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Outline

Systematic molecular coarse-graining:  
Bulk bisphenol-A polycarbonate (BPA-PC)

Inhomogeneously resolved coarse-graining:
BPA-PC at interfaces

Concurrent multiresolution simulation of 
molecular liquids

Dual resolution NVT ensemble Monte Carlo



Motivation:  Structure/Property Relationships at the 
Polycarbonate/Nickel Interface

Surface damage in molding of optical data storage media

Adhesion

Molecular-scale
structure and

dynamics

Simulation



The basic problem…

Simple fluids/small molecules:
Many small displacements → OK.

Polymeric fluids/large molecules:
Many small displacements →
Large collective displacements.

Expensive!



An atomically resolved system is
- SPECIFIC, but
- HARDER TO EQUILIBRATE/SAMPLE

The Tension Between Specificity and
Generality in Polymer Molecular Simulation
e.g., Bisphenol-A Polycarbonate (BPA-PC): Kremer-Grest bead-spring chains

A bead-spring system is
- EASIER TO EQUILIBRATE/SAMPLE,
- GENERIC



A Compromise:  Systematic Molecular Coarse-Graining

General procedure:

1. Build CG model

2. Generate CG system

3. Equilibrate/Propagate

4. Reintroduce details

5. Sample

6. Repeat 3 to 5“mapping”



Bisphenol-A Polycarbonate:  Mapping Schemes

2:12:1 – repeat unit replaced with 2 mapping points:
1. centroid of –C(CH2)–
2. centroid –O–(C=O)–O–

4:14:1 – repeat unit replaced with 4 mapping points:
1. backbone C of –C(CH2)–
2. C of –O–(C=O)–O–
3&4. “Floating” centers of phenylenes

CFA & K. Kremer, Macromolecules 36:260 (2003)



rN Fine-scale degrees of freedom
RM Coarse-grained (“CG,” “collective”)   
degrees of freedom: “Mapping Points”
M mapping matrix

Configuration r “satisfies a mapping R” if

Generalized Coarse-Graining:  “Mapping”



Linking the Statistics at Different Scales:
Boltzmann Inversion in NVT Ensembles

Probability distribution of collective configurations, RM

UCG(RM) can be generated by sampling an ensemble spanned by fine-
scale configurations rN: We still have a sampling problem!

Strategy:  Use reasonable assumptions (for polymers) to decompose 
P(RM) into bits that can be attacked individually…



Building UCG:  Reasonable Assumption #1

Bonded and nonbonded
variables are uncorrelated
(i.e., they have widely disparate energy 

scales at temperatures of interest)

Probability distribution
factorizes

Probability of observing 
molecule i in 

conformation Xi

Probability of observing 
molecule configuration

of center-of-mass
positions & molecular 

orientations



Building UCG:  Reasonable Assumption #2

Intramolecular bonded
CG degrees of freedom 
X are not (strongly) 

correlated
(i.e., molecular orbitals are well-

localized on length-scales of 
collective variables)

Intramolecular bonded 
coarse-grained probability 

distributions factorize

→ Intramolecular CG potential has a useful additive form:



Building UCG:  Reasonable Assumption #3

Nonbonded correlations 
are constructed 

primarily of independent 
pairwise contributions

Nonbonded potential 
energy is pairwise

additive

BPA-PC:  The repulsive Weeks-
Chandler-Andersen (WCA) 

Potential

Key:  Basis for choice of σij is 
geometrical: satisfy φ at given ρ
in the melt state.

No cohesive energy; no EOS!
(ok for understanding equilibrium 
liquid structure)



Practical Matters: Systematic Molecular Coarse 
Graining of Bisphenol-A Polycarbonate (BPA-PC)

Atomically resolved 
intramolecular bonded 
degrees of freedom are 
backbone torsions, φi

Tasks:
1. Generate atomically resolved potential U(φ): ab initio calculations
2. Construct a mapping scheme
3. Generate intramolecular coarse-grained potential U(X) at T = 570 K

using MC sampling and Boltzmann inversion
4. Nonbonded:  Determine bead diameters

Total potential:



c-o
ph-o

ph-c

Tschöp et al., Acta Polymer. 49:61 (1998)

Bisphenol-A Polycarbonate:  Torsional Potentials

HF/6-31G* SPE calculations

+nb



U

P

Bisphenol-A Polycarbonate:  4:1 Boltzmann 
Inversion of Carbonate Angle Potential



Determining Sizes of  CG Beads

Repeat unit vdW volume is 
~0.2 nm3 [Sanchez and 
Cho, Polymer 36:2929 
(1995)]

1. Estimate v2 for set of 
atoms belonging to each 
bead
→ bare diameters

2. Scale each bare diameter 
such that total volume is 
0.2 nm3

→ effective diameters



Dynamic comparison of mapping schemes in the melt

g1 : msd of all beads
g2 : msd of beads relative 

to mol. center
g3 : msd of mol. centers

4:1 melts equilibrate 
faster

4:1 model is 
computationally more 
efficient

CFA & K. Kremer, Macromolecules 36:260 (2003)



4:1 is Faster:  An Explanation Based on
Sphere-Packing Artifacts

Radial distribution function
shows signature of dense
sphere packing in 2:1 melts

Dense packing increases 
friction, and is sensitive to 
ratio of bead diameter to 
bond length

CFA & K. Kremer, J. Chem. Phys. 115(6):2776 (2001)CFA & K. Kremer, Macromolecules 36:260 (2003)



MD of Coarse-Grained Bisphenol-A Polycarbonate: 
Prediction of atomically resolved structure factor

CFA & K. Kremer, Macromolecules 36:260 (2003)



MD of Coarse-Grained Bisphenol-A Polycarbonate: 
Prediction of Entanglement Molecular Weight

Leon, van der Vegt, Delle Site & Kremer, Macromolecules 38 8078 (2005)

A topological 
representation of
a bulk sample of 
BPA-PC;

the “primitive path”
method predicts 
Ne ~ 5 repeat units



Generality vs. Specificity: Modeling 
Polymer/Metal Interfaces

Chain-like molecules:
conformational freedom 
influenced by the surface

Specific molecule-surface 
interactions: local interface 
structure and properties

Atomic-scale interactions:
small-scale conformations



Ab initio Car-Parrinello MD Investigations 
of Comonomer Analogs on Nickel (with L. Delle Site)

… but phenol interaction
orientational…

…not accessible in our 
CG representation!

carbonate & isopropylidene
do not stick to nickel…

L. Delle Site, A. Alavi, and CFA, Phys. Rev. B 67 (19):193406 (2003).



Solution: Dual-Resolution CG BPA-PC

• Terminal CG carbonate → atomically resolved carbonate
• C atom “carries” total carbonate excluded volume
• (Bridging O)—(CG phenoxy end) bond vector → C1-C4
• Interaction of terminal phenoxy with Ni site is orientation dependent



Center of mass density profiles 

Rg

Dual-Res MD of a Confined BPA-PC Melt
N = 10 repeat units; Nm = 240 chains

Three regimes:
z < Rg : 

both ends ads.
Rg < z < 2Rg: 

single-end ads.
z > 2Rg:

no ends ads.

CFA, L. Delle Site, and K. Kremer, Phys. Rev. E 67:021807 (2003).



Ongoing BPA-PC Coarse-Graining…

1. Ultra-long atomistic trajectories
Hess et al, Soft Matter 5:409 (2006)

2. Blend adhesion on Nickel
Andrienko et al, Macromolecules 38:5810 (2005)

3. Effects of surface defects on melt adhesion
Delle Site et al, J. Phys. Cond. Mat. 17:L53 (2005)

4. Effects of various chain ends
Delle Site et al, JACS 126:2944 (2004)



Concurrent multiresolution simulation of 
molecular liquids

Why?

Conduct full-blown 
atomistic MD with 
realistic boundary 
conditions

Enforce collective 
behavior to test 
hypotheses

AKA:  “Concurrent Coupling of Length Scales”



MAAD Silicon Broughton et al.
Phys. Rev. B. 60:2391 (1999)

What is  “concurrent multiresolution simulation”?



What is  “concurrent multiresolution simulation”?

QM/MMQM/MM

Skoko,  Carmer, Weiner, Frenklach
PRB 49 (8): 5662 (1994)

Eichinger et al. J. Chem. Phys.
110:10452 (1999)



R. Delgado-Buscalioni and P. V. Coveney
Phys. Rev. E. 67:046704 (2003)

Continuum-particle hybrid coupling for liquids

What is  “concurrent multiresolution simulation”?



Why is it difficult?  

- Mass can cross resolution boundaries.

- No fixed reference (e.g., crystal lattice)

- Interaction potentials must be compatible 
across scales AND resolution interface.

- system equation of state must (ideally) be 
independent of particle resolution

- interface can dominate

Concurrent multiresolution simulation of molecular
liquids



Monte Carlo Simulations of Liquid Methane in the
“Dual-Resolution NVT” ensemble

N total molecules, cubic periodic box, two domains V1 + V2 = V

n1 explicit CH4

molecules in V1

N-n1 united-atom CH4 in V2

resolution boundary

Goal: 

CFA, JCP 123:234101 (2005)



The dual-resolution NVT ensemble

- N interacting particles in box of volume V at temperature T
- n1 explicits and N-n1 united-atoms (explicits with “averaged over” orientations)
- Explicits are rigid rotors (no vibrational or internal energy) w/ orientations Ω1
- Resolution can spontaneously fluctuate between explicit and united-atom
- Resolution boundary defined by field Ures that selects resolution based on position

ConfigurationalIdeal/rotational

Ideal/translational

indistinguishability Monte Carlo must randomly vary
i. Explicit positions & orientations;
ii. united-atom positions; and
iii. molecule resolution.



Acceptance criterion, united-atom → explicit resolution switch trial move:

Dual-resolution NVT Monte Carlo

Ideal-gas free energy (chemical potential) of an explicit:

Problem:  ideal gas prefers explicits!

Solution(?): set ; equivalent to giving united-atoms rotational free energy!

Acceptance criterion, explicit → united-atom resolution switch:



explicit/explicit united-atom/united-atom explicit/united-atom

Convenient, approximate decomposition into molecular pairwise interactions:

Given u11, assume u12 = u22, and find optimal u22.

Orientational averaging of interactions:

Dual-resolution NVT Monte Carlo: Potentials



Resolution field, Ures

explicit u.a.
Interface width controlled
by construction of



u11:  5-Center Lennard-Jones Pseudo-Methane



u22 Option 1:  Zero-Density Reversible Work (ZDWR)

r

McCoy and Curro, Macromolecules 31:9362 (1998)

Average over ~105 angular orientations of 
2 molecules per value of r.   
→ Density-independent



u22 Option 2: Reverse Monte Carlo (RMC)
Soper, Chem. Phys. 202:295 (1996); Reith and Pütz, J. Comput. Chem., 24:1624 (2003).

- Iteratively refine u22 beginning with a reasonable guess
- Corrections mimic correlations in bulk explicit fluid



Evaluating u22 options in bulk simulations

Excess chemical potential, explicit-in-explicit
Measured using thermodynamic integration

Excess chemical potential, u.a.-in-u.a.
Measured using Widom’s method

T = 179.9 K

Problem:  configuration
prefers united-atoms!

Maybe we need to keep

But the interface will 
complicate matters…



Dual resolution NVT MC: Protocols

- N = 1000
- ρ = 0.879
- T = 179.9 K
- V1 = V/2
- 105 cycles (103 displacements/cycle)
- 25% of moves are resolution switch attempts



Dual resolution NVT MC: Raw U.A. Potentials

Density inhomogeneities reflect incompatibility of potentials

explicit u.a. explicit u.a.

RMCZDRW



Dual resolution NVT MC: Variations

Densities equal, but 
large u.a. fluctations

explicit u.a. explicit u.a.

ZDRW, hardenedZDRW



Conclusions and outlook

Successful demonstration of a “systematic” way to
generate u22 for dual-resolution liquid simulation.

Particular to small molecules?

Useful in non-equilibrium setting?

Real surfaces?

Polymers?
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