�
1

1 + (~r1 � ~r2)�(~r1 � ~r2)

� 1

4

where � is a positive de�nite matrix which de�nes cuto� lengths for the power law
behavior. The variance of the permeability �eld is adjusted by scaling the log of
the �eld. Similar problems have previously been used to test the conjugate gradient
algorithm with a multigrid preconditioner [1].

Our test examples include meshes varying in size by a factor of 1000; from 2�103

to 2� 106 grid points. We also have varied the di�culty of the problem by increasing

10 K. LACKNER AND R. MENIKOFF

Fig. 4.1. Flow lines (in black) superimposed on the log of permeability �eld for the base case.
The permeability �eld is random log-normal. The log of the �eld has a zero mean, a variance of 2
and a power law auto-correlation. The �eld is discretized on a 1000 � 1000 grid and its log ranges
from a low of -7.3 (blue) to a high of 7.9 (red). We note for this \fractal" permeability �eld the

ow lines tend to follow narrow channels. This is in contrast to our experience with Gaussian
auto-correlations where
ow lines avoid obstacles but do not bunch into narrow channels.

the variance of the permeability �eld to obtain a maximum to minimum permeability
ratio up to 8 � 109. In addition, we have adjusted the error tolerance to vary the
accuracy of the solution up to machine accuracy.

4.1. Base case. For a basic test case we used a power law �eld on a quarter of the
unit square. We choose a variance of 2 with a zero mean and minimum correlation
lengths of 0.016 and 0.002 oriented at 15 degrees with respect to the x-axis. The
resulting permeability �eld contains a wide range of wavelengths. On a 1000� 1000
grid the distribution of the log of the permeability �eld extends over 3.5 standard
deviations. Consequently, the permeability �eld varies from 10�3 to 103 and the ratio
of its maximum to minimum value is 106. The
ow lines for the solution superimposed
on the log of the permeability �eld are shown in �gure 4.1. The conjugate gradient

Multi-Scale Linear Solvers 11

Fig. 4.2. Level sequence for the base case. The x-coordinate is a time like variable. As the
calculation precedes, the line indicates the grid level at which a conjugate gradient step is evaluated.
Thus, the line represents the dynamical transitions between levels which replaces the preprogrammed
V-cycle or W-cycle standardly used in multigrid algorithms. The level is given on the left. Level
0 is the �nest grid and level 4 is the coarsest grid. The cumulative number of conjugate gradient
iterations at each level is shown at the right.

Table 4.1

Iteration count on each level for the base case. Computational e�ort on a level is proportional
to the dimension of the level times the total number of iterations on that level.

Level Grid dimension iterations ratio iterations� dimension per cent total
4 4 � 4 = 16 119 1904 0.03

> 1:3
3 16 � 16 = 256 94 24064 0.37

> 1:5
2 63 � 63 = 3869 63 214326 3.29

> 3:2
1 252 � 252 = 63504 20 1270080 19.48

> 4
0 1001 � 1001 = 1002001 5 5010005 76.84

total 6520379

solver on the �nest level required 5 iterations to reduce the mean squared residual by
a factor of 1010. Later we show that this corresponds to 5 digits accuracy. Replacing
the Neumann boundary conditions on the top and bottom with Dirichlet boundary
conditions does not change the performance of the solver.

The algorithm dynamically determines its e�ort on every level. The sequence
of transitions between levels (the replacement for the preprogrammed V-cycle or W-
cycle standardly used in multigrid algorithms) is displayed in �gure 4.2. It is seen
that fewer and fewer conjugate gradient iterations for the coarse inverse are used for
subsequent evaluations of the preconditioner for a conjugate gradient step on the �ne
level. This is an indication that the solution converges for long wavelengths before
it converges for short wavelengths. The diminishing e�ort on the coarse levels is an
important factor that allows the computational e�ort to scale with size proportional
to N rather than N logN . The total number of iterations is summarized in table 4.1.
Even though the cumulative number of iterations is larger for the coarser grids, the
ratio of iterations between levels goes down. The e�ort on each level is proportional

12 K. LACKNER AND R. MENIKOFF

to the number of iterations on that level times the dimension of the level. It is seen
from the table that the total e�ort is dominated by the computation on the �nest
level.

To set the scale, the total computational e�ort is equivalent to about 1600 scalar
products of vectors on the �nest grid. On a workstation (SUN Ultra I, 170 Mhz) or
a PC (PentiumPro, 200 Mhz) the time per point is 240�s. This time is for the solver
only and does not include initialization of the permeability �elds on the coarse grids.
Our implementation is memory e�cient. The solver requires storage for a total of 10
vectors: 3 for the matrix, one each for the pressure �eld, the source �eld, the residual
and the conjugate direction, and three temporaries to evaluate the preconditioner
(2.13) on the residual.

Specializing the algorithm to the Laplace equation reduces the computational
e�ort to 50�s per point and decreases the required memory by 4 vectors. The di�er-
ence in speed, as well as memory, can be attributed largely to the much more e�cient
coding for the simpler linear operator. It is a remarkable fact that the same precondi-
tioned conjugate gradient algorithm works equally well for an operator with a rapidly
varying permeability �eld as for the simple Laplace operator.

We choose this problem, which is fairly large for a workstation, as a base case
because we felt it is necessary to have several levels of coarsening to assess the quality
of the algorithm. With a scale factor of roughly 4, there are only 4 coarsenings for
a 1000 � 1000 grid. The problem we have choosen is not trivial. As shown below
the polynomial preconditioner takes a large number of iterations and the standard
multigrid algorithm fails to converge. Our implementation of Tatebe's algorithm
succeeds and will be discussed in more detail later.

Though the algorithm has not been optimized, it is robust and the run time is
within a factor of 2 over a reasonable range for the parameters characterizing the
algorithm. Figure 4.3 shows the e�ect of the scale factor between grids. For scale
factors between 2 and 5, the time per point varies by only 30%. A minimum time of
180�s per point occurs with a scale factor of 3.

In a recent modi�cation to our code (using the multigrid procedure [10, Algo-
rithm 3.8] for evaluating M�1 applied to a vector) without changing the precondi-
tioner we achieved a reduction in run time by 40% at the cost of increasing the memory
requirement by 10%, one additional vector. Thus, we expect that on a current top of
the line PC (450 Mhz Pentium II) the runtime for our base case problem would be
substantially less than a minute.

4.2. Scaling behavior. For high resolution, the scaling properties of the solver
algorithm are critical. To test the scaling behavior we solved a series of problems on
sucessively larger grids varying in dimension by 3 orders of magnitude. We found the
e�ort per point to be independent of the size of the grid.

We started by generating a random permeability �eld on a unit square with a
very �ne grid, 2048� 2048. Then the grid is truncated to a square subgrid by using
only the subregion de�ned by the lower left corner and a speci�ed upper right corner.
The 1000�1000 �eld corresponds to our base case and is choosen to have a variance of
2 with a mean of zero. The cuto� lengths of the correlation function on this sequence
of grids remains constant (32 by 4 cells) but the variance of the permeability �eld
increases with the size of the grid. Consequently, the problem gets harder as the size
increases.

Figure 4.4 shows the scaling behavior on grids ranging from 50�50 to 1600�1600.
It can be seen that the number of iterations and the time per point are almost constant.

Multi-Scale Linear Solvers 13

Fig. 4.3. The e�ect of the scale factor between grids on the base case. Shown are the number
of levels, iterations on the �nest grid, and the time per point.

This indicates that the computational e�ort scales linearly with the grid dimension.
Despite the variable coe�cients, this scaling is better than the N logN scaling for
solving the Laplace equation with fast Fourier transforms.

We have run the same problems with Tatebe's multigrid preconditioning algo-
rithm. As seen in �gure 4.5 this algorithm requires more iterations. The overall trend
is linear which indicates that the computational e�ort scales asN logN . This is in line
with the results of Ashby & Falgout [1]. A comparison with their results is necessarily
imprecise because they concentrated on 3-D problems and a parallel implementation.
The larger number of iteration in Tatebe's algorithm is partially o�set by a lower cost
per iteration. For the largest problems in this series, the time per point is a factor of
two greater than for our algorithm. For the small problems the two algorithms are
comparable in time.

In addition, we have tested the scaling behavior on a family of problems with the
permeability �eld generated by interpolating from the very �ne grid to coarser grids
on the same physical domain and then rescaling to obtain the same variance. For this
family of problems, the cuto� length to the auto correlation function in units of cells
is proportional to the grid size. The decreasing smoothness of the discretized �eld, in
terms of cell to cell variation, increases the di�culty of the problem for the smaller
grids. Due to the changing correlation length, with this set of problems the time
per point for our algorithm decreases slightly as the grid dimension increases while
Tatebe's algorithm continues to scale as N logN . For the largest grid our algorithm
is again 50% faster than Tatebe's algorithm.

14 K. LACKNER AND R. MENIKOFF

Fig. 4.4. Number of iterations on the �nest grid and time per point versus number of grid
points for the recursive multiscale conjugate gradient algorithm.

Fig. 4.5. Number of iterations on the �nest grid and time per point versus number of grid
points for the multigrid preconditioned conjugate gradient (Tatebe's) algorithm.

4.3. Accuracy. In order to obtain an estimate of the accuracy of our method,
we �rst generated a test problem for which the exact solution is known. To this end
we solved our base case approximately using another solver. We intentionally did not
strive for high accuracy. By adding the small residual of the approximate solution
to the source term of the base problem, we created a new test problem which by
construction is solved exactly by the approximate pressure �eld of the base problem.

Multi-Scale Linear Solvers 15

Fig. 4.6. Iterations vs accuracy for the base case. The solution �eld is of order 1.

By varying the error tolerance of our solver we generated a sequence of solutions.
For these solutions, the iteration count as a function of the accuracy is shown in
�gure 4.6. Both the root mean squared error and the maximum error are used as
measures of the accuracy. We observe that the iteration count increases linearly with
the log of the accuracy until the improvement of the solution is limited by machine
accuracy. The linear trend indicates that each iteration reduces the error by a factor
of about 11. Consequently, only a small number of iterations are needed to achieve
machine accuracy. The fact that the maximum error is within a factor of 3 of the root
mean squared error indicates that the solution is uniformly accurate. This is another
strong point of our algorithm and is a consequence of the preconditioner acting on all
length scales.

To further test the robustness of our algorithm we increased the di�culty of the
base problem by increasing the variance of the log of the permeability �eld. The
iteration count as a function of the variance is shown in �gure 4.7. A variance of 3
results in the values of the permeability �eld varying from minimum to maximum
by a factor of 8 � 109. For larger variances, round-o� errors in the �nite di�erence
approximation to r � (K � rP) limits the accuracy to which the solution can be
computed. We observe that for our multiscale algorithm the iteration count is almost
constant (4 or 5), whereas the iteration count for Tatebe's algorithm grows from 5
to 27. The plain multigrid algorithm works well when the variance is below 1.5 but
the residual diverges when the variance is above 2. Ashby & Falgout [1, table V]
observed the same trend.

For the iteration in the multigrid algorithm, the convergence rate is given by
jjI �M�1Ajj

A
. SinceM�1A is a positive operator, the trend with variance implies

that the maximum eigenvalue ofM�1A increases above 2 as the variance is increased.
In contrast the convergence rate of the conjugate gradient algorithm depends only on
the condition number. The trend of Tatebe's algorithm implies that the condition
number ofM�1A increases slowly with variance. As a test of this hypothesis on the

16 K. LACKNER AND R. MENIKOFF

Fig. 4.7. Iterations vs variance of the log of the permeability �eld. The variance is adjusted
by scaling the log of the permeability �eld used in the base case. Four cases are shown; conju-
gate gradient with polynomial (m = 8) preconditioner (triangle), plain multigrid (square), multigrid
preconditioned conjugate gradient or Tatebe's algorithm (open circle), and recursive multiscale con-
jugate gradient algorithm (solid sircle). The plain multigrid algorithm diverges for variance above 2.

eigenvalues ofM�1A, we applied a relaxation to the plain iteration in the multigrid
algorithm, i.e., un+1 = un + !M�1(f �Aun) with ! = 0:5. With this modi�cation
the multigrid algorithm does converge for the cases with larger variance, although as
expected, at a slow rate. This example illustrates that a conjugate gradient iteration
in place of a plain iteration increases the robustness of the multigrid scheme.

We also ran this set of problems using the conjugate gradient algorithm with a
polynomial (m = 8) preconditioner. This simple algorithm does converge, but the
iteration count is large; varying from 474 iterations for a variance of 0.5 to 1483 iter-
ations for a variance of 3. Since the linear dimension is 1000 points, the large number
of iterations does couple all wavelengths even though the preconditioner is only e�ec-
tive on short wavelengths. Though the multigrid preconditioner does not account for
the coupling between short and long wavelengths at every level, the conjugate gra-
dient iteration on the outer level (�nest grid) provides su�cient coupling to greatly
decrease the needed number of iterations. The multiscale preconditioner couples the
short and long wavelengths at every level and consequently the number of iterations
needed at the outer level is nearly the same. The cost for the preconditioner does in-
crease with the di�culty of the problem because more inner iterations are used as the
variance is increased. But at the highest variance, the algorithm with the multiscale
preconditioner takes 1=3 the time as the algorithm with the multigrid preconditioner.

These tests shows that our algoithm is very robust. The preconditioner is e�ec-
tive on di�cult problems. In fact, its advantage increases with the di�culty of the
problem. With a small increase in the number of iterations the solution can be driven
to near machine accuracy. It is remarkable, that despite the rather large spatial vari-
ation in the value of the permeamility �eld, a solution can still be obtained in only 5
iterations.

Multi-Scale Linear Solvers 17

Fig. 4.8. Flow lines (in black) superimposed on the log of permeability �eld for the
ow in a
narrow channel. The permeability �eld is random log-normal. The log of the �eld has a zero mean,
a variance of 2 and a power law auto-correlation. The �eld is discretized on a 2000 � 500 grid
and its log ranges from a low of -7.2 (blue) to a high of 7.9 (red). The cells have a 10 to 1 aspect
ratio resulting in a domain with a 40 to 1 aspect ratio. To �t on the page, the x-direction has been
compressed by a factor of 10. This is equivalent to a non-isotropic permeability �eld with Kyy a
factor of 100 times Kxx.

Table 4.2

Iteration count on each level for the
ow in a narrow channel. Computational e�ort on a level
is proportional to the dimension of the level times the total number of iterations on that level.

Level Grid dimension iterations ratio iterations� dimension per cent total
4 160 � 4 = 640 1548 990720 6.3

> 8:1
3 520 � 13 = 6760 191 1291160 8.2

> 2:9
2 1760 � 44 = 77440 66 5111040 32.3

> 4:4
1 2000 � 147 = 294000 15 4410000 27.9

> 3:8
0 2000 � 500 = 1000000 4 4000000 25.3

total 15802920

4.4. Non-isotropic permeability �eld. We performed preliminary tests to
determine whether the algorithm can be applied to problems with large aspect ratios
in either the domain or the individual grid cells. For the permeability �eld we used a
strip of the �ne �eld generated for the scaling study (full width and 25% of the height).
The left half of the new �eld corresponds to the top half of the permeability �eld of
the base case. The discretized grid of 2000�500 has the same overall dimension, 106,
as the base case. In addition, as with the base case, the variance is set to 2.

We then reinterpreted the discretized �eld by assuming a cell aspect ratio of 10
to 1. While the initial �eld ranged from 0 to 1 in both the x- and y-directions, the
new �eld ranges from 0 to 10 in the x-direction and from 0.25 to 0.5 in the y-direction.
The rescaling results in a new permeability �eld in a channel with a length 40 times
its width and in which the typical features (ratio of the correlation lengths) have an
aspect ratio of 80 to 1.

The matrix for the problem with a 10 to 1 cell aspect ratio is equivalent to the
matrix corresponding to square cells and a non-isotropic permeability �eld with Kyy

a factor of 100 times Kxx. The
ow lines superimposed on the log of the permeabilty
�eld are shown in �gure 4.8. The e�ect of the anisotropy is seen in the abrupt changes
in direction of the
ow lines in order to follow paths of high permeability.

We found that the solver performed better when the coarsening strategy aimed
for cells with an aspect ratio of 1. Thus, despite the smaller dimension, the grid is �rst
coarsened in the y-direction, and then uniformly in both directions. This is similar
to the \semi-coarsening" strategy used for multigrid algorithms. The iteration count
on each level is shown in table 4.2. The �nest level still required only 4 iterations

18 K. LACKNER AND R. MENIKOFF

but the semi-coarsening does not reduce the grid dimension by as large a factor for
the �rst two levels and the time per point of 768�s is 2.4 times as large as for the
base case. We conjecture that a better coarsening algorithm which accounts for o�-
diagonal components of the permeability tensor would not require the semi-coarsening
and that with a uniform reduction in grid size the algorithm would be as e�cient as
for the base case.

5. Conclusion. For a large system, any iterative algorithm requires an excellent
preconditioner. For PDEs that can be reasonably described by discretization, a coarser
discretization forms the basis for a good preconditioner. If our algorithm is well suited
for the �nest level of discretization, then it is reasonable to expect that it would
be equally well suited to the next level. Thus, we are naturally led to a class of
preconditioned algorithms which are recursive in nature. The preconditioner applies
the very same algorithm on a coarser scale until the problem is either so coarsely
resolved that further coarsening is detrimental or the problem is su�ciently small for
direct solvers to be more e�cient.

We have applied this philosophy to the conjugate gradient algorithm. However,
it is very likely that the same ideas could be applied to other solvers. Indeed, the high
quality of the preconditioner should be even more valuable for other Krylov space
methods which need to store a set of conjugate directions. Memory requirements
limit the number of conjugate directions that can be stored. The resulting restarts
lower the e�ciency of the algorithm. With a better preconditioner fewer iterations
and hence fewer restarts can be expected. This should improve the e�ciency. In fact
for the examples we studied the number of iterations is small enough (about 5) that a
restart would have been unnecessary. The small number of iterations would provide
a substantial advantage of our method for non-symmetric positive de�nite operators.

This line of thought is not unique to our approach. Recently, a multigrid precon-
ditioner has been successfully employed in the GMRES algorithm [6]. GMRES and
other such more general Krylov space algorithms can be applied when the operator is
not symmetric or not positive de�nite. They signi�cantly broadening the number of
problems that can be addressed. PDE's leading to non-symmetric problems are not
uncommon.

Even if the problem is symmetric positive de�nite there may be advantages in
using more general solvers. For example, in the porous
ow problem addressed here
optimum coasening techniques naturally lead to a nonsymmetric permeability tensor
on the coarse grid even if the �ne grid permeability tensor is symmetric. Our current
limitation to symmetric operators did not allow for such coarsening. We believe that
the reduced number of iteration from an optimum nonsymmetic coarsening may o�set
the added cost of an algorithm for a nonsymmetric operator.

In a broader context, our solver is another example demonstrating the advantages
of hybrid schemes that combine multigrid and conjugate gradient algorithms. Because
of their scaling behavior and robustness, hybrids algorithms are well suited to large
problems. Our implementation allows us to de�ne a di�erent preconditioner on every
level. The algorithm can be specialized to a particular problem by tailoring the
solver on every level to the frequency distribution of scales. From this point of view
Tatebe's algorithm and our algorithm are the end points of a large class of multiscale
algorithms. Our algorithm has the advantage of a favorable scaling, but for some
problems Tatebe's algorithm may be more suitable.

The ideas on which our approach is based are quite general and transcend the
speci�c implementation. In many regards our implementation is a particularly simple

Multi-Scale Linear Solvers 19

example of the general approach. We expect in the future to see similar recursive
algorithms that have equally favorable scaling behavior but can be applied to a large
class of problems with more complex gridding and coarse graining schemes. In this
paper we were not concerned with parallelizing. Tatebe's algorithm has been paral-
lelized [1, 5]. We expect that a similar approach could be applied to parallelize our
algorithm and that a signi�cant increase in speed would be obtained for truely large
problems.

REFERENCES

[1] S. F. Ashby and R. D. Falgout, A parallel multigrid preconditioned conjugate gradient al-
gorithm for groundwater
ow simulations, Nuclear Science and Engineering, 124 (1996),
pp. 143{159.

[2] O. Axelsson, Iterative Solution Methods, Cambridge Univ. Press, 1994.
[3] R. Barrett, M. Berry, T. F. Chan, J. Demmel, J. Donato, J. Dongarra, V. Eijkhout,

R. Pozo, C. Romine, and H. Van der Vorst, Templates for the Solution of Linear
Systems: Building Blocks for Iterative Methods, 2nd Edition, SIAM, Philadelphia, Pa.,
1994. http://www.netlib.org/linalg/html_templates/Templates.html.

[4] F. A. Bornemann and P. Deuflhard, The cascadic multigrid method for elliptic problems,
Numerische Mathematik, 75 (1996), pp. 135{152.

[5] L. Brieger and G. Lecca, Parallel multigrid preconditioning of the conjugate-gradient method
for systems of subsurface hydrology, J. Comput. Phys., 142 (1998), pp. 148{162.

[6] T. T. Feng, D. Peric, and D. R. J. Owen, A multigrid enhanced GMRES algorithm for elasto-
plastic problems, Intern. J. for Numerical Methods in Engineering, 42 (1998), pp. 1441{
1462.

[7] V. V. Shaidurov, Some estimates of the rate of convergence for cascadic conjugate-gradient
method, Computers Math. Applic., 31 (1996), pp. 161{171.

[8] V. Shashkov and S. Steinberg, Support-operator �nite-di�erence algorithm for general el-
liptic problems, J. Comput. Phys., 118 (1995), pp. 131{151.

[9] O. Tatebe, The multigrid preconditioned conjugate gradient method, in Proceedings of the
Sixth Copper Mountain conference on Multigrid Methods, 1993, pp. 621{634.

[10] J. Xu, Iterative methods by space decomposition and subspace correction, SIAM Review, 34
(1992), pp. 581{613.

