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[1] Several magnetic field models of Mars have been constructed since the Mars Global
Surveyor data became available. Three distinct schemes formulated through spherical
harmonic functions, discrete equivalent dipoles, and the continuous magnetic field kernels
have yielded results that are grossly compatible but with very different details. Models of
internal potential function in terms of spherical harmonics tend to yield divergent
high-degree Mauersberger-Lowes spectra, whereas crustal magnetization models exhibit
flat but still significant spectra up to high degrees. To have a better fitting to the observed
data seems to have dominated previous efforts that have yielded fine details with
wavelengths shorter than the lateral track spacing. The variance-reduction versus
model-variance tradeoff analysis is invoked in this study for the determination of the
appropriate regularization. Taking advantage of the recently developed multiscale
inversion, we are able to conservatively retain only the model components that are
robustly constrained by the data rather than unilaterally pushing for a higher degree of
fitting. With the variance reduction around 82%, we find that to reach a reasonably fair
data fitting without high model variance, the high-degree power spectra of our preferred
model exhibit an obvious decaying trend, implying that a lot of the short-wavelength
energy embedded within established models is either not robustly resolvable or is of
external origin or is simply reflecting the nonuniform distribution of sampling at short
scales. The reason that models based on spherical harmonics have greater high-degree
power is attributed to the spectral leakage due to the truncated representation.
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1. Introduction

[2] A magnificent magnetic field variation in the southern
hemisphere of Mars has been discovered owing to the
compilation of the Mars Global Surveyor (MGS) data
[Acuna et al., 1999]. There is, however, no significant field
intensity observed for the northern lowlands although there
are as many observations for the northern hemisphere as for
the south. The significant magnetic signature demarcating
an extensive part in the south has been attributed to ancient
magnetization of the Martian crust [e.g., Hood et al., 2005].
Consequently, there have been considerable efforts to con-
struct models of the Martian crustal magnetic field, not only
for delineating potential tectonic features but also to system-
atically summarize the robust information of the precious
MGS data as completely as possible.

[3] The nature and the quality of themagnetic observations
as well as features of the main phases of MGS have been
documented previously [e.g., Albee et al., 2001]. Essentially,
the MGS satellite observed magnetic data consists in
vectorial, three-component magnetic field observations at
different altitudes, from below 200 km to 367–435 km,
during different mission phases. The three-component data
set we used in this study is the same set previously used to
construct the spherical harmonics degrees 90 internal poten-
tial model [Cain et al., 2003] as well as the spatially
continuous magnetization model [Whaler and Purucker,
2005]. There are in total three-component measurements
at 111,274 points, with altitudes from 102 to 426 km,
composing the 333,822 field intensity data. The specific
parameters and the adopted coordinate system of the data
are described by Cain et al. [2003].
[4] The consensus established from previous works

attributes the current major contributor of the Martian
magnetic field to the lithospheric magnetization of a layer
about 40 km thick, and that there is presently no dominant
dipole field for the planet [e.g., Voorhies et al., 2002;
Langlais et al., 2004; Whaler and Purucker, 2005]. One
school of approach is to find the scalar internal potential
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function at the surface of Mars in terms of spherical
harmonics such that the gradient vectors of the model will
fit the observations [Connerney et al., 2001; Arkani-Hamed,
2001, 2002, 2004; Cain et al., 2003]. Discussions about the
effects of the variation of the attitudes and the lateral
sampling have been raised. Interestingly, although assump-
tions on the internal origin of the magnetic field have been
made in these studies, the divergent Mauersberger-Lowes
power spectra [Backus et al., 1996] toward high degrees,
however, implies significant contributions from external
sources. Other studies assume a continuously varying mag-
netization vector function M(r), where r stands for the
position vector, such that the theoretical magnetic field
intensity vector observed at robs,

B robsð Þ ¼ �rrobs
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fits the field observation. This linear data rule states that the
data functional is of the form of an inner product between
the model function and the data kernel. To evaluate
expression (1) for a given magnetization model, a numerical
scheme based on parameterizing the model function must be
implemented. Langlais et al. [2004] use the equivalent
source dipole technique that attributes the magnetic field to
the contribution from 4840 dipoles with spatially varying
magnetization intensity and direction, uniformly distributed
across the globe and 20 km below the Martian surface.
Whaler and Purucker [2005], on the other hand, expand the
model function in terms of the data kernels. One advantage
of this expansion is that it automatically avoids annihilators
[Parker, 1994], since any component expressible in terms of
the data kernels will not be orthogonal to all data kernels.
That is, there will be no model components of this form that
make no contribution to the data. One of the major
disadvantages, however, is that the resulting Gram matrix
is too sizeable and thus computationally demanding,
although the matrix is usually sparse. Whaler and Purucker
[2005] take advantage of the sparseness and indicate that an
effective computation can usually be performed with only
the 0.21% largest elements of the Gram matrix retained.
Both these two studies obtain models that reveal power
spectra similar to the former studies under degree 40. The
higher-degree power spectra become considerably lower but
are still significant. There have been concerns that crustal
magnetic features with wavelengths shorter than the altitude
of the observation might not be robustly resolvable
[Connerney et al., 2001; Arkani-Hamed, 2002]. Noticeably,
since the north-south trending track spacing of the MGS has
a width of �2�–5�, that is, �100–300 km at the equator
[Arkani-Hamed, 2001], it has been argued that the highest
harmonics degree corresponding to twice the lateral
resolvable wavelength is thus about 65 [Arkani-Hamed,
2004]. In spite of these discussions, recent models tend to
have significant power spectra contributions from much
higher degrees.

2. Method

[5] We basically follow the approach that inverts for the
spatial variation of the equivalent source crustal magnetiza-

tion. We build the spherical tessellation initiated from a
spherical icosahedron. Midpoints on the edges of each of
the 20 spherical triangles are then connected to form
4 children triangles. The refinement of the spherical meshes
is then executed successively until we have 10242 nodes
marking the vertices of the 20480 (= 20 � 45) triangular
faces. Summation of the integrand of equation (1) evaluated
at finite Gaussian integration points [e.g., Zienkiewicz and
Taylor, 1991] within each triangle is then computed to
numerically approximate the inner product of the data rule.
Let m be the vector with M (= 3 � 10242) magnetization
model components, then the N (= 333,822) dimensional
data vector d is constrained by

Gm ¼ d: ð2Þ

[6] Notice that in the current formulation, the degrees of
freedom of the model, 3� 10242, is more than twice as much
over the previous formulation based on the equivalent source
dipoles, 3 � 4840 in the work of Langlais et al. [2004]. The
parameterization of Langlais et al. [2004] assumes a finite
amount of equivalent dipoles located on the vertices of the
spherical triangular meshes. We, on the other hand, assume
that the magnetization varies linearly within each of the
20480 triangles such that the magnetization is a globally
continuous vector function. This further enables much better
capability of resolving short-wavelength features. Elements
of each row of the sensitivity matrix G specify the depen-
dency of a particular datum upon the M dimensional model
vector. An example of the spatial variations of selected
observations reveals the localized constraints and the effects
of the distinct altitudes (Figure 1). Conventionally, model
estimates, m̂, can then be solved by the damped least
squares (DLS) [e.g., Lawson and Hanson, 1974] algorithm,

m̂ ¼ GTGþq2I

 ��1

GTd: ð3Þ

[7] The value of the nonnegative damping factor q2

controls the strictness of the imposed preference of the
minimum model norm. It is also a knob for tuning the
variance reduction (vr) versus model variance (sm) tradeoff.
Briefly, the variance reduction is defined to indicate the
capability of a model (m) to reconstruct the observed data
(d). It can be calculated by

vr ¼ 1� jjGm� djj2

jjdjj2

 !
� 100%: ð4Þ

[8] On the other hand, the model variance is a measure of
the uncertainty of a model manifested from noises contam-
inated to the data; it is computed [Paige and Saunders,
1982] by

sm ¼
XM
l¼1

s2l ;

s2l ¼ jjd�Gmjj2sll; sll ¼ diag GTGþ q2I

 ��1
h i

:

ð5Þ

[9] It is noted that a heavier damping setup by a larger
value of q2 usually leads to a robust model (lower sm), but
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Figure 1. Spatial variation of the amplitude of the sensitivity matrix G (equation (2)). It can be
visualized as the variation of the discrete data kernel function. In this figure a particular example is shown
for the data observed at (180�E, 30�N) and an altitude of 370 km, as well as another southern hemisphere
observation at (180�E, 45�S) (marked by small green open circles, respectively) but at a lower altitude of
130 km. Notice that for a lower-altitude observation, since the sources to observation distances are shorter
relative to those of a higher-altitude observation, there will be a wider area such that the sensitivity of
sources within it are above an effective threshold.
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sacrifices the data fitting (lower vr) at the same time. We
will show in the following how tradeoff between the model
robustness and the data fitting helps to determine an
appropriate value of q2 and an optimal model.

3. Multiscale Inversion Based on the Spherical
Wavelet Basis

[10] It has been pointed out that minimum norm solutions
obtained from DLS generally lack interpolation capabilities
into sparsely sampled areas and tend to yield fragmented
and fractured models [e.g., Chiao and Liang, 2003]. Reg-
ularizations based on enforcing model smoothness or rough-
ness penalization have also been conventional practices in
handling geophysical inverse problems [e.g., Menke, 1984;
Delprat-Jannaud and Lailly, 1993]. The implementations,
however, usually presume that the model smoothness [e.g.,
Meyerholtz et al., 1989], or the intrinsic model correlation
length [Tarantola and Nercessian, 1984], is spatially uni-
form or stationary. It has been shown that this is not a
realistic presumption and has led to devices of multiscale
regularization based on wavelet representations of models
such that spatially nonstationary smoothness enhancement
is automatically invoked depending on the in situ density of
model constraints offered by the data [Chiao and Kuo,
2001; Chiao and Liang, 2003]. We follow the same ratio-
nale and transform the aforementioned spherical meshes
into a stage to build spherical wavelet bases.
[11] To briefly summarize the algorithm, a simplified

single triangle is taken as an example (Figure 2). To
discretely describe a function f(x) across the interior of the
triangle, we can specify the spatial variation of f at uni-
formly distributed nodes, such as f1 = f(r1), f2 = f(r2),
f3,. . .. . . where r1,r2 are position vectors at the internal
nodes 1,2 (Figure 2). These nodes are vertexes of internal
triangles through successive levels of refinement of the
original triangle. That is, connecting midpoints on the
edges, the parent triangle D123 is subdivided into four

children triangles D456, D536, D146, D425 (Figure 2).
Each of the resulting triangles can be further subdivided
accordingly. Now instead of representing f(x) by [f1, f2, f3,
f4. . ..f9. . ...] distributed uniformly throughout the triangle,
there are ways to build hierarchical representations of f(x). A
naı̈ve example is cast in the following sense:

Level�1 : h11 ¼ f1; h
1
2 ¼ f2; h

1
3 ¼ f3

Level�2 : h21 ¼ h11; h
2
2 ¼ h12; h

2
3 ¼ h13; h

2
4 ¼ f4 �

h11 þ h12
2

;

h25 ¼ f5 �
h12 þ h13

2
; : :

Level�3 : h34 ¼ h24; h
3
2 ¼ h22; h

3
5 ¼ h25; h

3
7 ¼ f7 �

h24 þ h22
2

;

h38 ¼ f8 �
h22 þ h25

2
; : : . . . :

½h31; h32; h33; h34; h35; . . . . . . :� ¼ W f1; f2; f3; f4 . . . :f9 . . . : :½ �ð Þ: ð6Þ

[12] That is, on the fundamental level, level_1, there are
3 degrees of freedom hi

1 = fi,i = 1,2,3 to be specified where
the upper index marks the refinement level and the lower
indices are for the locations of nodes. On the next refine-
ment, there are 6 degrees of freedom, hi

2,i = 1..6. As
specified in equation (6), the first 3 degrees of freedom that
are used to characterize the large-scale variation are
inherited from the lower level of representation whereas
the additional 3 degrees of freedom are obtained by the in
situ deviations of f(x) from the expected values predicted by
linearly interpolated from larger-scale variation at each
midpoint, for example, h4

2 = f4 � (h1
1 + h2

1)/2. That is, the
original in situ variations, f4 = (h1

1 + h2
1)/2 + (h4

2), are
replaced by the combination of a low-passed portion (the
contribution interpolated from a larger scale) and a high-
passed detail. Fast wavelet transforms [e.g., Mallat, 1998]
are efficient schemes that accomplish the transformation W
in equation (6) that maps the strictly spatial representation fi
to a localized hierarchy representation hi

l of this sort. In
addition, lifting schemes [Sweldens, 1996] can be incorpo-
rated to further improve the quality of the multiresolution
representation. In this study, we transform the representation
based on the original spherical mesh into an expansion
utilizing spherical wavelet bases [see also Chiao and Kuo,
2001]. That is the reason why our construction subdivides
the edges of each spherical triangles of the icosahedron by
25 segments instead of any integer as in the work of
Langlais et al. [2004]. In fact, starting from the formulation
(1) based on the direct spatial representation; we devise a
bi-orthogonal wavelet transform [Cohen et al., 1992]
directly on each row of the coefficient matrix G, that is
GW*, such that the solution model vector to be solved for is
now automatically the wavelet representation of the original
spatial function for the crustal magnetization. That is,
equation (2) is replaced by

GW*ð Þ Wmð Þ ¼ d: ð7Þ

[13] The new solution becomes, instead of equation (3),

m̂ ¼ W�1m̂ ¼ W�1 GW*ð ÞT GW*ð Þ þ q2I
h ��1

GW*ð ÞTd; ð8Þ

Figure 2. Triangular configuration as an example of
multiresolution representation of a two-dimensional lateral
variation (see the text and equation (6)).
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where W�1 is the inverse wavelet transform that reverses
the operation of the forward wavelet transform W. The
advantage of solving for m in the wavelet domain is that
with the same amount of degrees of freedom, parameters in
the wavelet representation are grouped into a natural
hierarchy of local scales such that the damping regulariza-
tion acts to sort through successive scales depending on the
local data constraints. In short, sites with dense constraints
are capable of resolving more details robustly whereas
robust long-wavelength components are still available for
sparsely constrained area.

4. Results

[14] We execute two different groups of inversions based
on the simple damping scheme (equation (3)) and the
multiscale inversion (equation (8)), each with several dif-
ferent values for the damping factor q2. The variance-
reduction (vr) versus model-variance (sm) tradeoff curves
(Figure 3) clearly indicate how an appropriate model might
be selected. We first notice that with comparable variance
reduction, the results obtained via the multiscale inversions
(marked by solid triangles on Figure 3) have model var-
iances that are in general an order of magnitude lower than
the simple damping results (marked by open circles on
Figure 3). As mentioned in the previous section, this is due

to the way the model variation is assembled through the
scales hierarchy from the longer wavelengths that have
more accumulated constraints in the multiscale inversion.
For both the simple damping results and the multiscale
inversion results, high model variances are associated with
the solutions that best fit the observational data (solutions
marked by group 3 on Figure 3, that are located on the high-
variance-reduction extreme on the tradeoff curves), imply-
ing that there are significant unreliable components poorly
constrained by the data embedded in such solutions to reach
high data fitting. In other words, these lightly damped
solutions are overinterpreting the information content of
the data. On the other hand, solutions approaching the knees
of tradeoff curves (marked by group 2 on Figure 3) that
exhibit almost similar variance reductions (over 92%) bear
considerably lower model variances. Continuing the trend
of decreasing the model variance, conservative solutions
with variance reduction around 82% (solutions group 1
around the knee of the tradeoff curves) reduce the model
variance even more. Further model variance decreasing
(along the reversed horizontal axis on Figure 3), however,
sacrifices too much variance reduction to gain just barely
significant decreases of model variance, and is thus under-
fitting the precious observational data.
[15] For reasons discussed above, we believe that the

appropriate solutions worth exploring that will reveal robust
model structure without sacrificing significant amount of
data information are located in between group 2 and group 1.
In fact, we prefer the conservative group 1 multiscale
inversion solution (referred as solution_1 hereafter) that
can be characterized as the most reliable model with a
reasonably low data misfit. Simple damping group 2 solution
(referred as solution_2 hereafter), on the other hand, can be
treated as a reference conventional model that might be a
little bit on the overinterpreting side. The overall patterns of
the crustal magnetization revealed in these two solutions are
similar (Figures 4 and 5). In fact, the general features are
quite similar to previous works such as those obtained by
Langlais et al. [2004] and Whaler and Purucker [2005].
However, the conservative multiscale solution solution_2 is
dominated by long-wavelength structures at some places.
Notice that this smoothing is not applied in a stationary sense,
that is, the model is not the result of a uniform low-passing
like in other conventional regularizations that enforce
smoothness [Chiao and Kuo, 2001]. The relatively smooth
model, solution_1, can fit the MGS data reasonably well
(see also Figures 6, 7, and 8) although there are notable
short-scale deviations from the observations. It is also worth
pointing out that in Whaler and Purucker’s model, to build
the minimum RMS magnetization model, short-scale fea-
tures are required to enforce null magnetization within data
gaps. These short-scale features have very little effects on
modifying the data misfit or to increase the variance reduc-
tion. Our solutions have considerably less and decaying
high-degree power spectra but still retain reasonable data
fitting. The reference simple damping solution, solution_2,
has very similar Mauersberger-Lowes spectra up to degree
75 as compared to Whaler and Purucker’s model. However,
our preferred robust multiscale solution, solution_1, has
similar power spectra to almost all previous models only
up to degree 40 and then starts to dive. We will show in the
next section, through inversion experiments executed on

Figure 3. Curves displaying tradeoff between variance
reduction of fitting (equation (4)) versus model variance
(equation (5)) for different solutions. Notice that the scale of
the model variance for simple damping solutions (marked
by open circles and annotated on the upper horizontal axis)
is almost an order of magnitude higher than the correspond-
ing multiscale solutions (marked by solid triangles and
annotations on the lower horizontal axis). The solutions
marked as group 3 (solution_3, damping factor 10�4) are
apparently underdamped since the variance reductions are
not much better than solution_2 (damping factor 10�3), but
the model variances are considerably higher. On the other
hand, solution_1 (damping factor 3 � 10�3) represents a
relatively conservative but reliable solution without sacrifi-
cing too much variance reduction.
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Figure 4. Crustal magnetization of Mars obtained from the multiscale inversion, solution_1 (left
column) and the conventional simple damping solution_2 (right column). The top row is for the radial
component, Mr, whereas the middle and lower rows are for lateral components, Mq and Mf.
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data generated from a synthetic model, why such a conser-
vative choice to pick a reliable solution is important.

5. Discussions

[16] The sampling geometry of a particular data set such
as the distribution of track spacing and the observing
altitudes inevitably imposes natural limits on the shortest
resolvable model wavelengths. Although the general con-
sensus is to formulate inverse problems with enough model
degrees of freedom to avoid the potential aliasing effect, the
actual resolvable model components are intrinsically deter-
mined by the sampling geometry and are usually much less
than those implied from the resolution presumed by the
formulation. The variance reduction versus model variance
tradeoff analysis helps to locate the optimal model resolu-
tion by offering the appropriate degree of strictness of
regularization or damping. In principle, formulations based

on data kernels [e.g., Whaler and Purucker, 2005] are
intrinsically free from the concern of nonuniqueness since
there will not be annihilators embedded. There are, however,
always the problem associated with the noise contamination
or observation errors. In other words, proper regularization is
still essential to avoid overinterpreting the data. Unlike other
previous works that pursue the best data fitting only,Whaler
and Purucker [2005] as well as Langlais et al. [2004] invoke
the minimization of the RMS magnetization to regularize the
inverse problem. However, the model with the least data
misfit still seems to be the choice for the preferred model
(e.g., Table 2 of Whaler and Purucker [2005]).
[17] Our solutions that fit the data reasonably well have

considerably less and decaying high-degree power spectra
(Figure 9) although our spherical mesh, with a mean
spacing of about 1.4�, is fully capable of resolving fine
details beyond these higher degrees. These solutions are
selected based on locating the optimal area around the knee
of the variance-reduction versus model-variance tradeoff
curve. That is, decaying high-degree power spectra is a
consequence of having low model variance while retaining
a reasonable data fitting. In other words, fine details
corresponding to those high-degree power spectra are rela-
tively less robustly constrained by the data.
[18] Notice that there are external as well as internal field

contributions to the data. An inverse problem formulated
following equation (1) results in an equivalent source
magnetization model that extracts crustal signals as far as
it is permissible. Arkani-Hamed [2004] used the radial
component of the mapping phase data alone that are
believed to be least contaminated by the external field, as
well as covariance analysis and comparison between models
derived from two subsampled data sets, to suppress the
time-varying and noncrustal parts of the models induced by
external field. Although he concluded conservatively that
the degree �62 is likely an optimum upper limit of the
harmonic degrees of the crustal magnetic field that can be
resolved by the high-altitude mapping phase MGS data, it is
interesting to note that the resulting model, however, has
high-degree power higher than Cain et al.’s [2003] model
(Figure 9) that is based on a data set including all three
components data from AB, SPO and MO phases. In other
words, external field contaminations do not seem to be the
main factors responsible for the differences of their high-
degree power.
[19] We believe there are two major factors that result in

the apparent discrepancies among models established so far.
The first factor that differentiates results based on the
Crustal magnetization Model (CM), might it be discrete in
nature such as the GSFC model [Langlais et al., 2004] or
the continuous ones such as the WP model [Whaler and
Purucker, 2005] and the model of this study, from those
based directly on Spherical Harmonics (SH) can very likely
be attributed to the effect of spectral leakage [Trampert and
Snieder, 1996; Chiao and Kuo, 2001]. This effect is similar
to the aliasing effect when truncated Fourier series is
adopted to expand a function with high-degree energy.
The high-degree energy that is not properly represented
by their actual degrees owing to the truncated expansion
will pile up near the truncated degree and distort the actual
spectra especially close to the truncated degree. Instead of
directly decomposing a function or a time series, the

Figure 5. Comparison between different solutions show-
ing the magnified portion of part of the southern hemisphere
crustal magnetization zoomed in from Figure 4.
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Figure 6. Comparison between different solutions similar to Figures 4 and 5 but showing the
manifested magnetic field at the altitude of 200 km above Martian surface.
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spectral leakage is very similar in essence except that it
occurs when less than enough degrees of freedom are
adopted for a model parameterization of an inverse problem.
It is obvious from this as well as other previous studies that
it will take even higher degrees to get strictly numerically
better fitting to the MGS data and that it is quite clear that

degree n = 90 is just an arbitrary level of truncation. In other
words, when a SH representation truncated at n = 90 is
adopted to fit the MGS data, spectral leakage onto those
high degrees close to the truncation degree will be inevi-
table. The CM models are however, truncated differently. In
fact, one needs much higher degrees to completely represent
these models in terms of the spherical harmonics expansion.
That is, there are still significant power beyond n = 90 for
CM models whereas SH models have their powers drasti-
cally annihilated reaching beyond n = 90. We believe that
this is the main reason that makes the SH models have
higher power around n = 90 than the CM models.
[20] The second factor that makes some models having

lower high-degree power than others within the same group
is regularization, the key issue that we have been discussing

Figure 7. Histograms of fitting residuals of three solutions
of this study. (a) solution_2 using simple damping.
(b) solution_2 using multiscale inversion. (c) solution_1
using multiscale inversion (see Figure 3 and the text).

Figure 8. Comparison of calculated values of the three
solutions of Figure 7 and the Mars Global Surveyor (MGS)
observations for a segment of the AB2 low-altitude (shown
in the lowest panel) collection period. Small open circles
mark the MGS observations; thin line is the prediction from
the solution_2 model using simple damping, whereas the
dark thick line is the solution_1 using the multiscale
inversion. All the variations are plotted as a function of the
areodetic latitudes, but the longitudinal range is also shown
on the top axis.
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in the current study. To ensure that the solution is reliable,
we suggest adjusting the strictness of the imposed regular-
ization or damping. Enforced regularization shaves off
poorly constrained model components while sacrificing
some degree of goodness of fit. That is, we have reasons
other than pursuing just better fitting to choose our preferred
model that has high-degree power even lower than other
CM models. On the other hand, we believe that the reason
for the FSU model [Cain et al., 2003] having much lower
high-degree power than the MG model [Arkani-Hamed,
2004] and the NASA model [Connerney et al., 2001] is
that the FSU model is based on a more complete data set
that reduces the degree of nonuniqueness of the inverse
problem. That is, for the same amount of degrees of freedom
to be modeled, more data constraints behave similarly as
regularization that reduces relatively poorly constrained
components and results in less high-degree power. Further
comparison of spatial patterns of the surface potential
among our preferred models and those established previ-
ously demonstrates the fundamental differences that might
be results of the two factors mentioned above (Figure 10).
Notice that the FSU model (Figure 10b) that is constrained
with more data than the MG model (Figure 10a) appears to
be much simpler along with much lower high-degree power
(Figure 9). That is, it is very likely that a significant portion
of those short-scale complexities in the MG model with
high-degree power are not robustly resolvable model com-
ponents. The WP model (Figure 10d) is in fact constrained
by the same data set as the FSU model. So the reason why
the WP model bears even less complicated structures than
the FSU model is very likely due to its distinct formulation
that avoids null space model components from scratch. It is
interesting to note that our solution_2 model (Figure 10e) is
very similar to the WP model. Whereas our solution_2
model reaches a variance reduction over 92%, the intrinsic
model structure is much simpler than those previously
established SH models (Figures 10a and 10b). Furthermore,
we have reasons to believe that the even simpler structures

in the conservative solution_1 model (Figure 10f) might be
more robust. It is also worth mentioning that although the
difference between the surface potential models from solu-
tion_2 and solution_1 seems to be subtle (Figures 10e
and 10f), their manifestations on the crustal magnetization
models are in fact significant (Figures 4 and 5).
[21] To further verify the interpretation of the finer detail

features discussed above, we execute recovery experiments
with a known implanted synthetic magnetization model. A
circular crustal model with constant 20 km depth and
alternating positive and negative magnetization in the
radial component, Mr, is implanted around the equator
(Figure 11a). There are no assumed lateral, Mq and Mf,
components. The same sampling geometry of the MGS data
set is invoked as the observations. That is, the three-
component magnetic field intensity data observed atFigure 9. Comparison of the Mauersberger-Lowes power

spectra at the Martian surface between selected previous
models (following Whaler and Purucker [2005], we have
NASA for the model of Connerney et al. [2001]; MG for
the model of Arkani-Hamed [2004]; FSU for the model of
Cain et al. [2003]; GSFC for the model of Langlais et al.
[2004], and WP for the model of Whaler and Purucker
[2005]) and the two solutions obtained in this study.

Figure 10. Comparison of the magnetic potential evalu-
ated at the Martian surface among selected previous models
and the two solutions obtained in this study: (a) MG,
(b) FSU, (c) GSFC, (d) WP, (e) simple damping solution_2
model, and (f) solution_1 model obtained from multiscale
regularization (see also the caption of Figure 9).
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Figure 11. Inversion experiments executed using the same observational sampling geometry but with
field intensity data generated from synthetic model and corrupted with noise with N/S about 60%. (a) The
implanted synthetic magnetization model with alternating positive and negative magnetization in the
radial direction centered at the equator overlaid upon two negative circular sources to the southeast and
northwest quadrant. Notice that there are only implanted radial, Mr, component. (b) Inverted result if
solution_3, the simple damping solution of group 3 on the tradeoff curve (Figure 3), is selected. Notice
the obvious corruption of the inverted model arisen from the contamination embedded within the data.
(c) Similar to Figure 11b, except that it is a solution approaching solution_2 instead of solution_3. Notice
the improvement on reducing the corruption of uncorrelated, nonphysical structure. (d) In the preferred
multiscale solution_1 model, the effect of the multiscale regularization to annihilate unreliable model
components while grouping correlated model structure is obvious. (e, f) Notice that the aliasing onto the
Mq and the Mf components is inevitable (check the sensitivity matrix G in Figure 1).
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different altitudes across Mars are replaced by synthetic data
generated from the implanted magnetization structure. A
considerable amount of uncorrelated noise with peak
amplitude as high as 60% of the peak amplitude of the
model generated data is then randomly blended in the
synthetic data. Since the sampling geometry is the same,
there is no need to carry out a new tradeoff analysis for the
synthetic data set. Damping factors for the three groups of
solutions marked on the tradeoff curves on Figure 3 are
tested to obtain corresponding solutions. Not surprisingly,
the recovered, underdamped simple damping solution
(solution_3 on the tradeoff diagram shown by Figure 3) is
significantly corrupted by manifestation from the uncorre-
lated noise added to the data (Figure 11b). The corruption
reduces considerably toward solution_2, but it is still
significant and interferes with the correct interpretation of
the recovered model (Figure 11c). On the other hand, the
noise corruption upon the recovered model that corresponds
to the multiscale inversion solution_1 is obviously much
lower (Figure 11d) and reasonable. What is worth
cautioning is the significant aliasing effects onto the Mq
and the Mf components that are not implanted (Figures 11e
and 11f). This is, however, inevitable for any formulation
based on equation (1) and is simply unresolvable by data
constraints alone.
[22] In summary, the reason to carry out tradeoff analysis

is to serve as an effective way of picking the right degree of
regularization and thus the appropriate model components
that are robustly constrained by the data. The quality of the
actual MGS data is probably much better than the tested
synthetic data such that the potential corruption might not
be as serious as what is demonstrated in Figure 11.
However, overinterpretation or overfitting data with unreli-
able model components is prone to misleading results that
can be avoided by giving up a small fraction of the
relatively less reliable data information.
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