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Abstract 
 
The accurate simulation of SWAT can assist the government in making correct decisions about 
water management practices, which are important for human health, agricultural management, 
industry development, environmental quality, flood risk assessment, and recreation. In this 
project, the PIs were trying to improve the simulation accuracy of the SWAT model through 
developing new algorithm to obtain accurate rainfall input. The PIs developed a GIS based 
automatic rainfall interpolation program which incorporates six interpolation methods to estimate 
rainfall field for the distributed hydrologic model – SWAT (Soil and Water Assessment Tool). 
The simulated results show that the areal mean rainfall depths estimated by different methods are 
similar to each other, while the spatial distribution of a rainfall field could exhibit great 
differences. The stream flow simulated by the SWAT model is sensitive to rainfall fields 
estimated by different methods, especially for the daily temporal scale, both hydrograph shape 
and flow volume could show big differences. The accuracy of rainfall field information is 
essential for distributed hydrologic modeling, and the tool developed in this study will be useful 
for accurately estimating rainfall fields. The tools developed in these studies are expected to be 
used in the HAWQS (Hydrologic and Water Quality System) project supported by the USEPA. 
 
Developing a GIS tool for Accurately Estimating rainfall field for the SWAT model 
 
1. Introduction 
 
Numerous field experiments have revealed that hydrological processes and parameters can show 
considerable spatial variability (Merz and Bárdossy, 1998). Distributed hydrologic models offer 
the ability to simulate hydrologic processes using spatially distributed input data, which makes 
them preferable tools to predict water availability, sediments delivery and nutrients transport at a 
regional scale for sustainable water resource management, food security, human health and 
natural ecosystems (Chaplot et al. 2005). As rainfall is one of the primary hydrologic model 
inputs, it is essential to accurately represent rainfall in time and space for distributed rainfall-
runoff modeling. Previous studies have shown that the spatial variability of rainfall fields can 
have a large influence on simulated runoff volume, time shift of hydrographs, sediment delivery 
and nutrient yield (Dawdy and Bergman, 1969; Wilson et al., 1979; Troutman, 1983; Duncan et 
al., 1993; Faurès et al., 1995; Shah et al., 1996a; Shah et al., 1996b; Lopes, 1996; Koren et al., 
1999; Chaubey et al., 1999; Arnaud et al., 2002; Merz and Bárdossy, 1998; Smith et al., 2004; 
Chaplot et al. 2005). Generally, the methods used to study the sensitivity of hydrologic models to 
spatial rainfall variability are rain gauge network density and rainstorm displacement (Arnaud, et 
al., 2002). What needs to be noted is that in order to input spatially distributed rainfall into a 
distributed hydrologic model, the rainfall values at rain gauge points need to be interpolated to 
estimate rainfall value at the point without observed data. There are many interpolation methods 
that could be used for rainfall field estimation, and these methods will provide different rainfall 
fields. The tasks are to find how different the estimated rainfall fields will be and how much 
impact these differences could exert on distributed hydrologic modeling. 



 

 
The general methods used by distributed hydrological models to estimate rainfall fields include 
Thiessen polygon and IDW (Inverse Distance Weighted). For example, SWAT and MIKE SHE 
use Thiessen Polygon, and VIC uses IDW.  The theory of Thiessen polygon and IDW are simple 
and easy to be realized programmatically, but Goovaerts’ (2000) work showed that the accuracy 
of these two methods is not as good as several other methods, including Linear Regression, 
Ordinary Kriging, and Simple Kriging with varying local means. Lloyd (2004) also showed that 
different interpolation methods could vary in accuracy of estimated rainfall distribution. In this 
work, six different interpolation methods were used:  Thiessen polygon and IDW, which are 
widely used in distributed hydrologic modeling; Spline and Ordinary Kriging, which are widely 
used to interpolate spatially distributed environmental variables; and Linear Regression and 
Simple Kriging with varying local means, which incorporate elevation into spatial interpolation. 
Areal mean, coefficient of variability, and accuracy of rainfall fields predicted by different 
methods will be calculated and compared. The distributed rainfall fields interpreted by the 
various methods will be input into a physically based distributed hydrologic model – SWAT 
(Soil and Water Assessment Tool), and the simulation results will be compared and discussed at 
the annual, monthly, and daily temporal scales. 
 
2. Materials and Methods 
 
2.1 Study Area Description 
The study site was selected at the downstream area of the Luohe River, which is the largest 
tributary of the downstream Yellow River (YR), whose area is about 5239 km2. The study area 
covers the land of 12 cities and counties: Yiyang, Shanxian, Luoning, Ruyang, Yinchuan, 
Mianchi, Yima, Xinan, Luanchuan, Mengjin, Yanshi and Luoyang, which are characterized by 
flat alluvial and foothill plains. The average elevation of the Luohe basin is about 520 m. The 
Luohe River Basin belongs to the warm temperate climate zone with average annual rainfall 
depth 600 mm. Forty-one rain gauges, located within or around the study area, with daily rainfall 
records will be used in this study. As shown in Figure 1, the 31 solid circles denote the rain 
gauges will be used to interpolate rainfall spatial distribution, and the 10 solid triangles on the 
left denote the rain gauges used to test the accuracy of estimated rainfall field.  



 

 
Figure 1. The rain gauges used for rainfall field interpolation and validation. 

 
2.2 Interpolation Methods 
 
2.2.1 Thiessen Polygon 
Thiessen polygons, also referred to as Voronoi Diagrams, are polygons whose boundaries define 
the area that is closer to that polygon’s centroid point than all other points. Then the point 
without observed rainfall value will be assigned the closest rain gauge’s record (Thiessen, 1911). 

Let ( iZ , i = 1, … , n) be the set of rainfall data measured at n  rain gauges, and here 31=n  . The 
rainfall depth Z  at an unsampled location u is estimated using function below: 

iu ZZ =    jihh ujui ≠∀< .                                            (1) 

where uZ  is the interpolated value,  iZ  is the data value of i th sampled location, uih denotes the 
distance between unsampled location u  and the sampled location i , ujh  denotes the distance 
between unsampled location u  and the sampled location j . 

 
2.2.2 Spline 
The Spline method uses a basic minimum-curvature technique to interpolate a spatial surface, 
which 1) passes exactly through the data points, 2) has minimal curvature (ESRI, 2005). The 
Spline function uses the following formula for the surface interpolation: 
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Where, uZ  is the interpolated value, n  is the number sampled location points, uiλ are coefficients 
found by the solution of a system of linear equations, uih  is the distance between the unsampled 

point u to the  sampled location i . Trend function uT and generating function )( uihR  are 



 

determined by the REGULARIZED or TENSION option of Spline. In this work, we use 
REGULARIZED Spline, which incorporate third derivatives into the smooth seminorm (Mitas 
and Mitasova, 1988). For detailed introduction to Spline method, please reference to Franke 
(1982), and Mitas and Mitasova (1988). 
 
2.2.3 IDW  
The IDW interpolation method explicitly implements the assumption that things that are close to 
one another are more alike than those that are farther apart. It weights the points closer to the 
prediction location greater than those farther away. With inverse distance weighting, data points 
are weighted during interpolation so that the influence of one data point relative to another 
declines with distance from the interpolation point: 
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where uZ  is the interpolated value,  n  represents the total number of sample data values around 

the unsampled location that will be used in interpolation, iZ  is the i th rain gauge value, 
uih denotes the separation distance between unsampled location u  and the measured data value 

location i ,  and uiλ denotes the weight of the i th measured data value.  

2.2.4 Kriging 
Kriging is an advanced geostatistical procedure that provides a best linear unbiased estimation 
model. The unknown rainfall depth Z  at the unsampled location u  is estimated by a linear 
combination of observed neighboring rain gauge values: 
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where uZ  and iZ  have the same meaning as described above. Instead of weighting nearby data 
points by some power of their inverted distance, the Ordinary Kriging relies on the spatial 
correlation structure of the data to determine the weighting values. Ordinary Kriging determines 
the weights uiλ  under two assumptions:  1) ensuring the unbiased nature of the estimator, 

{ } 0* =− uu ZZE ; 2) minimizing the estimation variance, { }*
uu ZZVar − , where *

uZ  denotes the 
measurement value. Kriging uses semi-variogram to identify the weights of the points that 
surround the predicted points through solving a series of linear function known as the “Ordinary 
Kriging system” (Goovaerts, 2000): 
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where )(uμ  is the Lagrange parameter accounting for the constraint on the weights. uih  denotes 
the separation distance between unsampled location u  and sampled location i , ijh  denotes the 



 

separation distance between sampled location i  and j . The semi-variogram )(hγ  is computed 
using the equation below:  
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where h  is the difference between two point location, )(hN  is the number of pairs of points 
separated by h , hii zz +−  is the value difference between point i  and another point separated by 
distance h . For more information on Kriging, please refer to Edward and Srivastava (1989). 
 
2.2.5 Linear Regression 
With the orographic effect, rainfall tends to increase with increasing elevation. Hevesi et al. 
(1992) and Goovaerts (2000) both reported a significant correlation between average annual 
precipitation and elevation in Nevada and southeastern California, and Aogarve (the most 
southern region of Portugal) respectively.  Goovaerts (2000) also reported average monthly 
rainfall has close correlation with elevation for most months except for July and August. A 
simple method to incorporate elevation into rainfall distribution estimation is to develope the 
linear regression function:  

uuu yaayfZ ×+== 10)(                                                           (8) 
where uy  is the elevation at prediction point u , the 0a  and 1a are regression coefficients 
estimated with a set of collocated rainfall and elevation data {( iZ , iy ), ni ,,1L= ) }.  
 
2.2.6 Simple Kriging with varying local means 
Goovaerts (2000) presented the basic form of Simple Kriging with varying local means (SKlm), 
which replaces the known stationary mean in the simple Kriging estimate by known varying 

means um derived from the secondary information: 
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where iii mZR −= . In this work the local means are derived using linear regression function (8). 
Then the estimated rainfall at unsampled point u can be expressed as:   
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where the weights uiλ  are obtained by solving the simple Kriging system: 
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where )(hCR  is the covariance function of the residual iR , not that of iZ itself (Goovaerts, 
2000). And other variables denote the same meaning as stated above. For more detailed 
information on SKlm, please refer to Goovaerts (1997). 
 
2.3 Distributed hydrologic model 

SWAT is a continuous-time, long-term, distributed-parameter model (Arnold et al., 1998). 
SWAT subdivides a watershed into sub-basins, and further delineates Hyrologic Response Unit 



 

(HRU) consisting of unique combinations of land cover and soils in each sub-basin. HRU 
delineation can minimize computational costs of simulations by lumping similar soil and land 
use areas into a single unit (Neitsch et al., 2000). The hydrologic routines within SWAT account 
for snow fall and snow melt, vadose zone processes (i.e., infiltration, evaporation, plant uptake, 
lateral flows and percolation), and ground water flows. Surface runoff volume is estimated using 
a modified version of the SCS CN method (USDA-SCS, 1972). A kinematic storage model 
(Sloan et al., 1983) is used to predict lateral flow. And return flow is simulated by creating a 
shallow aquifer (Arnold et al. 1993; Arnold et al., 1998). Channel flood routing uses the 
Muskingum method. Outflow from a channel is also adjusted for transmission losses, 
evaporation, diversions, and return flow.  

As a physically based distributed model, SWAT needs many input data:   

1. Topography:  the 1:250,000 DEM obtained from National Geomatics Center of China 
will be used to provide terrain characteristics of Luohe basin.  

2. Soil:  the soil map at 1:4,000,000 scale obtained from Institute of Soil Science, Chinese 
Academy of Sciences (CAS), provides the soil spatial distribution and physical 
properties like bulk density, texture, saturated conductivity, etc.  

3. Land use:  Land-use classifications such as cropland, pasture, forest, etc were obtained 
from Institute of Geographical Sciences and Natural Resources Research, CAS at 1: 
1,000,000 scale.  

4. Weather:  Water Resources Conservancy Committee of the YR basin provided 
precipitation, air temperature, relative humidity, solar radiation and wind speed, etc.  

2.4 GIS based rainfall field interpolation program 
GIS is a very powerful tool to facilitate geospatial related research, including spatially 
interpolated climate data and analysis of storm kinematics (Jeffrey et al., 2001; Tsanis and Gad, 
2001). In this work, we wanted to interpolate the daily rainfall in 1991 and output the spatially 
distributed rainfall into the distributed hydrologic model, which required much manual work. An 
automatic interpolation program developed as an extension of ArcGIS 9.0 was used to facilitate 
rainfall field estimation and output job. The function of this GIS based program includes: 
automaticaly and continuously estimating rainfall distribution using the six interpolation methods 
described above; calculating each day’s areal mean rainfall depth and coefficient of variability 
(CV) of estimated rainfall fields; validating the accuracy of estimated rainfall fields using Mean 
Absolute Error (MAE); calculating each hydrologic unit’s mean rainfall, which will be input into 
distributed hydrologic model.  Since ArcObject doesn’t provide the Simple Kriging estimator, in 
order to use the SKlm method, the user still has to manually perform the Simple Kriging 
interpolation procedure using the Geostatistical Analyst extension of ArcGIS. This shortcoming 
of the program is expected to be overcome when ArcObject provides the Simple Kriging 
estimator. The general work flow chart of this program is shown in Figure 2.  The equations for 
calculating CV and MAE are:  
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where o
iZ  is the true rainfall depth value, p

iZ is estimated value, n  is the number of rain gauges 
used to validate the accuracy of estimated rainfall fields, ∂  is standard deviation of rainfall field 
and avez  is areal mean rainfall.  
 
 

 
 
Figure 2. Work flowchart of GIS based interpolation program. 
 
 
3. Results and Discussion 
 
3.1 Difference between rainfall fields estimated by different methods 
The daily rainfall data from the 31 rain gauges in 1991 were used to test the differences between 
rainfall fields estimated by different methods discussed in section 2.1. The parameters of 
different methods are listed in Table 1. There were 52 total storms whose rainfall depth was 
larger than 2 mm, and the accuracy, areal mean and spatial variability of these 52 storms will be 
compared and discussed.  
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Table 1. Parameters used by different methods for rainfall field estimation. 
Parameters 
 
Methods 

Search radius 
setting (Number 
of points) 

Out put cell 
size 
 (m) 

Others 

Thiessen 
polygon - 100 - 

IDW 12 100 Distance Porwer: 2 

Spline 12 100 Spline type: Regularized 
Weight: 0.1 

Linear 
regression - 100 - 

Kriging 12 100 Semi-variogram model: 
Spherical 

SKlm 12 100 Covariance model: Spherical 
 
 
3.1.1 Accuracy comparison of different methods 
Figure 3 shows the accuracy for rainfall fields estimated by six different interpolation methods. 
There is no one method that can always predict better results than the other methods. For 
example, for storm No. 4 Spline gives the worst result, while for storm No.35 it is the best 
predictor. It’s hard to say which method is the best, and different methods may be applicable to 
predict different types of storms. In order to give a general idea about which method is more 
reliable, the average MAE for the 52 storms was used to assess performance of different 
methods. SKlm predicted the smallest average MAE (2.65). Kriging and IDW give similar 
results (2.77 and 2.80 respectively). Thiessen polygon gives the largest average MAE (3.80). 
Linear regression and Spline predict 3.23 and 3.75 respectively. This result is similar to 
Goovaerts’ (2000), but the complex geostatistical method SKlm doesn’t show much advantage 
over other methods. The reason maybe that the topography of the study area is not complex, 
elevation does not change much and has no great impact on rainfall distribution. Since we can’t 
get the actual rainfall field, in the following analysis, we will choose the rainfall field estimated 
by SKlm as a standard for comparison purposes.  



 

 
Figure 3. Accuracy of rainfall estimated using different methods for 52 storm events. 
 
 
3.1.2 Areal mean rainfall 
Figure 4 reveals that the areal mean rainfall depths interpreted by different methods are closely 
related, except for storm No. 31, 32 and 34. Using the areal mean estimated by SKlm as a 
standard, the relative error of areal mean rainfall for the other five methods was calculated. The 
absolute relative error for IDW and Kriging is no more than 20%, and for most cases was within 
10%. For the Thiessen polygon, Spline and Linear methods, the absolute relative error was 
always with 25%, and for most cases was within 15%. Generally, there was little variation 
among areal mean rainfall depths for the different interpolation methods.  



 

 
Figure 4. Areal mean rainfall estimated using different methods for 52 storm events. 
 
3.1.3 Spatial distribution of rainfall 
The coefficient of variability of the rainfall fields estimated by different methods in Figure 5 
shows that different methods can predict different rainfall distribution. Spline predicted the 
largest rainfall distribution variability for almost all the 52 storms (average CV for 52 storms is 
0.93), while Linear regression predicted the lowest average CV value 0.25. Thiessen polygon, 
IDW, Kriging and SKlm predicted similar CV, 0.71, 0.63, 0.55 and 0.59 respectively. The No. 1 
storm event was used as an example to visually show the difference among six interpolated 
rainfall fields by different methods in Figure 6, and the statistical characteristics of different 
rainfall fields are listed in Table 2. It’s obvious that there is big visual and statistical differences 
among the rainfall fields estimated by the various methods. Spline even predicted negative value 
input into hydrologic model, which is set to zero to avoid negative rainfall when input into the 
SWAT model. And as rainfall has no significant relationship with elevation (R2 = 0.06) for this 
storm, the spatial pattern predicted by SKlm is different than that of Linear regression. The big 
difference in spatial patterns of rainfall fields will exert impact on the processes that route a rain 
drop through the basin.  



 

 
 
Figure 6. Rainfall fields estimated using different methods. 
 



 

 
Figure 5. Spatial variability of rainfall filed estimated using different methods for 52 storm 
events. 
 
Table 2. Statistical characteristic of rainfall field estimated by different methods. 

Variable 
Methods 

Areal 
mean CV Highest 

value 
Lowest 
value 

Thiessen 
polygon 4.77 0.57 10 0 

IDW 4.99 0.36 9.99 0.001 
Spline 5.54 0.64 10.2 -2.23 
Linear 
regression 4.63 0.10 5.33 2.15 

Kriging 4.85 0.23 7.06 3.08 
SKlm 4.87 0.27 7.92 1.28 

 
3.2 Impact of estimated rainfall fields on distributed hydrologic modeling  
The outputs from the GIS based interpolation program were input into the SWAT model. 
Hydrologic modeling of flow at the outlet of the Luohe River was conducted at a daily time scale 
using daily rainfall data in 1991. In order to reflect differences of estimated rainfall fields on the 
water yield in the study area, the upstream inflow was not input into model. The parameters used 
here were the default values in SWAT. The differences of simulated flow were discussed at the 
annual, monthly and daily temporal scale, and we took the simulated flow with rainfall input 
interpreted by SKlm as the standard for comparison purpose.  



 

Figure 7 shows the annual flow simulated according to different interpolation methods. The 
Spline method predicted highest flow volume with relative difference of 25% compared to 
SKlm. The Thiesen polygon predicted a relative difference of 16%. Linear regression, IDW and 
Kriging predicted a relative difference within 10%. At the annual temporal scale, the simulated 
flow volume difference is small.  

 
Figure 7. Simulated annual flow volume in 1991 using different interpolation methods. 
 
The simulate monthly flows are shown in Figure 8. The general hydrograph shape simulated 

according to different rainfall field estimation methods is similar, and the peaks appear at the 
same month (September). But for each individual month, the simulated flow volume shows 
obvious differences. For example, in April, the relative difference is 116% for Thiessen polygon, 
65% for IDW, 85% for Spline, 33% for Linear regression and -3% for Kriging. The highest flow 
interpreted by Thiessen polygon reached 4.28m3/s, while the lowest flow interpreted by Kriging 
is only 1.9m3/s in April. And in July, the relative difference is 31% for Thiessen polygon, 7.6% 
for IDW, 46% for Spline, -7.7% for Linear regression and -15% for Kriging. The difference 
between Spline and Kriging is 4 m3/s, which accounts for 50% of the flow volume simulated by 
Kriging. At the monthly temporal scale, the difference between simulated flows interpreted by 
different methods is much more appreciable than at annual scale.  



 

 
Figure 8. Simulated monthly flow volume in 1991 using different interpolation methods. 
 

Finally, we wanted to examine the simulated daily flow difference. Figure 9 shows the daily flow 
discharge hydrograph simulated by the SWAT model based on rainfall fields estimated by the 
different methods. Generally, the hydrographs have similar shape during low flow period, while 
predicted peak flows show big difference during a flood event. Here we selected daily flows 
during July as an example to analyze, Figure10. This figure shows that the hydrograph shape 
estimated by the different methods doesn’t correlate well. The peak flow simulated by Thiessen 
polygon appears on July 23, Linear regression on July 24, Spline on July 19, IDW on July 24, 
Kriging on July 24, and SKlm on July 23. The flow volume simulated by different methods also 
shows dramatic differences. For example, on July 19 the Thiessen polygon predicted 32.4 m3/s, 
Linear regression 10.7 m3/s, Spline 46.1 m3/s, IDW 19.9 m3/s, Kriging 8.9 m3/s, and SKlm 10.8 
m3/s. Also significant is that the hydrographs during the flood recession period (July 1 to 14) 
generally have a similar trend and flow volume, but for the period with a large rainfall storm 
(July 15 to 20 and July 23 to 28), the hydrographs’ shapes and flow volumes have obvious 
differences. To some extent, we can infer that the hydrograph shape and flow volume difference 
is mainly caused by surface flow routing during a storm event, while the ground water flow 
simulated based on different methods doesn’t show dramatic differences. In addition, although 
the accuracy, areal mean rainfall and CV for rainfall field estimated by IDW, Kriging, SKlm are 
close, we can still see differences in the hydrographs during July 15 to 20 and July 22 to 26.  



 

 
Figure 9. Simulated daily flow volume in 1991 using different interpolation methods. 
 

 
Figure 10. Simulated daily flow volume in July, 1991 using different interpolation methods. 
 

 
 



 

3.3 Discussion 
Intuitively, the results described above show that different interpolation method will predict 
obviously different rainfall field. Based on previous reported results that the spatial variability of 
rainfall could exert great impact on rainfall-runoff simulation, and combined with the obvious 
difference of spatial variability of rainfall fields and little difference of areal mean rainfall depth 
estimated by different interpolation methods (Figure5), it seems that spatial distribution is the 
major reason explaining the difference of simulated flow. But at same time we should note that 
distributed hydrologic model describing the basin’s dynamic behavior is a nonlinear system, 
small difference in input data may cause dramatic output change. So according to the results got 
in this work, we can’t exclude the possibility that the small difference of areal mean rainfall may 
generate greatly different flow. More detailed process based analysis of soil water, 
evapotranspiration, plant growth, flood routing (overland and channel), and interaction between 
surface and subsurface water may provide us deeper insight into the mechanism how rainfall 
depth and spatial distribution impact rainfall-runoff process. Also we should not extrapolate the 
results got in this work directly to other watershed and distributed hydrologic model. Different 
types of rainfall-runoff conversion models, characteristic of basin and storm, density of rain 
gauge network (Arnaud, 2002; Koren, 1999; Smith, 2004) are also the factors need to be 
considered for explaining hydrologic response.  
  As we can’t get the accurate rainfall field, it’s impossible to assess the exact difference between 
interpolated rainfall field and actual rainfall field. But the average MAE for 52 selected storms 
show that the difference between the estimated rainfall field and actual one is relatively large, the 
reason maybe the sparse rain gauge network (31 rain gauges though a 5239 km2 watershed) used 
to interpolated rainfall fields. The difference between the highest and lowest average MAE of all 
interpolation methods is 1.15 mm, which is less than half of the lowest average MAE 2.65 mm. 
And given the significant difference between flow simulated using different interpolation 
methods, the difference between the flow simulated using interpolated rainfall field and the flow 
simulated using actual rainfall field may be more significant.  
  Since rainfall is a driving force behind many kinds of pollutant release and subsequent transport 
and spread mechanisms, ignoring this property of rainfall in the application of distributed 
hydrologic modeling limits the accuracy of the model results (Chaubey et al., 1999). O’Cornell 
and Todini (1996) suggested using radar and dense network of rain gauge data to gain better 
capturing of rainfall filed, which seems necessary for model developers and users to reduce 
rainfall inputs error. As radar and dense network of rain gauge data are difficult to collect, 
choosing the best interpolation method according to accuracy evaluation maybe an acceptable 
compromise.  
 
4. Conclusions 
 
In this work, the authors reported the difference of rainfall field estimated by different 
interpolation methods and to how extent this difference could impact distributed hydrologic 
simulation in a meso-scale watershed. The objective of this work was realized by combining a 
GIS based automatic rainfall field interpolation program and distributed hydrologic model – 
SWAT. The results got in this paper were generalized below.  
The estimated 52 storms’ rainfall field by six different interpolation methods reveal: 1) The 
accuracy of rainfall fields estimated by different interpolation could show big difference. 
Complex geo-statistical methods can provide more accurate results. 2) Areal mean rainfall depth 



 

doesn’t show big difference between different methods. Compared with the value predicted by 
SKlm, the relative differences of areal mean rainfall for the other methods are all within 25%. 3) 
Spatial distribution of rainfall field estimated by different interpolation methods show obvious 
difference. The highest average CV for 52 storms is 0.93 for Spline method while lowest CV is 
0.25 for Linear regression method. 
 
Daily flow simulation using distributed rainfall input estimated by the six interpolation methods 
were conducted, and the results were analyzed at annual, monthly and daily temporal scale. With 
the temporal scale decrease from annual to monthly and daily, the variation between simulated 
flow volumes became more and more obvious, and hydrograph shape simulated at daily time 
step could show dramatic difference for different methods.  
 
Generally, different interpolation methods could yield obviously different rainfall field, and 
distributed hydrologic model could be very sensitive to the methods used to interpolate rainfall 
field. Also it should be noted, the results got in this paper are sensitive to many factors, such as 
types of distributed hydrologic models, state or parameters of hydrologic model, characteristic of 
basin, storm property and density of rain gauge network and so on. Much care should be taken 
when conclusions generalized here be used to different situations. 
 
 
References  
Arnaud P., C. Bouvier, L. Cisneros and R. Dominguez, (2002). Influence of rainfall spatial 

variability on flood prediction. Journal of Hydrology, 260: 216-230. 
Arnold, J. G., R. Srinivasan, R.S. Muttiah, and J. R. Williams, (1998). Large Area Hydrologic 

Modelling and Assessment Part I: Model Development. Journal of American Water 
Resources Association, 34(1):73-89. 

Arnold, J.G., P.M. Allen, and G. Bernhardt, (1993). A Comprehensive Surface-Groundwater 
Flow Model. Journal of Hydrology. 142: 47-69. 

Chaplot V., A. Saleh, D.B. Jaynes. (2005). Effect of the accuracy of spatial rainfall information 
on the modeling of water, sediment, and NO3–N loads at the watershed level. Journal of 
Hydrology 1–12. 

Chaubey I., C.T. Haan, S. Grunwald and J.M. Salisbury, (1999). Uncertainty in the model 
parameters due to spatial variability of rainfall. Journal of Hydrology, 220: 48–61.  

Dawdy, D.R., J.M. Bergman, (1969). Effect of rainfall variability on streamflow simulation. 
Water resources research, 5: 958-969. 

Dirks K.N., J.E. Hay, C.D. Stow, D. Harris, (1998). High-resolution studies of rainfall on 
Norfolk Island Part II: Interpolation of rainfall data. Journal of Hydrology, 208:187-193.  

Duncan, M.R., B. Austin, F. Fabry, and G.L. Austin, (1993). The effect of gauge sampling 
density on the accuracy of streamflow prediction for rural catchments. Journal of Hydrology, 
142: 445-476 

Edward H.I., R.M. Srivastava, (1989). Applied geostatistics. New York: Oxford University 
Press, pp561. 

ESRI, (2005). How Spline works. 
http://webhelp.esri.com/arcgisdesktop/9.1/index.cfm?TopicName=How%20Spline%20works
. Accessed on Sep 8. 



 

Faurès J.M., D.C. Goodrich, D.A. Woolhiser, S. Sorooshian, (1995). Impact of small-scale 
spatial rainfall variability on runoff modeling. Journal of Hydrology, 173: 309-326. 

Franke, R., (1982), Smooth Interpolation of Scattered Data by Local Thin Plate Spline. Comp. & 
Maths. with Appls, 8(4): 237–281.  

Goovaerts P., (1997). Geostatistics for Natural Resources Evaluation. Oxford University Press, 
New York. 

Goovaerts P., (2000). Geostatistical approaches for incorporating elevation into the spatial 
interpolation of rainfall. Journal of Hydrology, 228: 113–129. 

Koren V.I., B.D. Finnerty, J.C. Schaake, M.B. Smith, D.J. Seo, and Q.Y. Duan, (1999). Scale 
dependencies of hydrologic models to spatial variability of precipitation. Journal of 
Hydrology, 217:285–302 

Lkoyd C.D., (2004). Assessing the effect of integrating elevation data into the estimation of 
monthly precipitation in Great Britain. Journal of Hydrology, 308: 128 – 150. 

Lloyd C.D., (2005).Assessing the effect of integrating elevation data into the estimation of 
monthly precipitation in Great Britain. Journal of Hydrology 308: 128–150 

Lopes V. L., (1996). On the effect of uncertainty in spatial distribution of rainfall on catchment 
modeling. Catena, 28: 107-119. 

Merz B., A. Bárdossy, (1998). Effects of spatial variability on the rainfall runoff process in a 
small loess catchment. Journal of Hydrology, 212–213: 304–317 

Mitas, L., H. Mitasova, (1988). General variational approach to the interpolation problem. Comp. 
& Maths. with Appls, 16(12): 983–992. 

Neitsch, S.L., A.G. Arnold, J.R. Kiniry, R. Srinivasan, and J. R. Williams, (2002). Soil and 
Water Assessment Tool User’s Manual: Version 2000. GSWRL Report 02-02, BRC Report 
02-06, Published by Texas Water Resources Institute, TR-192, College Station, Texas, 438 
pp. 

Shah S.M.S., Connell P.E., and Hosking J.R.M., (1996). Modelling the effects of spatial 
variability in rainfall on catchment response. 2. Experiments with distributed and lumped 
models. Journal of Hydrology, 175: 89-111. 

Shah S.M.S., P.E. Connell, and J.R.M. Hosking, (1996). Modelling the effects of spatial 
variability in rainfall on catchment response. 1. Formulation and calibration of a stochastic 
rainfall field model. Journal of Hydrology, 175: 67-88. 

Sloan, P.G., I.D. Morre, G.B. Coltharp, and J.D. Eigel, (1983). Modeling Surface and Subsurface 
Stormflow on Steeply-Sloping Forested Watersheds. Water Resources Institute Report 142, 
University of Kentucky, Lexington, Kentucky. 

Smith M.B., V.I. Koren, Z. Zhang, S.M. Reed, J. Pan, F. Moreda, (2004). Runoff response to 
spatial variability in precipitation: an analysis of observed data. Journal of Hydrology, 298: 
267–286. 

Stephen J. Jeffrey *, John O. Carter, Keith B. Moodie, Alan R. Beswick. (2001) Using spatial 
interpolation to construct a comprehensive archive of Australian climate data. Environmental 
Modelling & Software, 16: 309–330. 

Thiessen, A.H., (1911). Precipitation averages for large areas. Monthly Weather Review, 39(7): 
1082-1084. 

Tsanis I.K., M.A. Gad, (2001). A GIS precipitation method for analysis of storm kinematics. 
Environmental Modelling & Software, 16: 273–281. 

USDA-SCS, (1972). National Engineering Handbook, hydrology Section 4, chap. 4-10. US 
Dept. of Agriculture, Soil Conservation Service, Washington, DC, USA. 



 

Wilson C.V., J.B. Valdes, I. Rodriguez-Iturbe, (1979). On the influence of spatial distribution 
rainfall on storm runoff. Water Resources Research, 15 (2): 321-328. 

 
Acknowledgements 
The authors would like to thank the USGS for providing funding through the Texas Water 
Resources Institute under Agreement No. 503181. The authors also thank Dr. Allan Jones, Dr. 
Ricard Jensen, and Clint Wolfe from TWRI for taking care of the progress of this project. The 
authors also thank the Chinese National Natural Science Foundation for providing partial 
funding under Agreement No. 40471127. 



 

APPENDIX I – GIS INTERFACE FOR AUTOMATIC RAINFALL FIELD ESTIMATION PROGRAM 

 
Interface for workspace and input data setting  



 

 
Interface for parameters setting for different interpolation methods 
 
 


