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Abstract 

NASA Langley Research Center has actively pursued the development 
and the use of pictorial or three-dimensional perspective displays of 
tunnel-, pathway- or highway-in-the-sky concepts for presenting flight 
path information to pilots in all aircraft categories (e.g., transports, 
General Aviation, rotorcraft) since the late 1970s.  Prominent among 
these efforts has been the development of the “crow’s foot” tunnel 
concept.  The “crow’s foot” tunnel concept emerged as the consensus 
pathway concept from a series of interactive workshops that brought 
together government and industry display designers, test pilots, and 
airline pilots to iteratively design, debate, and fly various pathway 
concepts.  Over years of use in many simulation and flight test activities 
at NASA and elsewhere, modifications have refined and adapted the 
tunnel concept for different applications and aircraft categories (i.e., 
conventional transports, High Speed Civil Transport, General Aviation).  
A description of those refinements follows the definition of the original 
tunnel concept. 

Summary 

NASA Langley Research Center has actively pursued the development and the use of pictorial or 
three-dimensional perspective displays of tunnel-, pathway- or highway-in-the-sky concepts for 
presenting flight path information to pilots in all aircraft categories (e.g., transports, General Aviation, 
rotorcraft) since the late 1970s.  Numerous research studies have shown that a 3 dimensional 
presentation of the intended flight path on a tactical display is highly intuitive resulting in higher 
situation awareness and lower workload.  Prominent among these efforts has been the “crow’s foot” 
tunnel concept, which originated in a series of interactive workshops that brought together 
government and industry display designers, test pilots, and airline pilots to iteratively design, debate, 
and fly various pathway-in-the-sky concepts.   

The “crow’s foot” tunnel concept emerged as the consensus pathway concept from a September 1996 
workshop as an improvement to the traditional connected-rectangle tunnel.  The connected rectangle 
tunnel was truncated to short segments, creating a “crow’s foot” at each corner of every rectangle 
which thereby minimized display clutter and obscuration.  The pathway itself was not considered to 
represent primary guidance information to the pilot, but rather, to provide a pictorial representation of 
the flight path, fixed in space (earth-referenced), defining the desired flight path; the piloting task was 
to fly down the tunnel using a velocity vector.  Flight director guidance and symbology was added to 
reduce the pilot’s workload in conducting this task.  Today, the “crow’s foot” tunnel has been 
significantly modified to provide real time feedback regarding the ownship position relative to the 
intended path.  This tunnel concept, know as the dynamic tunnel, is an intuitive presentation of the 
path error to the pilot. 

The “crow’s foot” tunnel concept has been used ever since in simulation and flight test activities of 
NASA's High-Speed Research (HSR) eXternal Visibility System (XVS), Advanced General Aviation 
Transportation Experiment (AGATE), and the Aviation Safety Synthetic Vision Systems programs.  
Other pathway concepts have been influenced from its development and the accompanying workshop 
discussions.  Among the direct users of the Langley-developed workshop software were Boeing-
Seattle, Boeing Helicopter-Philadelphia, the FAA-Civil Aerospace Medical Institute (CAMI), the 
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Research Triangle Institute, Wright-Patterson Air Force Base, and Rockwell-Collins. 

Over years of use within simulation and flight test activities at Langley, many modifications have 
accumulated to refine and adapt the tunnel concept for different applications and different aircraft 
categories (i.e., conventional transports, High Speed Civil Transport, General Aviation). A 
description of those refinements follows the detailed definition of the original tunnel concept. 

Introduction 

NASA Langley Research Center has actively pursued the development and the use of pictorial or 
three-dimensional perspective displays of tunnel-, pathway- or highway-in-the-sky concepts for 
presenting flight path information to pilots for all aircraft categories (e.g., transports, General 
Aviation, rotorcraft) since the late 1970s (References 1-38). The concepts have also been of intense 
interest to other researchers in the flight display community (References 39-136). 

Prominent among these efforts has been the NASA Langley Research Center “crow’s foot” tunnel 
concept, which originated in a series of interactive workshops (Reference 30) that met at about six 
month intervals through September 1996, to investigate tunnel-, pathway- or highway-in-the-sky 
concepts.  These workshops brought together government and industry display designers, test pilots, 
and airline pilots to iteratively design, debate, and evaluate various pathway-in-the-sky concepts. 

The first two workshops were focused on the subject of advanced pictorial displays, regardless of the 
specific application.  The most prominent feature of these advanced flight displays, being enabled by 
rapid advances in computer graphics, was the "tunnel" element − a variation on the Naval Air 
Development Center "tile" pathway.  These tunnel or highway formats were being evaluated at 
various flight display research laboratories, including NASA Langley Research Center (LaRC).  
These pictorial displays had been shown, in both Department of Defense (DoD) and NASA research, 
to enable highly-precise flight path control, especially for vehicles required to execute complex 
curved flight paths, such as those that may be utilized for landing approaches to closely-spaced 
parallel runways.  These "real-world", three-dimensional displays had been successfully tested in 
simulation showing significant gains in pilots' situation awareness, pilot/vehicle performance, and 
aircraft safety, without increases in pilot workload and with potential for significant operational 
benefits (References 31-38).   

The primary emphasis of these first two workshops focused on the utility, acceptability and usability 
of pathways and the various features available. While the specific application was unstated, the 
prevailing assumption was the pathway would be utilized within a Synthetic Vision-like system. 
Synthetic Vision Systems (SVS) are characterized by their ability to represent, in an intuitive manner, 
the visual information and cues that a flight crew would have in daylight, Visual Meteorological 
Conditions (VMC). The view of the outside world is provided by melding computer-generated 
topography (terrain), obstacle, and airport depictions from on-board databases and flight display 
symbologies.  Additional, supplemental information derived from weather-penetrating sensors may 
be shown directly as insets or fused to the database imagery or these data may be processed for 
information extraction and iconic insertion to the database presentation (e.g., sensor processing to 
identify runway edges or detect objects).  The visual information and cues are depicted based on 
precise navigation (position) information for proper alignment and registration of the onboard terrain 
database to the real-world.  The SVS also includes traffic information from surveillance sources (such 
as Traffic Alert and Collision Avoidance System (TCAS), Airport Surface Detection Equipment 
(ASDE), etc.) and other hazard information (such as wind shear).  

In contrast to SVS, Enhanced Vision Systems (EVS) use imaging sensors to penetrate poor lighting 
conditions or weather phenomena such as fog, haze, rain, and/or snow, to improve the pilot’s vision 
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outside the flight deck.  EVS technology, unlike SVS, is not reliant upon navigational accuracy or a 
database.  However, one of the principal problems with EVS applications is the requirement to train 
the pilot to interpret and understand the visual artifacts that may occur in sensor images and the 
potential that EVS technology may not penetrate in all weather phenomena.   

The second two workshops were focused on the specific application of those pathway formats to the 
eXternal Visibility System (XVS) of the NASA High-Speed Research (HSR) Flight Deck Systems 
Program.  The XVS element was concerned with replacement of the forward windows in a High-
Speed Civil Transport (HSCT) with electronic display media and a suite of imaging sensors (i.e., an 
eXternal Visibility System).  The purpose of the XVS was to enable a “No-Droop” configuration of 
the HSCT.  The “No-Droop” mission of the XVS was defined as that system which, in a HSCT, 
would support routine airline operations in environmental conditions and at facilities equivalent to 
current subsonic transport capabilities, without the requirement to articulate the forebody geometry 
for ground operations, takeoff, approach and landing.  The XVS primary flight display relied on high 
resolution video camera imagery of the outside scene, with overlaid symbology.  The presentation 
was somewhat analogous to that of an EVS, except the imaging sensor (a visual spectrum camera) 
was not weather-penetrating and it was intended to replicate, not necessarily enhance the pilot’s 
outside visual cues.  The display was similar in many respects to a Head-Up Display; however, it was 
significantly different from a HUD in that the image and symbology were not collimated and the 
resulting XVS display (combined symbology and sensor) did not have a “real-world” background for 
comparison and contrast.  The purpose of the pathway formats within the XVS display was to enable 
highly-precise flight path control.  

The primary symbology concerns in the XVS application were the prevention of display clutter and 
the obscuration of hazards with a mixed sensor and symbology image.  The camera image in Visual 
Flight Rules (VFR) operations was the primary means of hazard avoidance and traffic separation 
making the occlusion of sensor image components by symbology a primary issue.  These concerns 
were not so prominent in the first set of workshops, as they assumed hazard locations (traffic and 
obstacles) would be known within the constraints of an SVS (from surveillance sources), and 
therefore, obscuration would not be an issue. 

The consensus pathway concept (namely, the crow’s foot concept) that resulted from the September 
1996 workshop was used extensively in simulation and flight test activities of NASA's HSR XVS 
program. Under this program, four flight tests were conducted to resolve XVS issues, including the 
demonstrated effectiveness of the pathway concept. The first two flight tests used the NASA LaRC 
B737-100 aircraft, while the last two used the United States Air Force (USAF) Total In-Flight 
Simulator (TIFS) Convair 580 in an HSCT configuration. More recent simulation and flight test 
research using the pathway concept has been conducted with NASA's SVS Project under the Aviation 
Safety Program. The flight activities were conducted aboard LaRC’s Airborne Research Integrated 
Experimental System (ARIES) B757-200 aircraft and a Gulfstream G-V aircraft, owned, modified 
and operated by the Gulfstream Aerospace Corporation. 

In the next section, a description of the original tunnel concept is given.  Following this description, a 
summary of the modifications to the original concept is given, including a review of the motivation 
behind each change. 

The Original “Crow’s Foot” Concept 

The tactical presentation of a tunnel naturally results in a rectangular tube geometry, depicting a 
vertical and lateral flight path trajectory.  The most common rendering of this tube tunnel is via a 
wire-frame (connecting a series of rectangles as shown in Figure 1).  This wire-frame tunnel has the 



 
 

advantage of reducing display obscuration (compared to a solid tube) while sufficiently portraying the 
intended flight path.  

The “Crow’s Foot” pathway concept evolved from the traditional wire-frame rectangle tunnel (Figure 
1).  The principal motivation for the “Crow’s Foot” and principal reason for its acceptance is to 
further minimize clutter and obscuration, using truncated short segments, at each corner of every 
rectangle, thereby, creating a “crow’s foot” (Figure 2).  

A single corner element - a “crow’s foot” - consists of three joined lines, two of which were parts of 
the original rectangle and the other was a remnant of the line connecting the corresponding corner of 
the next successive rectangle along the flight path. A tunnel or pathway segment, defined by the 
original rectangle and now by four “crows’ feet” each, was drawn to indicate the upper, lower, left, 
and right edges of the path, defining the lateral and vertical extent of the desired flight path trajectory. 

 

 
Figure 1.  Conventional connected-rectangle tunnel. 
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Figure 2.  “Crow's foot” tunnel. 

The tunnel is fixed in space (earth-referenced) defining the desired flight path, and the piloting task is 
to fly down the tunnel using the aircraft velocity vector symbol.  The pathway itself does not present 
primary guidance information to the pilot, but rather, it creates a pictorial representation of the flight 
path relative to ownship (raw data, in the vernacular of the aviation community).  The pathway 
concept, however, does include flight director guidance and flight director guidance symbology (to be 
discussed later), since all the aircraft state information necessary to provide a pathway also enabled 
the provision of guidance. 

The horizontal tunnel size was scaled to be approximately equivalent to ±½ angular dot localizer 
deviation centered around the localizer course (where 1 dot angular deviation equals 175 ft of lateral 
displacement at the runway threshold) with a 600 foot (+/- 300 ft) maximum width.  The vertical 
tunnel size was scaled to be approximately equivalent to ±1 angular dot glideslope deviation (where 1 
dot equals 0.35 degrees angular deviation) centered along the glideslope path with a 350 foot (+/- 175 
ft) maximum height and a 50 foot (+/- 25 ft) minimum height.  Thus, the tunnel narrows both 
vertically and laterally as it approaches the runway threshold.   

Recent research has shown that the tunnel should be removed at approximately 500 feet Above Field 
Level (AFL) for fixed-wing approach and landing operations.  By this altitude, stabilized approach 
procedures should be in effect so flight path tracking performance and awareness for the remainder of 
the approach would not be significantly improved with a tunnel.  At this altitude, the entire tunnel 
symbology is removed (i.e., “decluttered”); however, the guidance symbology remains to complete 
the approach and execute a flare to touchdown.   

Glideslope and Localizer Course Deviation Indicators were adapted to show “equivalent” dot error 
indications of tunnel centerline deviations. (Actual ILS course deviation data, if available, are also 
presented on the same scales.)  

The original tunnel concept consisted of segments that were spaced at 0.2 nautical miles (nm) 
intervals.  Every 5th segment, or every nautical mile, the segment contained a post that was drawn 
from the bottom of the segment to the ground (Figure 3).  This was done to give a relative height cue.  
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An 'X' was drawn where the post touched the ground.  Also, these 'post' segments had a line that 
connected the bottom two corner “crow’s feet”.  In addition, at each mile post segment, a digital 
readout of the distance along path (in nautical miles) was displayed as a billboard sign.  The distance 
displayed in the sign was the distance from that segment until touchdown.  The digital readout above 
the sign was the ownship distance to the sign.  Thus, the addition of the two numbers resulted in the 
ownship distance to touchdown.   

Both the billboard signs and segment posts were dropped from the latest instantiations of the crow’s 
foot tunnel concept as they were found to provide more clutter than benefit, especially for XVS and 
HUD displays. 

 

 
Figure 3.  Tunnel with post segments and distance along path billboard signs on a SVS enhanced tactical display. 

Modifications 

Over years of use in simulation and flight test activities at LaRC, many modifications have been made 
to refine and adapt the tunnel concept to different applications and different aircraft categories (i.e., 
conventional transports, High Speed Civil Transport, General Aviation).  Perhaps one of the least 
noticed but more significant changes was to parameterize the software in almost every facet of the 
concept to allow significant control of the tunnel visual attributes and other parameters via graphical 
user interface (GUI).  Another modification, not directly related to the tunnel concept, was to provide 
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control of symbology sizes (e.g., flight path marker, guidance symbol) to compensate for 
control/display gain changes when using different physical display sizes (e.g., when using an ARINC 
Size A 6” wide by 5.5” tall display versus an ARINC Size D 8” wide by 8” tall display).  

Other tunnel modifications significantly influenced the functionality of the tunnel and are described 
below. 

Inside/Outside Tunnel Rendering 

When flying within the tunnel, the “crow’s foot” tunnel is very effective in reducing clutter while 
maintaining the perception of a 3-dimensional pathway.  However, when outside the tunnel, the 
“crow’s foot” symbology is somewhat difficult to interpret as the intended path, since the “crow’s 
foot” symbology does not provide adequate context to determine the tunnel shape and direction.  
Therefore, the tunnel was modified to allow for different rendering based on whether the ownship 
position was inside or outside of the tunnel.  When inside the tunnel, the tunnel is rendered in 
“Crow’s Foot” symbology.  When outside the tunnel, the tunnel is rendered as a traditional wire-
frame with the near-side removed.  This creates a “trough” geometry (see Figure 4) which is an 
intuitive means to guide the crew in reacquisition of the tunnel. 

 

 
Figure 4.  Inside the tunnel renders as Crow’s Feet (left) and outside the tunnel renders as trough geometry (right). 

Fade brightness with distance 

Tunnel fading (Figure 5) is the reduction in the brightness of the tunnel segments as a function of the 
distance from the ownship position.  The fading function was implemented only while inside the 
tunnel to help reduce clutter and enhance depth cueing of the tunnel.  Outside the tunnel, the fade 
function was turned off to ensure that the tunnel was set to its maximum brightness to enhance 
visibility for reentry. 
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Fading was implemented as a linear function from 100 percent brightness beginning at x nm from 



 
 

ownship and reaching a y percent brightness at x+1 nm, where x and y are user-selected values.  
Brightness was then held constant at y percent beyond the x+1 nm distance.  This function was 
implemented as a GUI control with an on/off box and a static distance control parameter (x) and a y 
percent brightness parameter.  Nominally, x and y have been set to 3 nm and 5 percent, respectively. 

Additional logic was added to eliminate fading for non-straight segments of the tunnel.  Logic for 
heading and/or glideslope changes was implemented as follows: 

a. If a path heading change was to occur within u nm (where u is a new static parameter on GUI 
panel), (u + 1) was added to the original static distance control parameter.  

b. If a path glideslope change was to occur within v nm (where v is a new static parameter on 
GUI panel), (v + 1) was added to the original static distance control parameter.  

Nominally, u and v have both been set at 0 nm.   

 

 
Figure 5.  Non-faded (left) and Faded (right) tunnel. 

Distance four rail to two rail switching  

When inside the tunnel, the “Distance four rail to two rail switching” function allows the user to 
eliminate the two vertical crow’s feet of each tunnel segment beginning at a user-defined distance 
from ownship (Figure 6).  The motivation for this modification was clutter reduction.   

If a tunnel segment was within x nm (where x is a user-defined constant), then the segment's corners 
were drawn with all four nominal “crow’s feet”.  If a segment was farther away than the x nm, then 
only the bottom two “crow’s feet” were drawn. This function was implemented with GUI control of 
an on/off box and the static distance control parameter (x).  The rail switching feature was disabled 
when outside the tunnel (Figure 6).  Nominally, x has been set at 1 nm.   
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Figure 6.  The 4-rail (left) and 2-rail (right) tunnel concepts. 

Path guidance symbologies 

Guidance symbology has been found in simulation and flight test to be a desirable addition to tunnel 
concepts.  Three guidance symbol types have been evaluated with the “crow’s foot” tunnel: 

• a ghost airplane (also known as a “Follow-me” Aircraft)  

• an integrated cue circle analogous to that used in conventional HUD flight directors.  

• a ‘tadpole’ guidance symbol, a variation of the integrated cue circle, as discussed below in the 
HUD guidance symbols section. 

The ghost aircraft depiction (Figure 7) uses a modified pursuit guidance control law developed by 
Merrick, et al (References 91 – 93).  While this form of guidance may not be optimal, it is sufficient 
for most applications considered, particularly as it augments the flight path data represented by the 
tunnel rather than being self-sufficient.  The ghost airplane symbol (positioned about the ghost 
airplane tail-light) was located x seconds (where x is a GUI-controlled parameter) ahead of ownship 
on the centerline of the tunnel. The x-second lead parameter could be decremented from that value 
with decreasing range to the runway threshold to a minimum value y, (a GUI controlled-parameter) at 
threshold distance parameter z (a GUI controlled-parameter).   

The lead time, x, for the modified pursuit control law can be loosely thought of as being the “gain” in 
the guidance control law.  A smaller lead time corresponds to higher performance (i.e., tighter path 
tracking), albeit with more pilot effort to closely follow.  For fixed-wing landing and approach tasks, 
the lead time has typically been set between 30 and 5 seconds, with a nominal value generally being 
about 5.5 seconds on final (see References 114-117). 

The ghost aircraft symbol is used only when there are explicit vertical and lateral flight path 
definitions. Yaw, pitch and roll attitude of the ghost reflected the track and flight path angles of the 
path at that lead position.  On final approach, the ghost airplane transitioned to the integrated circle 
symbol (i.e., just the tail-light) at 500 feet AGL for declutter purposes. 
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Commanded Course Change

 
Figure 7.  Guidance symbols: Integrated cue (left), “Tadpole” (center) and Ghost aircraft (two perspectives, at right). 

The integrated cue circle symbol has been used with various control laws for positioning dependent 
upon the piloting task and experiment requirements.  The integrated cue circle symbol has been 
driven solely from pitch and roll flight director commands, solely from the pitch and roll ghost-
aircraft “tail-light” control law, and from hybrid flight director/ghost-aircraft control laws.  In the 
hybrid case, the integrated cue circle symbol was positioned as follows: 

1. The lateral position of the circle was determined by the existing ghost airplane lateral 
command equations (References 91 - 93). 

2. The vertical position of the circle was dependent on flight phase (approach or departure). 

a. For approach, the vertical position of the circle was determined by the existing ghost 
airplane vertical command equations (References 91 - 93). 

b. For departure, the vertical position of the circle was determined by a “speed on 
gamma/pitch” control law (such as that shown in Figure 8). 

A “tadpole” symbol has also been used.  The tadpole symbol closely resembles the integrated cue 
circle but includes a “tail” on the top of the symbol.  The pitch and roll positioning of the tadpole is 
driven identically as the integrated cue circle.  The tail of the tadpole turns to indicate the magnitude 
and direction of an impending tunnel turn (i.e., the tadpole points left indicating a left tunnel turn).  
The tadpole symbol is analogous to that used in numerous USAF/USN fighter aircraft HUDs. 
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Figure 8.  Block diagram of “speed on gamma/pitch” control law. 

Dynamic tunnel 

The dynamic tunnel concept was a boundary alerting modification to the “crow’s foot” tunnel concept 
that, in real time, alerts the pilot of an impending boundary (top, bottom, left-side, or right-side) 
requiring correction maneuvers.  In other words, the rendering was developed to enhance the 
visibility of the “crow’s foot” tunnel by dynamically modulating the "crows’ feet” as a function of 
path error.  The concept provides the pilot with feedback as to where they are in the tunnel or if they 
have flown outside the tunnel based upon the “size” or depiction of the crow’s foot tunnel (Reference 
35).  

The premise of the dynamic tunnel was that when the pilot is flying in the center of the tunnel, there 
should be the smallest amount of tunnel/symbology clutter.  However, as path error increases to 
appreciable levels, the tunnel walls would "grow" to help the pilot gauge where the boundaries of the 
tunnel are.  This helps to overcome a criticism of "low clutter" tunnels.  Similarly, the “low-clutter” 
crow’s foot tunnel presents a more challenging visual perception than the connected-rectangle tunnel 
for recognition and reentry when outside of the tunnel path.  The dynamic tunnel code allows 
flexibility to tailor the “crow’s foot” tunnel in this scenario as well. 

The dynamic tunnel concept was developed so the “crow’s foot” elements were dependent on path 
error, with a unity length indicating a “full boundary” condition.  Figures 9 and 10 show the lateral 
and vertical path error curves (respectively) which define the tunnel segment lengths for the dynamic 
tunnel concept.  This function was implemented with two control parameter table look-ups on GUI 
panels that related boundary length of each of the three segments (height, width, and length) of a 
crow’s foot element (see Figure 2) to the appropriate path dot error.  These two tables (one for lateral 
error control of the lengths of the two sides and one for vertical error control of the lengths of the top 
and bottom) were used whenever the aircraft was within the tunnel, causing the “InTheTunnel” logic 
to be true and enabling the function.  Interpolation between column distances was provided within the 
graphic programming so that segment growth was smooth across dot error variations. 
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Tunnel Segment as a Function of Path Error for the 
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Figure 9.  The lateral path error curve defined for the dynamic tunnel concept. 

Tunnel Segment Length as a Function of Path Error for the 
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Figure 10.  The vertical path error curve defined for the dynamic tunnel concept. 
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As an example, Figure 11 presents the dynamic tunnel as it would appear with ownship near the 
center position of the tunnel (the unmodified “crow’s foot” tunnel). The tables could be set such that 
with a +0.25 dot vertical error, the bottom of the tunnel would fill in from both the left and the right 
bottom corners with quarter-tunnel width segments, with a gap equal to half the width of the tunnel 
(see Figure 11). 

 

Dynamic Tunnel:  Small Path Error Dynamic Tunnel:  Low on the PathDynamic Tunnel:  Small Path Error Dynamic Tunnel:  Low on the Path
 
Figure 11.  Dynamic tunnel with ownship near tunnel center (left) and with ownship approaching bottom boundary 

(right). 

 

 
Figure 12.  Dynamic tunnel with ownship outside of and below the tunnel. 
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HUD Stroke Symbologies 

Pathway research also included the development of tunnel concepts for typical monochromatic 
stroke-on-raster HUDs (Reference 36).  All of the tunnel-related symbology was included as a stroke 
symbology option within the Rockwell Collins Flight Dynamics Head-up Guidance System (HGS) 
4000 Computer for flight test evaluations.  This modification was made to ensure that the tunnel was 
clearly visible and distinct during daylight conditions and from the raster synthetic vision 
background.  Further, as stroke symbology, the brightness of the tunnel could be independently 
modulated by the pilot separate from the raster background. 

In addition to the tunnel drawing routines, the HGS-4000 stroke symbology was modified to include 
Vertical “Raw Data” and Lateral “Raw Data” Indicators.  The nominal HGS-4000 raw data 
symbology was modified to include path deviation indication in addition to the nominal angular 
(Instrument Landing System) deviation indicators.  The raw data symbology included a deviation 
scale, showing “on path” and +/- 2 dots deviation (see Figure13, using the vertical raw data indicator 
as an example).  The triangular symbol showed Glideslope angular deviation as is nominally 
displayed on the HGS-4000 when properly configured.  A path deviation indicator (“Dogbone”) was 
added to show linear deviation from the tunnel path. 

 

Deviation Scale

Deviation Indicator

Path Deviation Indicator

Deviation Scale

Deviation Indicator

Path Deviation Indicator

 
Figure 13.  Vertical deviation “Raw Data” indicator. 

 

The “dual” raw data indicators provide a compact and efficient method of conveying navigation 
performance indication to the pilot.  The glideslope and localizer information are “ground-based” and 
represent an independent data source by which to cross-check the accuracy and validity of the 
“aircraft-based” tunnel guidance.  As shown in the example in Figure 14, if a curved arrival is 
programmed to converge to an ILS final approach course, the “dogbones” show linear deviation along 
the curved path.  As the curved path intercepts the final ILS approach course, the pilot can use the 
localizer raw data to verify the final approach course and, thus, validate the accuracy and integrity of 
the aircraft navigation solution generating the magenta path.   
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ILS Approach Course

Full-Scale Localizer Deviation

 
Figure 14.  Lateral deviation “Raw Data” indicator functionality. 

 

The stroke symbology changes are available for display when the HGS-4000 is operated in 
"Research" mode.  The positioning and logic associated with each symbol was controlled by ARINC 
429 data bus communications protocol between the HGS-4000 and on-board research computers. 

Departure Tunnel 

The majority of tunnel applications address only the approach phase of flight, since the research to 
date indicates the benefits of tunnel concepts are primarily found for earth-fixed procedures involving 
complex turning, descending flight path trajectories.   

An initial departure tunnel concept was developed but never advanced beyond the proof of concept 
phase.  Departure procedures are not often “earth-reference” so adaptation of tunnel concepts to the 
departure are not straight-forward.  When departure procedures do include earth-references, they 
typically only involve lateral path definitions without vertical climb components.  The designer must 
be concerned that a tunnel which shows vertical path elements, may imply vertical path “constraints”.  
These “constraints” might inappropriately imply or assume a climb profile when none exists.  This 
situation might potentially present hazardously misleading information if the actual aircraft climb 
performance is not included in the tunnel and guidance design.  For instance, the tunnel should never 
command a climb gradient that could not be attained by the aircraft.  Further, the tunnel should never 
command a climb gradient less than that nominally possible, unless desired by the pilot, when a 
vertical trajectory limit is not in effect.  This ensures that maximum altitude and potential energy is 
reached, as quickly as possible, to mitigate the effects of a potential engine failure.  Simulation 
evaluations also suggested that the display clutter caused by the departure tunnel perhaps outweighed 
any potential benefits of situation awareness, particularly for HUD applications.  

The departure tunnel was based on the “crow’s foot” concept of only using the corners of a wire-
frame tunnel.  For departures and go-arounds, the flight path is constrained laterally but not vertically.  
Thus, the “crow’s foot” height (refer to Figure 2) is extended upwards to signify there is no top 
constraint and the width portion of the “crow’s foot” is removed.  The resulting shape is a sideways 
“T”, where the bottom of the “T” points in the direction of the path.  A further description of the 
Departure Tunnel concept is included in the Appendix. 
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Concluding Remarks 

The key feature of the Crow’s Foot tunnel concept is its minimal clutter rendition while still enabling 
pathway information to be effectively conveyed to the pilot and thus, appropriately used for aircraft 
control.  The longevity and proliferation of the NASA Langley Research Center “crow’s foot” tunnel 
concept is testament to the original consensus concept as envisioned by the participants in the 
pathway workshop series.  Likewise, the contributions of many individuals are embedded in the many 
modifications that have since accumulated to adapt the tunnel concept to different applications, 
different phases of flight and different aircraft categories.     
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Appendix 

Departure Tunnel Description 

A departure tunnel was conceived with the following characteristics, as presented directly from a 
programming task statement:  

1. Because of the lack of vertical path constraints during this phase of flight, the basic tunnel 
element is no longer the 3-D crow’s-foot or angle-iron symbol used during the approach phase of 
flight. The basic tunnel element is a 2-D “T” rotated 90 degrees (Figure A1) so the base of the 
“T” is pointed in the direction of the departure route (the desired track angle). Each whole line 
segment of the “T” is 0.025 nm long (GUI-controlled parameter). 
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Figure A1.  The basic ‘T’ element of the departure tunnel. 

2. A tunnel section, instead of being formed by four crow’s-foot or angle-iron symbols to form a 
box, is now formed of six rotated-T elements, three to a side (Figure A2). A GUI option to select 
reduction to four elements, two to a side, should also be provided.  

 

 
Figure A2.  Side view of ownship and the departure tunnel. 

 
3. A tunnel section is 0.1 Nmi wide (GUI-controlled parameter), and the rotated-T elements of each 

side are spaced 200 feet apart vertically (GUI-controlled parameter).  

4. Tunnel sections are spaced 0.2 Nmi apart (GUI-controlled parameter) along the departure route 
(Figure A3).  



 
 

 
Figure A3.  Departure tunnel. 

5. The vertical structure of the tunnel is dependent on a predicted vertical path (climb / descend / 
level) of the ownship, such that the three-to-a-side rotated-T elements are aligned about the 
predicted vertical path.  

a. Each “T” in the three-to-a-side element is positioned in altitude along the path track in 
multiples of 200 feet (e.g., one each at 2400, 2600, 2800 for an ownship level at 2501 
feet; at 2200, 2400, 2600 for an ownship level at 2500 feet). The 200 foot parameter 
should be GUI-controlled. 

b. The predicted vertical path of the ownship is calculated based on ownship altitude and a 
first order low pass (first order time delay) filtered value of ownship gamma. The 
parameter of the first order low pass filter should be a GUI-controlled constant. 

6. A “Fade brightness with distance ahead” function, as available for the approach tunnel, shall be 
available with GUI-controlled parameters (on/off, distance, %) and enabled with within/without 
tunnel switching logic, as well as the path heading change logic (glideslope change logic is not 
necessary, as no vertical path exists).  

7. When the ownship is laterally outside the tunnel (it is not possible to be outside of the tunnel 
vertically, as the tunnel is always aligned vertically along the velocity vector), an adaptation of 
the adaptive crow’s foot control parameter table on a GUI panel used for the approach tunnel 
(dynamic tunnel) shall be available such that near-side tunnel elements (the three-to-a-side 
rotated-T elements) should be able to grow in size to exaggerate the perspective size difference 
between the near- and far-side tunnel elements. The base of the rotated-T elements on the far side 
tunnel elements should grow to connect with the next tunnel segment (forming an outside wall of 
symbols). The columns of the control parameter table should be based on 0.1 Nmi distances 
rather than based on fractions of lateral dot error. Interpolation between column distances (as 
done with the adaptive crow’s foot implementation) should be provided. The three left side 
elements shall be dimensioned by two parameters (top of the “T” and base of the “T”), and the 
three right side elements shall be dimensioned by two similar parameters (top & base designators 
are similar to the present approach tunnel upper and lower corner designators).  
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8. When the ownship is laterally inside the tunnel, an adaptation of the path heading change logic 



 
 

for the “Fade brightness with distance ahead” function should identify whether the path heading 
change ahead has the far side to the right or the left. This determination is used as an input to an 
adaptation of the inside-the-tunnel adaptive crow’s foot control parameter table on a GUI panel 
used for the approach tunnel. This table functionality shall be available such that far-side tunnel 
elements (the three-to-a-side rotated-T elements) should be able to grow the base of the rotated-T 
elements to connect with the next tunnel segment (were they at the same altitude). Thus the far 
side of the turn assumes a wall-like appearance.  

 

 
 

Figure A4.  Pilot view (left) of the departure tunnel and top view (right) of ownship and the departure tunnel when 
executing a right turn. 
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