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Why Multiscale?
Behavior controlled by processes on wide range of lengths and times
0.1to 1 nm – chemical bond, atomic size, polymer diameter, …
1nm to 1μm – size of colloidal particle, polymer, actin, …

size of defect structures: dislocations, fibrils, domain walls, …
1μm to 1mm – microstructure – collections of defects, domains,

scale of cells, grains, pores, …
large scales – homogeneous continuum with complex geometry

Polymer fracture:
nm polymer → 10nm fibril →
10μm craze → 10mm crack

Why Multiscale?
• Behavior controlled by processes on wide range of lengths and times
• Want to include relevant physics from all scales 
• Usual approach → Choose scale of interest and use appropriate 

method for phenomena at that scale.  Model at that scale often 
chosen phenomenologically or fit to experiment.

• Multiscale approach → Couple calculations at different scales
Two basic paradigms:
Sequential or hierarchical – Do separate calculations at each scale,   
pass the results between scales → coarse-graining or fine-graining
Best when clear separation between scales, homogeneous at large  

Concurrent – Do simultaneous coupled calculations with different
resolutions and physical description in different regions 

Best when continuous transition between scales and direct  
interaction between them.

Wide range of single scale methods

Multiscale methods couple descriptions either sequentially or 
concurrently

Main focus today on coupling from atomistic to continuum

Single Scale Methods
• Quantum Monte Carlo – Full quantum treatment of electron 

interactions, and perhaps even quantum treatment of nuclei.  
Exponential increase in computational effort with number of particles →
limited to 10-100 quantum particles.

• Electronic structure calculations – Treat quantum mechanical nature of 
electrons finding ground state for fixed nuclear positions.  Algorithms 
that are linear in # of electrons allow thousands of atoms to be treated 
for picoseconds.  Tight-binding treatment →larger systems and times

• Classical Molecular Dynamics and Monte Carlo – Coarse-grain to 
follow only the motion of atoms, including effect of electrons through a 
classical potential energy that depends only on the positions of nuclei.  
Depending on complexity of potential energy can treat 107 to 109 atoms 
for nanosecond and longer times.  
Coarse-grained potentials lump atoms together, follow these groups  
Example: Lump carbon and hydrogens into a single “united atom” or 
represent a protein by the carbon atoms along its backbone.

Single Scale Methods – coarser scales.
• Particles representing entire polymers, fluid elements, galaxies, …

Solve dynamics with MD or on lattice (Lattice Boltzmann Method)
Know that if equations obey conservation laws, particles will follow
hydrodynamic equations → solve Navier-Stokes, magnetohydrodynamics

• Slip-link models for polymer dynamics
• Discrete defect dynamics – Identify lines or surfaces where there is a

defect in the order parameter: dislocation, interface, …
Average out atoms, follow dynamics of defect

• Phase field models – Define local free energy that depends on order 
parameter:  concentration, magnetization, nematic director, …
Follow dynamics of order parameter assuming overdamped dynamics

• Purely continuum treatment:
Elasticity of solids, Navier-Stokes equation for fluid, …
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Coarse Graining in Sequential Coupling
Coarse-graining:  Formally want to integrate out fine-scale degrees 

of freedom (DOF) as in Renormalization Group 
Divide DOF into coarse – labeled I, and fine – labeled i
For equilibrium partition function can formally write:

Z=ΣI,i exp(-βU(ui,uI)) = ΣI exp(-βU’(uI))
where exp(-βU’(uI)) ≡ Σi exp(-βU(ui,uI)) 

However:
Summation can not be done analytically in most cases of interest,  

numerical approximations are difficult
Effective potential U’ usually longer range, depends on T, ρ, etc.    

while want potential that is transferable to different cases
Dynamic treatments even harder

Curtarolo & Ceder → Migdal-Kadanoff bond moving RG
Broughton & Rudd → KE of removed atoms and approx entropy

Common Method of Sequential Coupling
Calculate some quantity with fine-scale description 

– eg. pair distribution function, energy, viscosity, elastic constants, 
pressure-volume curve, Kuhn length, order parameter

Adjust parameters of coarser description to reproduce fine-scale data
→ Bad parametrization may miss physics

Best if few parameters fixed by symmetry, conservation that can     
calculate directly – i.e. viscosity, elastic moduli, boundary cond.

→ Quantities not included in fit may be inaccurate
→ Very different parameters may fit fine-scale data equally well

(Historically this approach was often followed using experimental data 
to calibrate the description)

Fine-graining requires way of reinserting fine-scale structure – not 
unique in general, so must allow re-equilibration.  Can equilibrate at 
coarse scale, reinsert atoms to find polarizability, …

Coarse- and Fine-Graining of Polymer Models
Chemically motivated 

potential form

Still coarser scales –
bead-spring model 
captures bending 
and connectivity

Tschöp et al., Acta. Polym. 49, 61 (1998); 75 (1998)

Connecting Atomic Simulations to Continuum Theory
Continuum mechanics needs:

Boundary conditions (BC)    +    Constitutive Relations
velocity or stress                          stress vs. strain (rate)
slip, friction, adhesion                 viscous, elastic, plastic

Traditionally assume simple forms:
No-slip for fluids,                        Linear viscosity, elasticity 
friction ∝ load, … Simple analytic functions

Want to replace assumptions by calculations. Need to know:
→ Down to what scale do continuum equations apply?
→ Is there new mesoscopic behavior between atomic and bulk?
→ Do usual assumptions for BC and constitutive laws work?

Continuum assumes homogeneity, short-range correlations
Simple molecules → Continuum good at a (3-10) diameters

Near phase transition, correlation length sets larger scale
Polymers → New behavior on entanglement scale

Interfacial behavior may be more complicated than assumed

Geometry Stress from thermal    
expansion

Molecular Dynamics Study of the Stress Singularity at a Corner
O. Vafek and M. O. Robbins Phys. Rev. E60, 12002 (1999)

Continuum mechanics predicts stress singularity at corners 
between dissimilar materials ⇒ important for initiation of failure
Simulations show:
⇒ Singularity has continuum form at large scales, but is cut off at 

molecular scale by discreteness, anharmonicity or plastic flow
⇒ Maximum stress increases as a power of the system size

⇒ small bonds less likely to fail

h

Stress release is anisotropic, inconsistent with many continuum 
models

For large enough system, yield stress exceeded, stress relieved 
by dislocation motion
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Continuum theories: Hertz, Johnson-Kendall-Roberts
Assume:   1) continuous displacements, bulk elastic const.

2) smooth surface (often spherical) at small scales
Only tested for atomically flat mica bent into cylinders

and elastomers with liquid behavior on small scales

Find (1) valid down to a few atomic diameters, but atomic
scale roughness causes failure of continuum theories.

Important for small contacts between rough surfaces  
and ideal single asperities: scanning probe or nanoindenter

Macro View                      Molecular View

What are limits of Continuum Theory for Solids?

Luan & Robbins, Nature 435, 929 (2005)

Pressure distribution for sphere on flat

Bent crystal      Amorphous  Stepped Crystal

Pressure with 
adhesion

Atomic scale roughness qualitatively changes pressure, yield
Bent crystal agrees with Hertz/JKR, more realistic tips do not

Pressure without  
adhesion

R=100σ
∼30nm

~107 atoms

Luan & Robbins, Nature 435, 929 (2005)

Single Asperity Conclusions
• Bulk elastic modulus describes stress/strain to ~3σ

Atomic roughness ⇒ deviations from continuum theory
• Molecular scale geometry has little effect on normal 

displacement vs. force curves
→ Moduli from continuum fits are accurate

• Contact areas, morphologies and pressures are changed 
→ Yield stress, areas, pulloff force off by factor ~2
→ Adhesive energy off by factor ~5

• Lateral stiffness and friction vary by more than order of 
magnitude with atomic geometry
→ Contact stiffness dominated by interface
→ Friction scales with real contact area for bent or

amorphous tips, but not stepped tips
→ Shear stresses from continuum fits too high

Toughness or fracture energy G Crack resistance
G ≡ work / fractured area 
Lower bound Geq=2γ

→ interfacial free energy change 
Glassy polymer: G/2γ ~ 103-104

<103 for metals
How is G-2γ dissipated?

⇑

⇑

Fracture in Polymer Glasses Many Length Scales
cm crack → μm craze → 10nm fibril → nm polymer
Combine simulations in each region to get macro G 

Interaction Potential Bead-Spring Model
Each polymer contains N spherical beads

All interact with Lennard-Jones potential
VLJ(r) = 4ε[(σ/r)12 − (σ/r)6] for r < rc
ε~3kJ/mol=30meV, σ~0.5nm, τ=(m/ε)1/2σ∼5ps

→ Empirical potential that breaks at force fB
experiment ⇒ fB = 100 fLJ

Semiflexible chains → add bond-bending terms
→ less flexible, smaller Ne

Backbone

Control stress or strain, 3D periodic boundaries or walls
Vary: N/Ne

Flexibility of chains – Ne
Temperature: T=0.01 to 0.3ε/kB (Tg ≈0.4ε/kB)
Ratio of backbone and LJ bond-breaking forces fB/fLJ

α
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Craze Nucleation & Growth

T=0.01
Chain length N=256

6

5

4

3

2

1

Vf/Vi

•Growth at constant plateau stress S 
•Deformation localized in “active zone” at 
craze boundary expands volume by λ

Constant velocity extension 
Fix perpendicular dimensions

Expansion Vf/Vi

Simple Fracture Model (H. R. Brown, 1991)

Solution of continuum model ⇒ d/D0 = 4πκ(Smax/S)2, 
κ depends on anisotropic elastic moduli of craze,

diverges if no lateral stress transmission via cross ties
Neither κ nor Smax known from experiment

Craze grows at plateau stress S, expands by λ
⇒G=S(d-d/λ)
What limits d?

⇒ Stress to crack  
craze Smax

Stress diverges as
approach crack tip
Smax ∝ S (d/D0)1/2

D0=fibril spacing

Dimensionless Craze Width:  d/D0

Simulation: d/D0 = 4πκ(Smax/S)2  

flexible chains ⇒ d/D0 = 290-890
semiflexible “ ⇒ d/D0 = 200-600

Experiment:  
d = 3-20 μm, D0 = 20-30 nm 

⇒ d/D0 = 100-1000

Toughness enhancement G/2γ

Simulations:

flexible chains ⇒ G/2γ=1300-4300
semiflexible “ ⇒ G/2γ=1200−3500

In both simulation and experiment: 
• G/2γ rises rapidly as N/Ne rises above ~2, saturates for N/Ne~10.
• Toughness drops with decreasing temperature.
• Scission more prevalent at low temperature.

( )λ
γγ

/11
22 0

0 −=
D
dSDG

Experiment:
PMMA: G/2γ~ 2500
PS: G/2γ~ 5000

How do results compare to real polymers?

Example: Fracture 
of silicon

•finite-element to
treat long-range
elastic deformations

•simple potential in  
nonlinear regions

•detailed electronic 
calculation where 
bonds break

Concurrent Multiscale Modeling
→Increase level of detail with magnitude of strain gradient

Broughton, Abraham, Bernstein and Kaxiras, Phys. Rev. B60, 2391 (1999).

Challenges to Concurrent Modeling
• Often fundamentally different descriptions at different scales

Quantum mechanical – many body electron ground state, nonlocal
Molecular dynamics  – discrete atoms with effective interactions,

thermal fluctuations
Continuum mechanics – continuous displacement or velocity fields

related to stress field by effective constitutive laws, no fluctuation
• Need to make sure that descriptions at each scale are consistent

Effective interactions consistent with electronic energies
Constitutive law consistent with effective interactions, T, density, …

• Need to treat discontinuity in description at interfaces
QM/MD – Include effect of electrons in MD region so no sudden 

truncation of wave functions
MD/CM – Relate discrete atomic positions to continuum fields

Requires both coarse- and fine-graining, managing thermal flucts.
Coupling dynamics complicated by reflection at interfaces
For fluids have flux across interface – must add/remove atoms      

Challenges to Concurrent Modeling
• Often fundamentally different descriptions at different scales

Quantum mechanical – many body electron ground state, nonlocal
Molecular dynamics  – discrete atoms with effective interactions,

thermal fluctuations
Continuum mechanics – continuous displacement or velocity fields

related to stress field by effective constitutive laws, no fluctuation
• Need to make sure that descriptions at each scale are consistent

Effective interactions consistent with electronic energies
Constitutive law consistent with effective interactions, T, density, …

One approach is to avoid discontinuity in description
Use single model of Hamiltonian but treat with varying degrees of   

accuracy in different regions
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Greens Function Approaches 
Same potential everywhere, but linearize where displacements small
Use Greens function G to eliminate linear region
1D example       MD ● , Linearized ○

● ● ● ● ● ● ○ ○ ○ ○ ○ ○ ··· ●
i=   -5 -4 -3 -2  -1  0  1   2  3   4  5  6     N

Positions of i=1,N-1 determined by those of 0 and N at past times
(need more atoms if interactions go past nearest neighbors)

Very efficient for static systems, G is matrix acting on boundary atoms
May be hard to calculate G for complex geometries and 

may need large atomistic region before can linearize
Medyanik’s talk, Campana & Müser, Europhys. Lett. 77, 38005, ’07

For dynamics must do integral over all times – complicated (Cai et al.).
Huang and E use approximate Greens function that is local in time and 

space with coefficients chosen to minimize reflections at boundary
Then use coarse-grained solution to move boundary
E and Huang, PRL 87, 135501 (2001); J. Comp. Phys. 182, 234, ’02
Fracture: Yang and Li, Phys. Rev. B73, 224111, ‘06

Bridging Scales Method 
Same potential everywhere, but eliminate some 

degrees of freedom
in slowly varying region using a linear 
approximation

1D example       MD ● , Eliminated ○
● ● ● ● ● ● ○ ● ○ ● ○ ○ ··· ●

i=   -5 -4 -3 -2  -1  0  1   2  3  4  5  6     N
Retaining some nodes may make complex geometries 

easier
BUT:
This procedure is difficult to do in high dimensions 

Quasicontinuum Method 
• Local Quasicontinuum Method

Retain subset of  “rep atoms” = nodes of finite elements
Calculate energy in element assuming part of infinite crystal with  
corresponding strain – full nonlinear interaction, but zero T

For crystal with a basis must relax internal degrees of freedom
Finite T versions - calculate approximate energies of high frequency 

phonons from derivatives of energy with respect to atomic  
displacements.  Must do for each finite element.

Not accurate for rapid variations in strain
Coupling between elements important when

smaller than interaction range
• Nonlocal QCM – Do full energy sum for

rep atoms in elements where strain gradient
large, elements small 
= to full atomistic if refine to atoms

but no time savings

What Happens at MD/FEM Interface? 
1D example       MD ● , FEM ○

● ● ● ● ● ● ○ ○ ○ ○ ○
i=   -5 -4 -3 -2  -1  0  1  2   3  4   5   

MD interactions usually beyond nearest-neighbor – nonlocal energy
atom -1 interacts with 1, 2, …

FEM purely local – element energy only depends on node positions
node 1 has no interaction with atom -1, -2, …

→ Violation of Newton’s 3rd law, uniform crystal not stable structure
One fix – add coupling energy to Hamiltonian H, t 

e.g. half MD, half FEM energy for 0 and 1
Alternative – correct for “ghost forces” by adding fixed forces

No equivalent H, so energy conservation not guaranteed
QC – same problem at nonlocal/local interface

Quasicontinuum orbital-free density-functional theory
Gavini, Bhattacharya, Ortiz

Quantum mechanical description at all scales
Express energy of entire system in terms of density functional theory, 

but use a functional of the electron density that is not based on 
finding one electron eigenstates

a) Coarse grain rep atoms as in QC
c) Fine resolution for local density 
oscillations 
b) Coarsening resolution for 
nonlocal contributions to electric 
field

Equation Free Method 
(Kevrekedis, Gear & Hummer)  

Call MD calculation for each local macro condition on coarse grid
Perform time average to get stress and other properties for local 
strains

Potential problem – average over Δt, error ~1/Δt1/2

If extrapolate macro solution by Δt’=cΔt, error grows as Δt1/2

→ Hard to improve accuracy
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What Happens at MD/FEM Interface? 
• Alternative approach for discontinuous description

Finite elements larger than interaction range – local 
Use overlap region so sharp interfaces outside 
region of interest

• 1D example       MD ● , FEM ○
● ● ● ● ● ● ● ●

○ ○ ○ ○ ○
i=   -5 -4 -3 -2  -1  0  1   2   3   4  5  6

• Two descriptions provide boundary conditions for 
each other at outer edge of overlap
Displacements for solid, velocities for fluid

Model contact region atomistically, 
elastic deformations with finite-elements, 
constrain deformations in overlap region

Streamlines in L~100nm channel with moving 
top wall.  Atomistic solution in <1% of area 
(green) removes continuum singularity

Linking Atomistic and Continuum Regions
Three overlap regions where solve both continuum and MD
Outermost → Continuum solution gives MD boundary condition
Innermost → MD gives continuum boundary condition
Middle → Two solutions equilibrate independently

Fluids: Apply boundary conditions to velocities
Solids: Apply boundary conditions to displacements

Linking Atomistic and Continuum Regions
Three overlap regions where solve both continuum and MD
Outermost → Continuum solution gives MD boundary condition
Innermost → MD gives continuum boundary condition
Middle → Two solutions equilibrate independently

Fluids: Apply boundary conditions to velocities
Solids: Apply boundary conditions to displacements
Fluids: S. T. O’Connell & P. A. Thompson, Phys. Rev. E52, R5792, (1995)

Why not use forces instead of displacements/velocities?
E. G. Flekkoy, G. Wagner & J. Feder, Europhys. Lett. 52, 271 (2000)

Fluids – Position of boundary is undetermined 
→ drifts in response to fluctuations or systematic errors

General – Any error in constitutive relation creates problems in 
overlap region

Less sensitive when match displacements 
any global factor in stress is irrelevant

Continuum:  Incompressible Navier-Stokes (Projection method)
Atomistic: Molecular dynamics of Lennard-Jones atoms, no-slip

Potential: U(r) =4ε((σ/r)12 - (σ/r)6] ;   Units ε, σ

Hybrid Algorithm Applied to Fluids
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MD → Continuum

Continuum → MD

Potential confines 
particles at y3

Insert/remove 
number of particles 
equal to net flux

Schematic of simulation

Continuum 

MD 

Overlap 

Still Wall 

Moving Wall U 

Dynamic Couette Flow
Hybrid solution (symbols) tracks 
full continuum (lines) as a function 
of time after motion starts

X. B. Nie, S. Y. Chen, W. N. E 
and M. O. Robbins, J. Fluid 

Mech. 2004. Hybrid vs. MD    Hybrid vs. Continuum

Flow past a rough wall
Continuum 

MD

Overlap 

Still Wall 

Moving Wall U 

Streamlines from hybrid ≈ MD
includes flow between regions

Continuum fails because doesn’t
match complex boundary
condition around bump
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Vertical Velocity for Rough Wall

Statistical uncertainties are about 0.003σ/τ.  Hard to reduce due
to long temporal correlations from hydrodynamic modes

Including Heat Flux

Heat capacity Cp, for 
incompressible fluid
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Temperature in Steady State Couette Flow

At boundaries of overlap region:
rms MD veloc. ⇔ continuum T

Hybrid solution (symbols) tracks 
full continuum (line)
Smooth variation in overlap region
Allows determination of Kapitza
resistance at solid-fluid interface

T*=(T-T1)/(T2-T1)

T2

T1

Singular Cavity Flow

Corner flow ⇒Molecular scale
influences macroscopic forces

No-slip boundary condition  is 
discontinuous at corners a, b
⇒Stress diverges as 1/r
⇒Log divergence in total force

on wall

Only need atomic information near corners
⇒ Use hybrid method that treats bulk with continuum  

Navier-Stokes equations, corners with MD

Continuum approach: Navier-Stokes + no-slip boundary condition (bc)     
Usually phenomenological no-slip bc has little effect at large scales

x

y

r
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Coupling in Overlap Region
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Continuum ⇒ MD
1) Average tangential MD velocity in 
shadowed bins forced to NS value:

2) Normal MD velocity constrained by 
matching mass flux at boundary

Have tested:
Agrees with pure MD calculations.
Independent of  continuum grid 1, 3 and 6σ and specific set of 
constrained velocities (within MD noise)

MD ⇒ Navier Stokes
Mean atomic velocity gives 
boundary condition to NS eqs.

X.B. Nie, S.Y. Chen and M. R. Robbins, Physics of Fluids 2004.

NS and Hybrid Velocities Near Corners

Effect like slip BC on scale S
S is larger of ~2σ and U/0.1σ/τ

discreteness shear-thinning
Hard to use effective Navier BC: spatially varying, nonlinear

hybrid

Treating Large Range of Length Scales
Problem: Size of atomistic region independent of system size L 

BUT time to equilibrate NS flow field grows with L.
Initial approach limited to L~0.1μm.

Solution: Multigrid and time approach
Integrate to steady state at each scale with optimum time step.
Iterate between scales till self-consistent (~10 times).

Result: Size limited only by onset of non-steady, turbulent flow
Show results for 0.1mm cavities.
> 10 orders of magnitude faster than fully atomistic
~ 20 minutes per iteration
Use average over 16 MD representations to accelerate     

Nie, Robbins and Chen, Phys. Rev. Lett. 96, 134501 (2006).

Schematic of Local Refinement

M M

Flow at each scale reaches steady state at its own 
characteristic time

Coarse ->Fine: Prolongation. Fine->Coarse: Restriction.

Multiscale Solution for Re=6400 (U=0.068σ/τ)

• Ten grid levels, largest 256x256, others 64x64, smallest mesh 0.95σ 
• Dashed lines: the regions expanded in successive plots. Final plot → MD region
• Stokes equations→ bottom corners self-similar under mag. by ~16 (red arrows)

This scaling is cut off by atomic structure.
• Computational time saving more than 1010 over fully atomistic.

211

23 25

2927

0.1mm

Stress along the moving wall
Three regions contribute to force F:

Atomistic, Stokes, high Re             Re=ρUL/μ

Re=25 – 6400

U=0.27 σ/τ

Re=6400

U=0.27 σ/τ

Breakdown of Stokes for r<S – atomistic or r>RI ≡μ/ρU – inertial
Little change for r < RI as increase Re by increasing L
Large r contribution gives change in F for fixed U, atomic props.         
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Total Force on the Moving Wall
Re - only parameter in continuum theory
Find strong variation with U at fixed Re, atomic model

Re=400

U (σ/τ)
○ 0.27
□ 0.68

Refff
U
F

StokesS ++=
μ

434.0
Re

2

Re98.185.3

)/ln(
4

8
3.4

+=
−

=

=

f

SRf

f

IStokes

S

π
π

r<S    S<r<RI RI<r

fS given by assumption that stress saturates at S
S= 0.3+ 7UtLJ;            fRe is phenomenological fit

• We have developed a multiscale hybrid method that can 
simulate a macro-length scale flow while still resolving the 
atomistic structure in a small region.  Treats mass and heat 
flux

• The ability to resolve the stress on all scales enables the first 
calculation of the drag force on the moving wall in cavity 
flow. The force depends on three dimensionless numbers:

• Algorithm adapted to dynamic interfaces
Initial results for contact line motion will be extended to study 
interface shape and stress over wide range of length scales.

Summary for Fluid Flow

.and,
μ

ρ
σ
τ

μ
ρ US

r
SRUIULRe
I

m ====

Multi-scale modeling of contacts 
between self-affine surfaces

Contact geometry and stresses central to friction & adhesion
Real surfaces often rough on many scales → self-affine
Surfaces steeper at smaller scales, fractal contact regions,
most connected regions of contact at resolution of calculation
⇒Not clear continuum mechanics applies

H=0.5

Self-affine surface Contact (blue) of self-affine surface

Hybrid model for 2d self-affine surfaces
Easily treat volumes with ~108 atoms

At edge of overlap region 
MD and FEM 
displacements provide 
BC’s for each other

FEM->MD

MD->FEMMD

overlapFEM

Continuum Treatment of Solid
• Linear finite elements
• Explicit dynamics for nodes 
• Newmark method ΔtFE ~10 ΔtMD , Langevin thermostat
• Staggered time grid as for fluids
• Constitutive law – quadratic in strain

– accurate to 2% in each strain component

Atomistic Treatment of Solid
• Two dimensional triangular lattice
• Lennard-Jones interactions between neigbors
• Velocity Verlet, Langevin thermostat
Show low T results to minimize noise, but works at high T

Quasistatic Test
Cylindrical Contact

Mesh, atomistic & overlap

Lines – pure MD

Symbols – hybrid
Filled – MD region
Open – FEM region
▲ - σyy ● - σxx

■ -σxy

line A

line B
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Contact Area vs Load for Self-Affine Fractal

1024 atomic spacings in 
each dimension

Roughness exponent 0.6
Voss midpoint algorithm
Excellent agreement of
hybrid with MD

Only deviation due to 
activated plastic event.
See fluctuations in time 
of occurrence for all MD

― Continuum theory
□ All MD
x Hybrid

Multiscale simulation of shear wave in solid

― Full MD
□ Hybrid
x FEM

Deviations from full MD are 
like those caused by coarse 
resolution in FEM.

Percentage of energy reflected 
at overlap region comparable to 
that from resolution change in 
FEM

Small for pulse > ten times 
mesh size 4σ

11σ, 22%

22σ, 1.1%

44σ, 0.3%

Multiscale simulation of dynamic friction
L=1024 dnn U=0.01σ/τ
N=204.8ε/σ

Flat on flat geometry

Flat on self-affine rough 
surface 

― Full MD ▲ Hybrid

Friction vs. Load for Rough Surface
L=1024 dnn U=0.01σ/τ  − Not in quasistatic limit

Static Friction:
x-Hybrid, □ Full MD

Kinetic Friction:
*Hybrid, ○ Full MD

Smooth surfaces, Δ=0.26, little plasticity
Δ=rms surface slope
L= # atoms on side

Results nearly converged 
for L=4096 atoms ~1μm 

Find A ∝ W, but ratio 2-3 
times continuum

Plastic results for Δ=0.78 show size effects
• Still have A∝W, but

L dependent
• Surface flattening 

before dislocations 
important

L
x  512
▲1024
□ 2048
○ 4096

A/A0

W
/A

0E
’
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Friction forces

○ comm.
▲□ incomm.

commensurate:
plastic ≈ elastic

incommensurate:
plastic < elastic

because contacts 
bigger, forces 
average to zero

Conclusions for Hybrid Method
• Have robust multiscale method for both fluids and solids 
• Implemented for quasi-2D flows near solids

→ lengths to ~1μm for dynamic cases, ~1mm for quasistatic
• Implemented for quasi-2D contact between

self-affine surfaces
• Incorporated heat flux for sheared fluids
• Comparisons to MD and continuum results show limitations of 

continuum approximation at interfaces
→Position and rate dependent slip near solids
→Sensitivity of contact area and stress to atomic scale structure,

unexpected mode of plastic deformation at interface
• First calculation of drag force in singular corner flow

→ integrate stress over 5 orders of magnitude in length
• First calculation of atomistic effects in self-affine contact

→ rough over 4 orders of magnitude in length scale

Some References
Overviews of Multiscale modeling:
• F. Müller-Plathe, “Scale-Hopping in Computer Simulations of Polymers,” Soft Mat. 1, 1-31 (2003)
• G. Lu and E. Kaxiras, Handbook of Computational Nanotechnology, Ed. M. Rieth & W. 

Schommerz, Chapter 22.
• Curtin & Milller “Atomistic/continuum coupling in computational materials science”, Modeling 

Simul. Mater. Sci. Eng. 11, R33-R68 (2003).
General books on computer simulations:
• Allen and Tildesley, “Computer Simulation of Liquids,” Oxford (1987). 
• D. Frenkel and B. Smit, “Understanding Molecular Simulation: From Algorithms to Applications,”

2nd Edition, Academic (2002).
References on potentials:
• Beyond Pair Potentials, A. E. Carlsson in Solid State Physics, Edited by H. Ehrenreich and D. 

Turnbull. Academic Press, San Diego, Vol. 43, p. 1 (1990). Review of effective potential 
construction.

• Modern Electron Theory by M. W. Finnis in Electron Theory in Alloy Design, Edited by D. G. 
Pettifor and A. H. Cottrell, Institute of Materials, London, 1992.  Article on first-principles 
calculations. 

• C. M. Goringe and D. R. Bowler and E. Hernandez, "Tight-binding modelling of materials", 
Reports on Progress in Physics 60, 1447-1512 (1997).

• N. Bernstein, "Linear scaling nonorthogonal tight-binding molecular dynamics for nonperiodic
systems", Europhysics Letters 55, 52-58 (2001).

• D. W. Brenner “The Art and Science of an Analytic Potential,” Phys. stat. sol. (b) 217, 23 (2000).

Some More References
Quasicontinuum references (more at www.qcmethod.com):
• Miller and Tadmor, J. Computer-Aided Materials Design, 9, 203-239 (2002).
• Curtin and Miller, Mod. and Sim. in Mat. Science and Engineering 11, R33-R68 (2003).
Renormalization based approaches
• Curtarolo and Ceder, “Dynamics of an inhomogeneously coarse-grained multiscale system, Phys. 

Rev. Lett. 88, 255504 (2002).
• Wu, Diestler, Feng and Zeng, “Coarse-graining description of solid systems at nonzero 

temperature,” J. Chem. Phys. 119, 8013-8023 (2003).
Other methods
• I. G. Kevrekidis, C. W. Gear and G. Hummer, “Equation-Free: The Computer-Aided Analysis of 

Complex Multiscale Systems, A.I.Ch.E Journal 50{7} 1346 (2004)
• “Concurrent coupling of length scales: Methodology and application,” J. Q. Broughton, F. F. 

Abraham, N. Bernstein and E. Kaxiras, Phys. Rev. B 60, 2391-2403 (1999). 
• Ren and E, “Heterogeneous multiscale method for the modeling of complex fluids and micro-

fluidics,” J. Comp. Phys. 204, 1-26 (2005).://www.math.princeton.edu/multiscale/review.pdf
• Wagner and Liu, “Coupling of atomistic and continuum simulations using a bridging scale 

decomposition, J. Computational Physics 190, 249-274 (2003).
• Nie, Robbins and Chen, Phys. Rev. Lett. 96, 134501 (2006).
• Vikram Gavini, Kaushik Bhattacharya, Michael Ortiz, Quasi-continuum orbital-free density-

functional theory: A route of multi-million atom non-periodic DFT calculation, Journal of the 
Mechanics and Physics of Solids (in press). 


