5918	Chapter 4. Making Decision-Support Information
5919	Useful, Useable, and Responsive to Decision-Maker
5920	Needs
5921	
5922	Convening Lead Authors: David L. Feldman, Univ. of California, Irvine; Katharine L.
5923	Jacobs, Arizona Water Institute
5924	
5925	Lead Authors: Gregg Garfin, Univ. of Arizona; Aris Georgakakos, Georgia Institute of
5926	Technology; Barbara Morehouse, Univ. of Arizona; Pedro Restrepo, NOAA, Robin
5927	Webb, NOAA; Brent Yarnal, Penn. State Univ.
5928	
5929	Contributing Authors: Dan Basketfield, Silverado Gold Mines Inc; John Kochendorfer,
5930	Riverside Technology, Inc. & NOAA;,Cynthia Rosenzweig, NASA; Michael Sale, Oak
5931	Ridge National Laboratory; Brad Udall, NOAA; Connie Woodhouse, Univ. of Arizona
5932	
5933	
5934	
5935	
5936	
5937	
5938	
5939	

5940	KEY FINDINGS
5941	Decision-support experiments that apply seasonal and interannual climate variability
5942	information to basin and regional water resource problems serve as test beds that address
5943	diverse issues faced by decision-makers and scientists. They illustrate how to identify
5944	user needs, overcome communication barriers, and operationalize forecast tools. They
5945	also demonstrate how user participation can be incorporated in tool development.
5946	
5947	Five major lessons emerge from these experiments and supporting analytical studies:
5948	• The effective integration of seasonal to interannual climate information in
5949	decisions requires long-term collaborative research and application of decision-
5950	support through identifying problems of mutual interest. This collaboration will
5951	require a critical mass of scientists and decision-makers to succeed and there is
5952	currently an insufficient number of "integrators" of climate information for
5953	specific applications.
5954	• Investments in long-term research-based relationships between scientists and
5955	decision-makers must be adequately funded and supported. In general, progress
5956	on developing effective decision-support systems is dependent on additional
5957	public and private resources to facilitate better networking among decision-
5958	makers and scientists at all levels as well as public engagement in the fabric of
5959	decision-making.
5960	• Effective decision-support tools must wed national production of data and
5961	technologies to ensure efficient, cross-sector usefulness with customized products
5962	for local users. This requires that tool developers engage a wide range of

Do Not Cite or Quote

Page 261 of 426

5963		participants, including those who generate tools and those who translate them, to
5964		ensure that specially-tailored products are widely accessible and are immediately
5965		adopted by users insuring relevancy and utility.
5966	•	The process of tool development must be inclusive, interdisciplinary, and provide
5967		ample dialogue among researchers and users. To achieve this inclusive process,
5968		professional reward systems that recognize people who develop, use and translate
5969		such systems for use by others are needed within water management and related
5970		agencies, universities and organizations. Critical to this effort, further progress in
5971		boundary spanning – the effort to translate tools to a variety of audiences – re
5972		quires considerable organizational skills.
5973	•	Information generated by decision-support tools must be implementable in the
5974		short term for users to foresee progress and support further tool development.

5975 Thus, efforts must be made to effectively integrate public concerns and elicit 5976 public information through dedicated outreach programs.

5977

5978 **4.1 INTRODUCTION**

5979 This chapter examines a series of decision-support experiments that explore how

5980 information on seasonal to interannual climate variability is being used, and how various

- 5981 water management contexts serve as test beds for implementing decision-support outputs.
- 5982 We describe how these experiments are implemented and how seasonal to interannual
- 5983 climate information is used to assess potential impacts of and responses to climate
- 5984 variability and change. We also examine characteristics of effective decision-support

Do Not Cite or Quote

5985	systems, involving users in forecast and other tool development, and incorporating
5986	improvements.
5987	
5988	Section 4.2 discusses a series of experiments from across the nation, and in a variety of
5989	contexts. Special attention is paid to the role of key leadership in organizations to
5990	empower employees, take risks, and promote inclusiveness. The role of organizational
5991	culture in building pathways for innovation related to boundary-spanning approaches is
5992	also considered, with a special focus on boundary-spanning approaches.
5993	
5994	Section 4.3 examines approaches to building user knowledge and enhancing capacity
5995	building. We discuss the role of two-way communication among multiple forecast and
5996	water resource sectors, and the importance of translation and integration skills, as well as
5997	operations staff incentives for facilitating such integration.
5998	
5999	Section 4.4 discusses the development of measurable indicators of progress in promoting
6000	climate information access and effective use - including process measures such as
6001	consultations between agencies and potential forecast user communities. The role of
6002	efforts to enhance dialogue and exchange among researchers and users is emphasized.
6003	
6004	Finally, section 4.5 summarizes major findings, directions for further research, and
6005	recommendations, including: needs for better understanding of the role of decision-maker
6006	context for tool use, how to assess vulnerability to climate, communicating results to
6007	users, bottom-up as well as top-down approaches to boundary-spanning innovation, and

Do Not Cite or Quote

Page 263 of 426

6008	applicability of lessons from other resource management sectors (e.g., forestry, coastal
6009	zone management, hydropower) on decision-support use and decision-maker/scientist
6010	collaboration.
6011	
6012	We conclude that, at present, the weak conceptual grounding afforded by cases from the
6013	literature necessitates that we base measures to improve decision-support for the water
6014	resources management sector, as it pertains to inclusion of climate forecasts and
6015	information, on best judgment extrapolated from case experience. Additional research is
6016	needed on effective models of boundary spanning in order to develop a strong,
6017	theoretically-grounded understanding of the processes that facilitate information
6018	dissemination, communication, use, and evaluation so that it is possible to generalize
6019	beyond single cases, and to have predictive value.

6021 4.2 DECISION-SUPPORT TOOLS FOR CLIMATE FORECASTS: SERVING

6022 END-USER NEEDS, PROMOTING USER-ENGAGEMENT AND

6023 ACCESSIBILITY

6024 This section examines a series of decision-support experiments from across the U.S. that

6025 involve the use of information on seasonal to interannual climate variability to manage a

- 6026 wide range of water resource problems. Our objective is to learn how the barriers to
- 6027 optimal decision-making including impediments to trust, user confidence,
- 6028 communication of information, product translation, operationalization of decision-
- support tools, and policy transformation discussed in Chapter 3 can be overcome. As
- 6030 shall be seen, all of these experiments share one characteristic: users have been involved,

	<u>CCSP 5.3</u> March 7, 2008
6031	to some degree, in tool development – through active elicitation of their needs,
0031	to some degree, in tool development – through active encitation of their needs,
6032	involvement in tool design, evaluation of tool effectiveness (and feedback into product
6033	refinement as a result of tool use), or some combination of factors.
6034	
6035	4.2.1 Decision-Support Experiments on Seasonal to Interannual Climate Variability
6036	The following seven cases are important test beds that examine how, and how effectively,
6037	decision-support systems have been used to manage diverse water management needs,
6038	including ecological restoration, riparian flow management, urban water supply,
6039	agricultural water availability, coastal zone issues, and fire management. They exemplify
6040	the uses of seasonal to interannual climate forecast information at diverse spatial scales:
6041	from cities and their surrounding urban concentrations (New York, Seattle), to regions
6042	(Northern California, South Florida, Inter-mountain West), a comprehensively-managed
6043	river basin (CALFED), and a resource (forest lands) scattered over parts of the West and
6044	Southwest U.S. They also illustrate efforts to rely on temporally diverse information (<i>i.e.</i> ,
6045	predictions of future variability in precipitation, sea-level rise, and drought as well as past
6046	variation) in order to validate trends.
6047	
6048	Most importantly, these experiments represent the use of different ways of integrating

6049 information into water management to enable better decisions to be made, including

6050 neural networks in combination with El Niño-Southern Oscillation (ENSO) forecasting;

6051 temperature, precipitation and sea-level rise prediction; probabilistic risk assessment;

6052 integrated weather, climate and hydrological models producing short- and longer-term

forecasts; weather and stream-flow station outputs; paleoclimate records of streamflow 6053

Do Not Cite or Quote

Page 265 of 426

- and hydro-climatic variability; and the use of climate change information on precipitationand sea level rise to manage shorter-term weather variability.
- 6056

6057 *Experiment 1:*

6058 How the South Florida Water Management District Uses Climate Information

6059 The Experiment

6060 In an attempt to restore the Everglades ecosystem of South Florida, a team of state and 6061 federal agencies is engaged in the world's largest restoration program (FL Department of 6062 Environmental Protection and South Florida Water Management District, 2007). A 6063 cornerstone of this effort is the understanding that seasonal to interannual climate 6064 variability (as well as climate change) could have significant impacts on the region's 6065 hydrology over the program's 50-year lifetime. The South Florida Water Management 6066 District (SFWMD) is actively involved in conducting and supporting climate research to 6067 improve the prediction and management of South Florida's complex water system 6068 (Obeysekera, 2007). The SFWMD is significant because it is one of the few cases in 6069 which decade-scale climate variability information is being used in water resource 6070 modeling, planning, and operation programs.

6071

6072 Background/Context

6073 Research relating climatic indices to South Florida climate started at SFWMD more than 6074 a decade ago (South Florida Water Management District, 1996). Zhang and Trimble 6075 (1996), Trimble *et al.* (1997), and Trimble and Trimble (1998) used neural network 6076 models to develop a better understanding of how ENSO and other climate factors 6077 influence net inflow to Lake Okeechobee. From that knowledge, Trimble et al. (1998) 6078 demonstrated the potential for using ENSO and other indices to predict net inflow to 6079 Lake Okeechobee for operational planning. Subsequently, SFWMD was able to apply 6080 climate forecasts to its understanding of climate-water resources relationships in order to 6081 assess risks associated with seasonal and multi-seasonal operations of the water 6082 management system and to communicate the projected outlook to agency partners, 6083 decision makers, and other stakeholders (Cadavid et al., 1999).

Do Not Cite or Quote

Page 266 of 426

<00 A

6084	
6085	Implementation/Application
6086	SFWMD later established the Water Supply and Environment (WSE), a regulation
6087	schedule for Lake Okeechobee that formally uses seasonal and multi-seasonal climate
6088	outlooks as guidance for regulatory release decisions (Obeysekera, 2007). The WSE
6089	schedule uses states of ENSO and the Atlantic Multidecadal Oscillation (AMO; Enfield
6090	et al., 2001) to estimate the Lake Okeechobee net inflow outlook for the next six to 12
6091	months. A decision tree with a climate outlook is a unique component of the WSE
6092	schedule and is considered a major advance over traditional hydrologic rule curves
6093	typically used to operate large reservoirs (Obeysekera, 2007). Evaluation of the WSE
6094	revealed that considerable uncertainty in regional hydrology remains and is attributable to
6095	some combination of natural climatic variation, long-term global climate change, changes
6096	in South Florida precipitation patterns associated with drainage and development, and
6097	rainfall-runoff relationships altered by infrastructure changes (Obeysekera, 2007).
6098	
6099	Lessons Learned
6100	From its experience with climate information and research, SFWMD has learned that to
6101	improve its modeling capabilities and contributions to basin management, it must
6102	improve its ability to: differentiate trends and discontinuities in basin flows associated

6103 with climate variation from those caused by water management; gauge the skill gained in

6104 using climate information to predict basin hydroclimatology; improve management;

account for management uncertainties caused by climate variation and change; and

6106 evaluate how climate change projections may affect facility planning and operation of the

6107 SFWMD (Bras, 2006; Obeysekera, 2007).

6108

6109 The district has also learned that, given the decades needed to restore the South Florida

6110 ecosystem, adaptive management is an effective way to incorporate seasonal to

6111 interannual climate variation into its modeling and operations decision-making processes,

6112 especially since longer term climate change is likely to exacerbate operational challenges.

6113 This experiment is also unique in being the only one that has been identified in which

6114 decadal climate status (*e.g.*, state of the Atlantic Multidecadal Oscillation) is being used

Page 267 of 426

6115 in a decision-support context.

6116

6117 *Experiment 2:*

6118 Long-Term Municipal Water Management Planning – New York City

6119 *The Experiment*

6120 Projections of long-term climate change, while characterized by uncertainty, generally 6121 agree that coastal urban areas will, over time, be increasingly threatened by a unique set 6122 of hazards. These include sea level rise, increased storm surges, and erosion. Two 6123 important questions facing decision-makers are: 1) how will long-term climate change 6124 increase these threats, which are already of concern to urban planners who incorporate 6125 gradual changes in seasonal to interannual climate conditions in their management 6126 decisions? And, 2) can information on the likely changes in recurrence intervals of 6127 extreme events (e.g., tropical storms) be used in long term municipal water management 6128 planning and decision making?

- 6129
- 6130 Background and Context

6131 Water management in coastal urban areas faces unique challenges due to vulnerabilities 6132 of much of the built water supply and treatment infrastructure to storm surges, coastal 6133 erosion, coastal subsidence, and tsunamis (Jacobs *et al.*, 2007). Not only are there risks 6134 due to extreme events under current and evolving climate conditions, but many urban 6135 areas rely on aging infrastructure that was built in the late 19th and early 20th centuries. 6136 These vulnerabilities will only be amplified by the addition of global warming-induced 6137 sea-level rise due to thermal expansion of ocean water and the melting of glaciers, 6138 mountain ice caps and ice sheets (IPCC, 2007). For example, observed global sea-level 6139 rise was ~ 1.8 mm per year from 1961 - 2003, whereas from 1993 - 2003 the rate of sea level rise was ~3.1 mm per year (IPCC, 2007). IPCC projections for the 21st century 6140 6141 (IPCC, 2007) are for an "increased incidence of extreme high sea level" which they 6142 define as the highest 1% of hourly values of observed sea level at a station for a given 6143 reference period. The New York City Department of Environmental Protection 6144 (NYCDEP) is one example of an urban agency that is adapting strategic and capital 6145 planning to take into account the potential effects of climate change—sea level rise,

Do Not Cite or Quote

Page 268 of 426

higher temperature, increases in extreme events, and changing precipitation patterns - on
the city's water systems. NYCDEP, in partnership with local universities and private
sector consultants, is evaluating climate change projections, impacts, indicators, and
adaptation and mitigation strategies to support agency decision-making (Rosenzweig *et al.*, 2007).

6151

6152 Implementation/Application

6153 In New York City (NYC) as in many coastal urban areas, many of the wastewater 6154 treatment plants are at elevations of 2-6 m above present sea level and thus within the 6155 range of current surges for tropical storms and hurricanes and extra-tropical cyclones 6156 (e.g. Nor'easters) (Rosenzweig and Solecki, 2001; Jacobs, 2001). Like many U.S. cities 6157 along the Atlantic Coast, New York City's vulnerability to storm surges is predominantly from extra-tropical cyclones ("Nor'easters") that occur largely between late November 6158 6159 and March, and tropical storms and hurricanes that typically strike between July and 6160 October. Based on global warming-induced sea-level rise inferred from IPCC TAR, 6161 studies suggest that the recurrence interval for the 100-year storm flood (probability of 6162 occurring in any given year = 1/100) may decrease to 60 years or, under extreme 6163 changes, a recurrence interval as little as 4 years (Rosenzweig and Solecki, 2001; Jacob et

6164 *al.*, 2007).

6165

6166 Increased incidence of high sea levels and heavy rains can cause sewer back-up and 6167 overflow water treatment plants. Activities to address current and future concerns include 6168 using sea-level rise forecasts as input to storm surge and elevation models to analyze the 6169 impact of flooding on NYC coastal water resource-related facilities. Other concerns 6170 include potential water quality impairment from heavy rains that can increase pathogen 6171 levels and turbidity with the possible effects magnified by "first-flush" storms: heavy 6172 rains after weeks of dry weather. NYC water supply reservoirs have not been designed 6173 for rapid releases and any changes to operations to limit downstream damage through 6174 flood control measures will reduce water supply. In addition, adding filtration capacity to 6175 the water supply system would be a significant challenge. 6176

Do Not Cite or Quote

6177 Planners in New York City have begun to consider these issues by defining risks through 6178 probabilistic climate scenarios, and categorizing potential adaptations as related to (1) 6179 operations/management; (2) infrastructure; and (3) policy (Rosenzweig et al., 2007). 6180 NYCDEP is examining the feasibility of relocating critical control systems to higher 6181 floors/ground in low lying buildings, building protective flood walls, modifying design 6182 criteria to reflect changing hydrologic processes, and reconfiguring outfalls to prevent 6183 sediment build-up and surging. Significant strategic decisions and capital investments for 6184 NYC water management will continue to be challenged by questions such as: How does 6185 NYC utilize projections in ways that are robust to uncertainties? And, when designing 6186 infrastructure in the face of future uncertainty, how to make infrastructure more robust 6187 and adaptable to changing climate, regulatory mandates, zoning, and population distribution? 6188 6189 6190 Lessons Learned

When trends and observations clearly point to increasing risks, decision-makers need to
build support for adaptive action despite inherent uncertainties. The extent and
effectiveness of adaptive measures will depend on building awareness of these issues
among decision makers, fostering processes of interagency interaction and collaboration,
and developing common standards (Zimmerman, 2001).

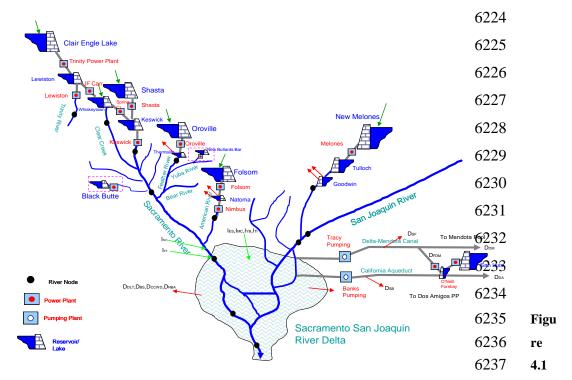
6196

New plans for regional capital improvements can be designed to include measures that
will reduce vulnerability to the adverse effects of sea level rise. Wherever plans are
underway for upgrading or constructing new roadways, airport runways, or wastewater
treatment plants, which may already include flood protection, projected sea-level rise
needs to be considered.

6202

In order to incorporate new sources of risk into engineering analysis, the meteorological
and hydrology communities need to define and communicate current and increasing risks
clearly, and convey them coherently, with explicit consideration of the inherent
uncertainties. Research needed to support regional stakeholders include: further reducing
uncertainties associated with sea level rise, providing more reliable predictions of

Do Not Cite or Quote


Page 270 of 426

6208 changes in frequency and intensity of tropical and extra-tropical storms, and determining

- 6209 how saltwater intrusion will impact freshwater. Finally, regional climate model
- 6210 simulations and statistical techniques being used to predict long-term climate change
- 6211 impacts could be down-scaled to help manage projected seasonal to interannual climate
- 6212 variability. This could be especially useful for adaptation planning.
- 6213
- 6214 Experiment 3:

6215 Integrated Forecast and Reservoir Management (INFORM) - Northern California

- 6216 *The Experiment*
- 6217 The Integrated Forecast and Reservoir Management (INFORM) project aims to
- 6218 demonstrate the value of climate, weather, and hydrology forecasts in reservoir
- 6219 operations. Specific objectives are to: (a) implement a prototype integrated forecast-
- 6220 management system for the Northern California river and reservoir system in close
- 6221 collaboration with operational forecasting and management agencies, and (b) demonstrate
- 6222 the utility of meteorological/climate and hydrologic forecasts through near-real-time tests
- 6223 of the integrated system with actual data and management input.

Do Not Cite or Quote

6240 Background and Context

6241 The Northern California river system (Figure 4.1) encompasses the Trinity, Sacramento, 6242 Feather, American, and San Joaquin river systems, and the Sacramento-San Joaquin 6243 Delta (see experiment 7: CALFED). Major regulation and hydropower projects on this 6244 system include the Clair Eagle Lake (Trinity Dam) and Whiskeytown Lake on the Trinity 6245 River, the Shasta-Keswick Lake complex on the upper Sacramento River, the Oroville-6246 Thermalito complex on the Feather River, the Folsom-Nimbus complex on the American 6247 River, and several storage projects along the tributaries of the San Joaquin River, 6248 including New Melones. The Sacramento and San Joaquin Rivers join to form an 6249 extensive Delta region and eventually flow out into the Pacific Ocean. The Oroville-6250 Thermalito complex comprises the State Water Project (SWP), while the rest of the 6251 system facilities are federal and comprise the Central Valley Project (CVP). 6252 6253 The Northern California river and reservoir system serves many vital water uses, 6254 including providing two-thirds of the state's drinking water, irrigating 7 million acres of 6255 the world's most productive farmland, and providing habitat to hundreds of species of 6256 fish, birds, and plants. In addition, the system protects Sacramento and other major cities 6257 from flood disasters and contributes significantly to the production of hydroelectric 6258 energy. The Sacramento-San Joaquin Delta provides a unique environment and is 6259 California's most important fishery habitat. Water from the Delta is pumped and 6260 transported through canals and aqueducts south and west serving the water needs of many 6261 more urban, agricultural, and industrial users.

6262

An agreement between the U.S. Department of the Interior, Bureau of Reclamation, and California Department of Water Resources provides for the coordinated operation of the SWP and CVP facilities (Agreement of Coordinated Operation-COA). The agreement aims to ensure that each project obtains its share of water from the Delta and protects other beneficial uses in the Delta and the Sacramento Valley. Coordination is structured around the necessity to meet in-basin use requirements in the Sacramento Valley and the Delta, including Delta outflow and water quality requirements.

6271 Implementation/Application

6272 The INFORM Forecast-Decision system consists of a number of diverse elements for 6273 data handling, model runs, and output archiving and presentation. It is a distributed 6274 system with on-line and off-line components. The system routinely captures real-time 6275 National Center for Environmental Predictions (NCEP) ensemble forecasts and uses both 6276 ensemble synoptic forecasts from NCEP's Global Forecast System (GFS) and ensemble 6277 climate forecasts from NCEP's Climate Forecast System (CFS). The former produces 6278 real-time short-term forecasts, and the latter produce longer-term forecasts as needed. 6279 Detailed descriptions of system operations and components are in the first phase final 6280 report for INFORM (HRC-GWRI, 2006).

6281

6282

6283 multiple decision makers, objectives, and temporal scales. Toward this goal, INFORM 6284 DSS includes a suite of interlinked models that address reservoir planning and 6285 management at multi-decadal, interannual, seasonal, daily, and hourly time scales. The 6286 DSS includes models for each major reservoir in the INFORM region, simulation 6287 components for watersheds, river reaches, and the Bay Delta, and optimization components suitable for use with ensemble forecasts. The decision software runs off-line, 6288 6289 as forecasts become available, to derive and assess planning and management strategies 6290 for all key system reservoirs. DSS is embedded in a user-friendly, graphical interface that

links models with data and helps visualize and manage results.

The INFORM DSS is designed to support the decision-making process, which includes

6292

6291

6293 Development and implementation of the INFORM Forecast-Decision system was carried 6294 out by the Hydrologic Research Center (in San Diego) and the Georgia Water Resources 6295 Institute (in Atlanta), with funding from NOAA, CALFED, and the California Energy 6296 Commission. Other key participating agencies included U.S. National Weather Service 6297 California-Nevada River Forecast Center, the California Department of Water Resources, 6298 the U.S. Bureau of Reclamation Central Valley Operations, and the Sacramento District 6299 of the U.S. Army Corps of Engineers. Other agencies and regional stakeholders (e.g., the 6300 Sacramento Flood Control Authority, SAFCA, and the California Department of Fish and

Do Not Cite or Quote

Page 273 of 426

6301	Game) participated in project workshops and, indirectly, through comments conveyed to
6302	the INFORM Oversight and Implementation Committee.
6303	
6304	Lessons Learned
6305	The INFORM approach demonstrates the value of advanced forecast-decision methods
6306	for water resource decision-making, attested to by participating agencies who took part in
6307	designing the experiments and who are now proceeding to incorporate the INFORM tools
6308	and products in their decision-making processes.
6309	
6310	From a technical standpoint, INFORM served to demonstrate the following important
6311	aspects of integrated forecast-decision systems: seasonal climate and hydrologic forecasts
6312	benefit reservoir management, provided that they are used in connection with adaptive
6313	dynamic decision methods that can explicitly account for and manage forecast
6314	uncertainty, and ignoring forecast uncertainty in reservoir regulation and water
6315	management decisions leads to costly failures, and. By contrast, static decision rules
6316	cannot take full advantage of and handle forecast uncertainty information. The extent to
6317	which forecasts benefit the management process depends on their reliability, range, and
6318	lead time, in relation to the management systems' ability to regulate flow, water
6319	allocation, and other factors.
6320	
6321	Experiment 4:
6322	How Seattle Public Utility District Uses Climate Information to Manage Reservoirs
6323	The Experiment
6324	Seattle Public Utilities (SPU) provides drinking water to 1.4 million people living in the
6325	central Puget Sound region of Washington. SPU also has instream (i.e., river flow),
6326	resource management, flood control management and habitat responsibilities on the
6327	Cedar and South Fork Tolt rivers located on the west slopes of the Cascade Mountains.
6328	Over the past several years SPU has taken numerous steps to improve the incorporation
6329	of climate, weather, and hydrologic information into the real-time and seasonal to
6330	interannual management of its mountain water supply system.

6332 Implementation/Application

6333 Through cooperative relationships with agencies such as NOAA's National Weather 6334 Service, Natural Resource Conservation Service, and the U.S. Geological Survey, SPU has secured real-time access to numerous Snotel sites¹, streamflow gages and weather 6335 6336 stations in and around Seattle's watersheds. SPU continuously monitors weather and 6337 climate data across the maritime Pacific derived from all these above sources. Access to 6338 this information has helped to reduce the uncertainty associated with making real-time 6339 and seasonal tactical and strategic operational decisions, and enhanced the inherent 6340 flexibility of management options available to SPU's water supply managers as they 6341 adjust operations for changing weather and hydrologic conditions, including abnormally 6342 low levels of snowpack or precipitation.

6343

6344 Among the important consequences of this synthesis of information has been SPU's 6345 increasing ability to undertake reservoir operations with higher degrees of confidence 6346 than in the past. As an example, SPU was well served by this information infrastructure 6347 during the winter of 2005 when the lowest snowpack on record was realized in its 6348 watersheds. The consequent reduced probability of spring flooding, coupled with their 6349 ongoing understanding of local and regional climate and weather patterns, enabled SPU 6350 water managers to safely capture more water in storage earlier in the season than normal. 6351 As a result of SPU's ability to continuously adapt its operations, Seattle was provided 6352 with enough water to return to normal supply conditions by early summer despite the 6353 record low snowpack.

6354

SPU is also using conclusions from a SPU-sponsored University of Washington (UW)
study that examined potential impacts of climate change on SPU's water supply. To
increase the rigor of the study a set of fixed reservoir operating rules was used and no
provisions were made to adjust these to account for changes projected by the study's
climate change scenarios. From these conclusions, SPU has created two future climate
scenarios, one for 2020 and one for 2040, to examine how the potential impacts of
climate change may affect decisions about future supply. While these scenarios indicated

¹ The snotel network of weather stations is a snowfall depth monitoring network established by USGS.

6362	a reduction in yield, SPU's existing sources of supply were found to be sufficient to meet
6363	official demand forecasts through 2053.
6364	
6365	Lessons Learned
6366	SPU has actually incorporated seasonal climate forecasts into their operations and is
6367	among the leaders in considering climate change. SPU is a 'receptive audience' for
6368	climate tools in that it has a wide range of management and long-term capital investment
6369	responsibilities that have clear connections to climate conditions. Further, SPU is
6370	receptive to new management approaches due to public pressure and the risk of legal
6371	challenges related to the protection of fish populations who need to move upstream to
6372	breed.
6373	
6374	Specific lessons include:
6375	• Access to skillful seasonal forecasts enhances credibility of using climate
6376	information in the Pacific Northwest, even with relatively long lead times, due to
6377	strong warming trends and ENSO.
6378	• Monitoring of snowpack moisture storage and mountain precipitation is essential
6379	for effective decision making and for detecting long-term trends that can affect
6380	water supply reliability.
6381	• While SPU has worked with the research community and other agencies, it also
6382	has significant capacity to conduct in-house investigations and assessments. This
6383	provides confidence in the use of information.
6384	
6385	Experiment 5:
6386	Using Paleo-climate Information to Examine Climate Change Impacts
6387	The Experiment
6388	Can an expanded estimate of the range of natural hydrologic variability from tree-ring
6389	reconstructions of stream-flow – a climate change research tool – be used effectively as a
6390	decision-support resource for better understanding seasonal to interannual climate
6391	variability and water resource planning? Incorporation of tree-ring reconstructions of

Page 276 of 426

streamflow into decision making was accomplished through partnerships betweenresearchers and water managers in the inter-mountain West.

6394

6395 Background and Context

Although water supply forecasts in the intermountain west have become increasingly
sophisticated in recent years, water management planning and decision making have
generally depended on instrumental gage records of flow, most of which are less than 100
years in length. Drought planning in the intermountain west has been based on the
assumption that the 1950s drought, as the most severe drought in the instrumental record,
adequately represents the full range of natural variability and thus a likely worst-case
scenario.

6403

6404 The recent prolonged drought in the western U.S. prompted many water managers to 6405 consider that the observational gage records of the 20th century may not contain the full 6406 range of natural hydroclimatic variability possible. Gradual shifts in recent decades to 6407 more winter precipitation as rain and less as snow, earlier spring runoff, higher 6408 temperatures, and unprecedented population growth have resulted in an increase in 6409 vulnerability of limited water supplies to a variable and changing climate. The 6410 paleoclimate records of streamflow and hydroclimatic variability provide an extended 6411 record (based on more than 1000 years of record from tree rings in some key watersheds) 6412 for assessing the potential impact of a more complete range of natural variability as well 6413 as for providing a baseline for detecting possible regional impacts of global climate 6414 change.

6415

6416 Implementation/Application

6417 Several years of collaborations between scientists and water resource partners have
6418 explored possible applications of tree-ring reconstructed flows in water resource
6419 management to assess the potential impacts of drought on water systems. Extended
6420 records of hydroclimatic variability from tree-ring based reconstructions reveal a wider
6421 range of natural variability than in gage records alone, but how to apply this information
6422 in water management planning has not been obvious. The severe western drought that

Do Not Cite or Quote

Page 277 of 426

began in 2000 and peaked in 2002 provided an excellent opportunity to work with water
resource providers and agencies on how to incorporate paleoclimate drought information
in planning and decision-making. These partnerships with water resource managers have
lead to range of applications evolving from a basic change in thinking about drought, to
the use of tree-ring reconstructed flows to run a complex water supply model to assess
the impacts of drought on water systems.

6429

The extreme 2002-year drought, and the 5-year drought that developed motivated water
managers to ask these questions: How unusual was 2002, or the 2000-2004 drought?
How often do years or droughts like this occur? What is the likelihood of it happening
again in the future (should we plan for it or is there too low a risk to justify infrastructure
investments)? And, from a long term perspective, is the 20th/21st century record an
adequate baseline for drought planning?

6436

6437 The first three questions could be answered with reconstructed streamflow data for key gages, but to address planning, a critical step is determining how tree-ring streamflow 6438 6439 reconstruction could be incorporated into water supply modeling efforts. The tree ring 6440 streamflow reconstructions have annual resolution, whereas most water system models 6441 required weekly or daily time steps, and reconstructions are generated for a few gages, 6442 while water supply models typically have multiple input nodes. The challenge has been 6443 spatially and temporally disaggregating the reconstructed flow series into the time steps 6444 and spatial scales needed as input into models. A variety of analogous approaches have 6445 successfully addressed the temporal scale issue, while the spatial challenges have been 6446 addressed statistically using nearest neighbor or other approaches.

6447

Another issue addressed has been that the streamflow reconstructions explain only a
portion of the variance in the gage record, and the most extreme values are often not fully
replicated. Other efforts have focused on characterizing the uncertainty in the
reconstructions, the sources of uncertainty, and the sensitivity of the reconstruction to
modeling choices. In spite of these many challenges, expanded estimates of the range of

6453 natural hydrologic variability from tree ring reconstructions have been integrated into

Page 278 of 426

water management decision support and allocation models to evaluate operating policy
alternatives for efficient management and sustainability of water resources, particularly
during droughts in California and Colorado.

6457

6458 *Lessons Learned*

Roadblocks to incorporating tree-ring reconstructions into water management policy and
decision making were overcome through prolonged, sustained partnerships with
researchers working to make their scientific findings relevant, useful, and usable to users
for planning and management, and water managers willing to take risk and invest time to
explore the use of non-traditional information outside of their comfort zone. The
partnership focused on formulating research questions that led to applications addressing
institutional constraints within a decision process addressing multiple timescales.

Workshops requested by water managers have resulted in expansion of application of the
tree-ring based streamflow reconstructions to drought planning and water management
http://wwa.colorado.edu/resources/paleo/. In addition, an online resource called
TreeFlow (http://wwa.colorado.edu/resources/paleo/data.html) was developed to provide
water managers interested in using tree ring streamflow reconstructions access to gage
and reconstruction data and information, and a tutorial on reconstruction methods for
gages in Colorado and California.

6474

6475 *Experiment 6*

6476 Climate, Hydrology, and Water Resource Issues in Fire-Prone U.S. Forests

6477 The Experiment

Improvements in ENSO-based climate forecasting, and research on interactions between
climate and wildland fire occurrence, have generated opportunities for improving use of
seasonal to interannual climate forecasts by fire managers. They can now better anticipate
annual fire risk, including potential damage to watersheds over the course of the year.
The experiment, consisting of annual workshops to evaluate the utility of climate
information for fire management, were initiated in 2000 to inform fire managers about

6484 climate forecasting tools and to enlighten climate forecasters about the needs of the fire

Do Not Cite or Quote

Page 279 of 426

management community. These workshops have evolved into an annual assessment ofconditions and production of pre-season fire-climate forecasts.

6487

6488 Background and Context

6489 Large wildfire activity in the U.S. West and Southeast has increased substantially since 6490 the mid-1980s, an increase that has largely been attributed to shifting climate conditions 6491 (Westerling et al., 2006). Recent evidence also suggests that global or regional warming 6492 trends and a positive phase of the Atlantic Multidecadal Oscillation (AMO) are likely to 6493 lead to an even greater increase in risk for ecosystems and communities vulnerable to 6494 wildfire in the western U.S. (Kitzberger et al., 2007). Aside from the immediate impacts 6495 of a wildfire (e.g., destruction of biomass, substantial altering of ecosystem function), the 6496 increased likelihood of high sediment deposition in streams and flash flood events can 6497 present post-fire management challenges including impacts to soil stability on slopes and 6498 mudslides (e.g., Bisson et al., 2003). While the highly complex nature and substantially 6499 different ecologies of fire-prone systems precludes one-size-fits-all fire management 6500 approaches (Noss et al., 2006), climate information can help managers plan for fire risk 6501 in the context of watershed management and post-fire impacts, including impacts on 6502 water resources. One danger is inundation of water storage and treatment facilities with 6503 sediment-rich water, creating potential for significant expense for pre-treatment of water 6504 or facilities repair. Post-fire runoff can also raise nitrate concentrations to levels that 6505 exceed the federal drinking water standard (Meixner and Wohlgemuth, 2004).

6506

6507 Work by Kuyumjian (2004), suggests that coordination among fire specialists, 6508 hydrologists, climate specialists, and municipal water managers may produce useful 6509 warnings to downstream water treatment facilities about significant ash- and sediment-6510 laden flows. For example, in the wake of the 2000 Cerro Grande fire in the vicinity of 6511 Los Alamos, New Mexico, catastrophic floods were feared, due to the fact that 40 percent 6512 of annual precipitation in northern New Mexico is produced by summer monsoon 6513 thunderstorms (e.g., Earles et al., 2004). Concern about water quality and about the 6514 potential for contaminants carried by flood waters from the grounds of Los Alamos 6515 Nuclear Laboratory to enter water supplies prompted a multi-year water quality

Page 280 of 426

6516 monitoring effort (Gallaher and Koch, 2004). In the wake of the 2002 Bullock Fire and 6517 2003 Aspen Fire in the Santa Catalina Mountains adjacent to Tucson Arizona, heavy 6518 rainfall produced floods that destroyed homes and caused one death in Canada del Oro 6519 wash in 2003 (Ekwurzel, 2004), destroyed structures in the highly popular Sabino 6520 Canyon recreation area and deposited high sediment loads in Sabino Creek in 2003 6521 (Desilets et al., 2006). A flood in 2006 wrought a major transformation to the upper 6522 reaches of the creek (Kreutz, 2006). Residents of Summerhaven, a small community 6523 located on Mt. Lemmon, continue to be concerned about the impacts of future fires on 6524 their water resources. In all of these situations, climate information can be helpful in 6525 assessing vulnerability to both flooding and water quality issues.

6526

6527 Implementation/Application

6528 Little published research exists that specifically targets interactions among climate, fire, 6529 and watershed dynamics. However, publications on fire-climate interactions provide a 6530 useful entry point for examining needs for and uses of climate information in decision 6531 processes involving water resources. A continuing effort to produce fire-climate outlooks was initiated through a workshop held in Tucson, Arizona, in late winter 2000. One of the 6532 6533 goals of the workshop was to identify the climate information uses and needs of fire 6534 managers, fuel managers, and other decision makers. Another was to actually produce a 6535 fire-climate forecast for the coming fire season. The project was initiated through 6536 collaboration involving researchers at the University of Arizona, the NOAA-funded 6537 Climate Assessment for the Southwest Project (CLIMAS), the Center for Ecological and 6538 Fire Applications (CEFA) at the Desert Research Institute in Reno, Nevada and the 6539 National Interagency Fire Center (NIFC) located in Boise, Idaho (Morehouse, 2000). 6540 Now called the National Seasonal Assessment Workshop (NSAW), the process continues 6541 to produce annual fire-climate outlooks (e.g., Crawford et al., 2006). The seasonal fire-6542 climate forecasts produced by NSAW have been published through NIFC since 2004. 6543 During this same time period Westerling et al. (2002) developed a long-lead statistical 6544 forecast product for area burned in western wildfires.

6545

6546 *Lessons Learned*

Do Not Cite or Quote

6547	The experimental interactions between climate scientists and fire managers clearly
6548	demonstrated the utility of climate information for managing watershed problems
6549	associated with wildfire. Climate information products used in the most recently
6550	published NSAW Proceedings (Crawford et al., 2006), for example, include the
6551	following:
6552	
6553	NOAA Climate Prediction Center (CPC) seasonal temperature and precipitation
6554	outlooks:
6555	• Historical temperature and precipitation data, <i>e.g.</i> , High Plains Regional Climate
6556	Center
6557	• National drought conditions, from National Drought Mitigation Center
6558	• 12-month standardized precipitation index
6559	• Spring and summer streamflow forecasts
6560	• Departure from average greenness
6561	
6562	Based on extensive interactions with fire managers other products are also used by some
6563	fire ecologists and managers, including:
6564	• Climate history data from instrumental and paleo (especially tree-ring) records
6565	• Hourly to daily and weekly weather forecasts, (e.g., temperature, precipitation,
6566	wind, relative humidity)
6567	
6568	Products identified as potentially improving fire management (e.g., Morehouse, 2000,
6569	Garfin and Morehouse, 2001) include:
6570	• Improved monsoon forecasts and training in how to use them
6571	Annual to decadal (Atlantic Multidecadal Oscillation, Pacific Decadal
6572	Oscillation) projections
6573	• Decadal to centennial climate change model outputs, downscaled to regional/finer
6574	scales
6575	• Dry lightning forecasts
6576	

6577 This experiment is one of the most enduring we have studied – it is now part of accepted practice by agencies, and has produced spin-off activities managed and sustained by the 6578 6579 agencies and new participants. The use of climate forecast information in fire 6580 management began because decision-makers within the wildland fire management 6581 community were open to new information, due to legal challenges, public pressure, and a 6582 "landmark" wildfire season in 2000. The National Fire Plan (2001) and its associated 10-6583 year Comprehensive Strategy reflected a new receptiveness for new ways of coping with 6584 vulnerabilities, calling for a "proactive, collaborative, and community-based approach to 6585 reducing wildland fires" rather than prior approaches entered on internal agency 6586 activities. 6587 6588 Annual workshops became routine for a for bringing scientists and decision makers 6589 together to continue to explore new questions and opportunities, as well as involve new

6590 participants, new disciplines and specialties, and to make significant progress in

6591 important areas (*e.g.*, lightning climatologies, and contextual assessments of specific

6592 seasons), quickly enough to fulfill the needs of agency personnel.

6593

6594 *Experiment 7:*

6595 The CALFED – Bay Delta Program: Implications of Climate Variability

6596 *The Experiment*

6597 The Sacramento-San Joaquin River Delta, which flows into San Francisco Bay, is the 6598 focus of a broad array of environmental issues relating to endangered fish species, land 6599 use, flood control and water supply. After decades of debate about how to manage the 6600 Delta to export water supplies to southern California while managing habitat and water 6601 supplies in the region, and maintaining endangered fish species, decision makers are 6602 involved in making major long-term decisions about rebuilding flood control levees and 6603 rerouting water supply networks through the region. Incorporating the potential for 6604 climate change impacts on sea level rise and other regional changes are important to the 6605 decision-making process (see, for example, Hayhoe et al., 2004; Knowles et al., 2006; 6606 Lund et al., 2007).

6607

Do Not Cite or Quote

6608 Background and Context

6609 Climate considerations are critical for the managers of the CALFED program, which 6610 oversees the 700,000 acres in the Sacramento-San Joaquin Delta. 400,000 acres have 6611 been subsiding due to microbial oxidation of peat soils that have been used for 6612 agriculture. A significant number of the islands are below sea level, and protected from 6613 inundation by dikes that are in relatively poor condition. Continuing sea-level rise and 6614 regional climate change are expected to have additional major impacts such as flooding 6615 and changes in seasonal precipitation patterns. There are concerns that multiple islands would be inundated in a "10- year storm event" - this represents extreme local 6616 6617 vulnerability to flooding.

6618

6619 In the central delta there are five county governments in addition to multiple federal and 6620 state agencies and non-governmental organizations whose perspectives need to be 6621 integrated into the management process, which is one of the purposes of the CALFED 6622 program. A key decision being faced is whether Delta interests should invest in trying to 6623 build up and repair levies to protect subsided soils. What are the implications for other 6624 islands when one island floods? Knowing the likelihood of sea level rise of various 6625 magnitudes will significantly constrain the answers to these questions. For example, if the 6626 rise is greater than 1 foot in next 50 - 100 years, that could end the debate about whether 6627 to use levee improvements to further protect these islands. Smaller amounts of sea level 6628 rise will make this decision less clear-cut. Answers are needed in order to support 6629 decisions about the delta in the next year and a half.

6630

6631 Implementation/Application

Hundreds of millions of dollars of restoration work has been done in the Delta and
associated watersheds, and more investment is required. Where money should be
invested for effective long term impact? There is a need to invest in restoring lands at
intertidal and higher elevations so that wetlands can evolve uphill while tracking rising
sea level (estuarine progression). Protecting only "critical" Delta islands (those with
major existing infrastructure) to endure a 100-year flood will cost around \$2.6 billion.

6638

6639 Another way that climate change-related information is critical to Delta management is in 6640 estimating volumes and timing of runoff from the Sierra Nevada mountain range (see 6641 Knowles et al., 2006). To the extent that snowpack will be diminished and snowmelt 6642 runoff occurs earlier, there are implications for flood control, water supply and 6643 conveyance, and seawater intrusion - all of which affect habitat and land use decisions. 6644 One possible alternative approach is more aggressive management of reservoirs to 6645 maximize water supply benefits, thereby possibly increasing flood risk. The State Water 6646 Project is now looking at a 10% failure rate operating guideline at Oroville rather than a 6647 5% failure rate operating guideline -- this would provide much more water supply 6648 flexibility.

6649

6650 *Lessons Learned*

6651 Until recently the implications of climate change and sea level rise were not considered in 6652 the context of solutions to the Bay Delta problem – particularly in the context of climate 6653 variability. These implications are currently considered to be critical factors in 6654 infrastructure planning, and the time horizon for future planning has been extended to 6655 200 years (see California Department of Water Resources Delta Risk Management 6656 Strategy effort for details). The relatively rapid shift in perception of the urgency of 6657 climate change impacts was not predicted, but does demand renewed consideration of 6658 adaptive management strategies in the context of step-wise changes in understanding (as 6659 opposed to gradual increases in accumulation of new facts, which is the dominant 6660 paradigm in adaptive management).

6661

6662 4.2.2 Organizational and Institutional Dimensions of Decision-Support Experiments

6663 These seven experiments illuminate the need for effective two-way communication

- among tool developers and users, and the importance of organizational culture in
- 6665 fostering collaboration. An especially important lesson they afford is in underscoring the
- 6666 significance of boundary-spanning entities to enable decision-support transformation.
- 6667 Boundary spanning, discussed in section 4.3, refers to the activities of special

Do Not Cite or Quote

Page 285 of 426

6668	scientific/stakeholder committees, agency coordinating bodies, or task forces that
6669	facilitate the bringing together of tool developers and users to exchange information,
6670	promote communication, propose remedies to problems, foster frequent engagement, and
6671	jointly develop decision-support systems to address user needs. In the process, they
6672	provide incentives for innovation – frequently noted in the literature - that facilitate the
6673	use of climate science information in decisions (e.g., NRC, 2007; Cash and Buizer, 2005;
6674	Sarewitz and Pielke, 2007). Before outlining how these seven experiments illuminate
6675	boundary spanning, it is important to consider problems identified in recent research.
6676	
6677	While there is widespread agreement that decision support involves translating the
6678	products of climate science into forms useful for decision makers and disseminating the
6679	translated products, there is disagreement over precisely what constitutes translation
6680	(NRC, 2008). One view is that climate scientists know which products will be useful to
6681	decision makers and that potential users will make appropriate use of decision-relevant
6682	information once it is made available. Adherents of this view typically emphasize the
6683	importance of developing "decision-support tools:" models, maps, and other technical
6684	products intended to be relevant to certain classes of decisions which, when created,
6685	completes the task of decision-support. This approach, also called a "translation model,"
6686	(NRC, 2008) has not proved useful to many decision-makers – underscored by the fact
6687	that in our seven cases, greater weight was given to "creating conditions that foster the
6688	appropriate use of information" rather than to the information itself (NRC, 2008).
6689	

6690	A second view is that decision-support activities should enable climate information
6691	producers and users to communicate better with one another to ensure that the
6692	information produced addresses users' needs – also called "co-production" of information
6693	or reconciling information "supply and demand" (National Research Council, 1989,
6694	1996, 1999a, 2006; McNie, 2007; Sarewitz and Pielke, 2007; Lemos and Morehouse,
6695	2005). Our seven cases clearly delineate the presumed advantages of the second view.
6696	
6697	In the SFWMD case, an increase in user trust was a powerful inducement to introduce,
6698	and then continue, experiments leading to development of a Water Supply and
6699	Environment (WSE) schedule employing seasonal and multi-seasonal climate outlooks as
6700	guidance for regulatory releases. As this tool began to help reduce operating system
6701	uncertainty, decision-maker confidence in the use of model outputs increased, as did
6702	further cooperation between scientists and users – facilitated by SFWMD's
6703	communication and agency partnership networks.
6704	
6705	In the case of INFORM, participating agencies in California worked in partnership with
6706	scientists to design experiments that would introduce forecast methods that helped adapt
6707	to uncertainties in reservoir regulation. Not only did this set of experiments demonstrate
6708	the practical value of such tools, but they built support for adaptive measures to manage
6709	risks, and reinforced the use, by decision-makers, of tool output in their decisions.
6710	Similar to the SFWMD case, through demonstrating how forecast models could reduce
6711	operating uncertainties – especially as regards increasing reliability and lead time for
6712	crucial decisions – cooperation among partners seems to have been strengthened.

Do Not Cite or Quote

Page 287 of 426

6714	Because the New York City and Seattle cases share in common the use of decision-
6715	support information in urban settings, they amplify another set of boundary-spanning
6716	factors: the need to incorporate public concerns and develop communication outreach
6717	methods, particularly about risk, that are clear and coherent. While conscientious efforts
6718	to support stakeholder needs for reducing uncertainties associated with sea-level rise and
6719	infrastructure relocation are being made, the New York case highlights the need for
6720	further efforts to refine communication, tool dissemination and evaluation efforts to
6721	deliver information on potential impacts of climate change more effectively. It also
6722	illustrates the need to incorporate new risk-based analysis into existing decision
6723	structures related to infrastructure construction and maintenance. Seattle public utilities
6724	has had success in conveying the importance of employing seasonal to interannual
6725	climate forecasts in operations, and is considered a national model for doing so, in part
6726	because of a higher degree of established public support due to: 1) litigation over
6727	protection of endangered fish populations, and 2) a greater in-house ability to test forecast
6728	skill and evaluate decision tools. Both served as incentives for collaboration. Access to
6729	highly-skilled forecasts in the region also enhanced prospects for forecast use.
6730	
6731	Although not an urban case, the CALFED experiment's focus on climate change, sea-

- 6732 level rise, and infrastructure planning has numerous parallels with the Seattle and New
- 6733 York City cases. In this instance, the public and decision-makers were prominent in these
- 6734 cases, and their involved enhanced the visibility and importance of these issues and

6735 probably helped facilitate the incorporation of climate information by water resource6736 managers in generating adaptation policies.

6737

6738 The other cases represent variations of boundary spanning whose lessons are also worth 6739 noting. The tree-ring reconstruction case – which generated a new data source, not 6740 surprisingly documents impediments to incorporation into water planning due to its 6741 novelty. This impediment was overcome through prolonged and sustained partnerships 6742 between researchers and users that helped ensure that scientific findings were relevant, useful, and usable for water resources planning and management, and water managers 6743 6744 who were willing to take some risk. Likewise, the case of fire-prone forests represented a 6745 different set of impediments that also required novel means of boundary spanning to 6746 overcome. In this instance, an initial workshop held among scientists and decision-6747 makers itself constituted an experiment on how to: identify topics of mutual interest 6748 across the climate and wildland fire management communities; provide a forum for 6749 exploring new questions and opportunities; and constitute a vehicle for inviting diverse 6750 agency personnel, disciplinary representatives, and operation, planning, and management, 6751 personnel to facilitate new ways of thinking about an old set of problems. 6752 6753 Before turning to analytical studies on the importance of such factors as the role of key 6754 leadership in organizations to empower employees, organizational climate that

encourages risk and promote inclusiveness, and the ways organizations encourage

boundary innovation (section 4.3), it is important to note another distinguishing feature of

6757 the above experiments: they underscore the importance of process as well as product

6758	outcomes in assessing collaborative success in developing, disseminating and using
6759	information. We return to this issue when we discuss evaluation in Section 4.4.
6760	
6761	4.3 APPROACHES TO BUILDING USER KNOWLEDGE AND ENHANCING
6762	CAPACITY BUILDING
6763	The previous section demonstrated a variety of contexts where decision-support
6764	innovations are occurring. This section analyzes six factors that are essential for building
6765	user knowledge and enhancing capacity in decision-support systems for integration of
6766	seasonal to interannual climate variability information, and which are highlighted in the
6767	seven cases above: 1) boundary spanning, 2) knowledge-action systems through inclusive
6768	organizations, 3) decision-support needs are user driven, 4) proactive leadership that
6769	champions change; 5) adequate funding and capacity building, and, 6) adaptive
6770	management.
6771	
6772	4.3.1 Boundary-Spanning Organizations as Intermediaries Between Scientists and
6773	Decision Makers
6774	As noted in 4.2.2, boundary spanning organizations link different social and
6775	organizational worlds (e.g., science and policy) in order to foster innovation across
6776	boundaries, provide two-way communication among multiple sectors, and integrate
6777	production of science with user needs. More specifically, these organizations perform
6778	translation and mediation functions between producers of information and their users
6779	(Guston, 2001; Ingram and Bradley, 2006 Jacobs, et al., 2005). Such activities include

6780	convening forums that provide common vehicles for conversations and training, and for
6781	tailoring information to specific applications.
6782	
6783	Ingram and Bradley (2006) suggest that boundary organizations span not only disciplines,
6784	but different conceptual and organizational divides (e.g., science and policy),
6785	organizational missions and philosophies, levels of governance, and gaps between
6786	experiential and professional ways of knowing. This is important because effective
6787	knowledge transfer systems cultivate individuals and/or institutions that serve as
6788	intermediaries between nodes in the system, most notably between scientists and decision
6789	makers. In the academic community and within agencies, knowledge, including that
6790	involved in the production of climate forecast information, is often produced in "stove-
6791	pipes" isolated from neighboring disciplines or applications.
6792	
6793	Evidence for the importance of this proposition – and for the importance of boundary
6794	spanning generally – is provided by those cases – particularly in Chapter 3 ($e.g.$, the
6795	Apalachicola-Chattahoochee-Flint river basin dispute) where the absence of a boundary

6796 spanning entity created a void that made the deliberative consideration of various

6797 decision-maker needs all but impossible to negotiate. Because the compact organization

6798 charged with managing water allocation among the states of Alabama, Florida, and

6799 Georgia would not actually take effect until an allocation formula was agreed upon, the

6800 compact could not actually serve to bridge the divides between decision-making and

6801 scientific assessment of flow, meteorology, and riverine hydrology in the region.

6802

Do Not Cite or Quote

6803	Boundary spanning organizations are important to decision-support system development
6804	in three ways. First, they "mediate" communication between supply and demand
6805	functions for particular areas of societal concern. Sarewitz and Pielke (2007) suggest, for
6806	example, that the IPCC serves as a boundary organization for connecting the science of
6807	climate change to its use in society – in effect, satisfying a "demand" for science
6808	implicitly contained in such international processes for negotiating and implementing
6809	climate treaties as the U.N. Framework Convention on Climate Change and Kyoto
6810	Protocol. In the U.S., local irrigation district managers and county extension agents often
6811	serve this role in mediating between scientists (hydrological modelers) and farmers (Cash
6812	et al., 2003). In the various cases we explored in section 4.2.1 – and in chapter 3 (e.g.,
6813	coordinating committees, post-event "technical sessions" after the Red River floods, and
6814	comparable entities), we saw other boundary spanning entities performing mediation
6815	functions.
6816	
6817	Second, boundary organizations enhance communication among stakeholders. Effective
6818	tool development requires that affected stakeholders be included in dialogue, and that

6819 data from local resource managers (blended knowledge) be used to ensure credible

6820 communication. Successful innovation is characterized by two-way communication

between producers and users of knowledge, as well as development of networks that

allow close and ongoing communication among multiple sectors. Likewise, networks
must allow close communication among multiple sectors (Sarewitz and Pielke, 2007).

6824

6825 Third, boundary organizations contribute to tool development by serving the function of 6826 translation more effectively than is conceived in the loading-dock model of climate 6827 products. In relations between experts and decision-makers, understanding is often 6828 hindered by jargon, language, experiences, and presumptions; *e.g.*, decision makers often 6829 want deterministic answers about future climate conditions, while scientists can often 6830 only provide probabilistic information, at best. As noted in chapter 3, decision-makers 6831 often mistake probabilistic uncertainty as a kind of epistemological failure – even though 6832 uncertainty is a characteristic of science (Brown, 1997). 6833 6834 One place where boundary spanning can be important with respect to translation is in 6835 providing a greater understanding of uncertainty and its source. This includes better 6836 information exchange between scientists and decision-makers on, for example, the 6837

decisional-relevance of different aspects of uncertainties, and methods of combining

6838 probabilistic estimates of events through simulations, in order to reduce decision-maker

distrust, misinterpretation of forecasts, and mistaken interpretation of models (NationalResearch Council, 2005).

6841

Effective boundary organizations facilitate the co-production of knowledge—generating information or technology through the collaboration of scientists/engineers and nonscientists who incorporate values and criteria from both communities. This is seen, for example, in the collaboration of scientists and users in producing models, maps, and forecast products. Boundary organizations have been observed to work best when accountable to the individuals or interests on both sides of the boundary they bridge, in

Do Not Cite or Quote

Page 293 of 426

order to avoid capture by either side and to align incentives such that interests of actorson both sides of the boundary are met.

6850

6851	Jacobs (2003) suggests that universities can be good locations for the development of
6852	new ideas and applications, but they may not be ideal for sustained stakeholder
6853	interactions and services, in part because of funding issues and because training cycles
6854	for graduate students, who are key resources at universities, do not always allow a long-
6855	term commitment of staff. Many user groups and stakeholders either have no contact with
6856	universities or may not encourage researchers to participate in or observe decision-
6857	making processes. University reward systems rarely recognize inter-disciplinary work,
6858	outreach efforts, and publications outside of academic journals. This limits incentives for
6859	academics to participate in real-world problem solving and collaborative efforts. Despite
6860	these limitations, many successful boundary organizations are located within universities.
6861	
6862	In short, boundary organizations serve to make information from science useful and to
6863	keep information flowing (in both directions) between producers and users of the
6864	information. They foster mutual respect and trust between users and producers. Within
6865	such organizations there is a need for individuals simultaneously capable of translating
6866	scientific results for practical use and framing the research questions from the perspective
6867	of the user of the information. These key intermediaries in boundary organizations need

6869 beyond that which focuses on the disciplines. Table 4.1 depicts a number of boundary

Do Not Cite or Quote

Page 294 of 426

- 6870 organization examples for climate change decision-support tool development. Section
- 6871 4.3.2 considers the type of organizational leaders who facilitate boundary spanning.

6873 Table 4.1 Examples of Boundary Organizations for Decision-Support tool development

6874

Cooperative Extension Services: housed in land-grant universities in the U.S., they provide large networks of people who interact with local stakeholders and decision-makers within certain sectors (not limited to agriculture) on a regular basis. In other countries this agricultural extension work is often done with great effectiveness by local government (*e.g.*, Department of Primary Industries, Queensland, Australia).

Watershed Councils: in some U.S. states, watershed councils and other local planning groups have developed, and many are focused on resolving environmental conflicts and improved land and water management (particularly successful in the State of Oregon).

Natural Resource Conservation Districts: within the U.S. Department of Agriculture, these districts are highly networked within agriculture, land management, and rural communities.

Non-governmental organizations (NGOs) and public interest groups: focus on information dissemination and environmental management issues within particular communities. They are good contacts for identifying potential stakeholders, and may be in a position to collaborate on particular projects. Internationally, a number of NGOs have stepped forward and are actively engaged in working with stakeholders to advance use of climate information in decision-making (*e.g.*, Asian Disaster Preparedness Center (ADPC), in Bangkok, Thailand).

Federal agency and university research activities: expanding the types of research conducted within management institutions and local and state governments is an option to be considered—the stakeholders can then have greater influence on ensuring that the research is relevant to their particular concerns

6875

6876	An oft-cited model of the type of boundary-spanning organization needed for the transfer
6877	and translation of decision-support information on climate variability is the "Regional
6878	Integrated Science and Assessment (RISA) teams supported by NOAA. These teams
6879	"represent a new collaborative paradigm in which decision-makers are actively involved
6880	in developing research agendas" (Jacobs, 2003). The nine RISA teams, located within
6881	universities and often involving partnerships with NOAA laboratories throughout the
6882	U.S, are focused on stakeholder-driven research agendas and long-term relationships
6883	between scientists and decision-makers in specific regions. RISA activities are
6884	highlighted in the sidebar below. This is followed by another sidebar on comparative

6885	examples of boundary spanning which emphasizes the "systemic" nature of boundary
6886	spanning – that boundary organizations produce reciprocity of benefits to various groups.
6887	
6888	4.3.2 Regional Integrated Science and Assessment Teams (RISAs) – An Opportunity
6889	for Boundary Spanning, and a Challenge
6890	A true dialog between end users of scientific information and those who generate data
6891	and tools is rarely achieved. The nine Regional Integrated Science and Assessment
6892	(RISA) teams that are sponsored by NOAA and activities sponsored by the
6893	Environmental Protection Agency's Global Change Research Program are among the
6894	leaders of this experimental endeavor, and represent a new collaborative paradigm in
6895	which decision-makers are actively involved in developing research agendas. RISAs
6896	explicitly seek to work at the boundary of science and decision making.
6897	
6898	There are five principal approaches RISA teams have learned that facilitate engagement
6899	with stakeholders and design of climate-related decision-support tools for water
6900	managers. First, RISAs employ a "stakeholder-driven research" approach that focuses on
6901	performing research on both the supply side (i.e., information development) and demand
6902	side (<i>i.e.</i> , the user and her/his needs). Such reconciliation efforts require robust
6903	communication in which each side informs the other with regard to decisions, needs, and
6904	products – this communication cannot be intermittent; it must be robust and ongoing.
6905	Second, some RISAs employ an "information broker" approach. They produce little new
6906	scientific information themselves, due to resource limitations or lack of critical mass in a

Do Not Cite or Quote

6907	particular scientific area. Rather, the RISAs' primary role is providing a conduit for
6908	information and facilitating the development of information networks.
6909	
6910	Third, RISAs generally utilize a "participant/advocacy" or "problem-based" approach,
6911	which involves focusing on a particular problem or issue, and engaging directly in
6912	solving that problem. They see themselves as part of a learning system and promote the
6913	opportunity for joint learning with a well-defined set of stakeholders who share the
6914	RISA's perspective on the problem and desired outcomes.
6915	
6916	Fourth, some RISAs utilize a "basic research" approach in which the researchers
6917	recognize particular gaps in fundamental knowledge that are necessary as a prerequisite
6918	to the production of context sensitive, policy-relevant information. Any RISA may utilize
6919	many or most of these approaches at different times depending upon the particular
6920	context of the problem. The more well-established RISAs have had more formal
6921	processes and procedures in place to identify stakeholder needs and design appropriate
6922	responses, as well as to evaluate the effectiveness of decision-support tools that are
6923	developed.
6924	
6925	Finally, a critical lesson for climate science policy from RISAs is that, despite knowing
6926	what is needed to produce, package, and disseminate useful climate information – and the
6927	well-recognized success of the regional partnerships with stakeholders, While RISA

- 6928 lessons have been criticized as not having had large influence on the federal climate
- 6929 science policy community outside of the RISAs in the past, progress has been made in

Do Not Cite or Quote

Page 297 of 426

6930	recent years. Improving feedback between RISA programs and the larger research
6931	enterprise need to be enhanced so lessons learned can inform broader climate science
6932	policy decisions - not just those decisions made on the local problem-solving level
6933	(McNie, et al., 2007).
6934	
6935	In April, 2002, the House Science Committee held a hearing to explore the connections
6936	of climate science and the needs of decision makers. One question it posed was the
6937	following: "Are our climate research efforts focused on the right questions?"
6938	(http://www.house.gov/science/hearings/full02/apr17/full_charter_041702.htm)
6939	The Science Committee found that the RISA program is a promising means to connect
6940	decision-making needs with the research prioritization process, because "(it) attempts to
6941	build a regional-scale picture of the interaction between climate change and the local
6942	environment from the ground up. By funding research on climate and environmental
6943	science focused on a particular region, [the RISA] program currently supports
6944	interdisciplinary research on climate-sensitive issues in five selected regions around the
6945	country. Each region has its own distinct set of vulnerabilities to climate change, e.g.,
6946	water supply, fisheries, agriculture, etc., and RISA's research is focused on questions
6947	specific to each region."

6949 ***BOX 4.1: Comparative Examples of Boundary Spanning – Australia and the U.S

6950

6951 In Australia, forecast information is actively sought both by large agribusiness and government 6952 policymakers planning for drought because "the logistics of handling and trading Australia's grain 6953 commodities, such as wheat, are confounded by huge swings in production associated with climate 6954 variability. Advance information on likely production and its geographical distribution is sought by many 6955 industries, particularly in the recently deregulated marketing environment" (Hammer, et al., 2001). 6956 Forecast producers have adopted a systems approach to the dissemination of seasonal forecast information 6957 that includes close interaction with farmers, use of climate scenarios to discuss the incoming rainfall season 6958 and automated dissemination of seasonal forecast information through the RAINMAN interactive software.

Do Not Cite or Quote

6959 6960 6961 6962 6963 6964 6965 6966 6967 6968 6969 6970 6971 6972 6973	In the U.S. Southwest, forecast producers organized stakeholder workshops that refined their understanding of potential users and their needs. Because continuous interaction with stakeholder was well funded and encouraged, producers were able to 'customize' their product—including the design of user friendly and interactive Internet access to climate information—to local stakeholders with significant success (Hartmann, <i>et al.</i> , 2002; Pagano, <i>et al.</i> , 2002; Lemos and Morehouse, 2005). Such success stories seem to depend largely on the context in which seasonal climate forecasts were deployed—in well-funded policy systems, with adequate resources to customize and use forecasts, benefits can accrue to the local society as a whole. From these limited cases, it is suggested that where income, status, and access to information are more equitably distributed in a society, the introduction of seasonal climate forecasts may create winners; in contrast, when pre-existing conditions are unequal, the application of seasonal climate forecasts may create winners; wore losers by exacerbating those inequities (Lemos and Dilling, 2007). The consequences can be costly both to users and seasonal forecast credibility.
6974	4.3.3 Developing Knowledge-Action Systems – a Climate for Inclusive Management
6975	Research suggests that decision makers do not always find seasonal-to-interannual
6976	forecast products, and related climate information, to be useful for the management of
6977	water resources – this is a theme central to this entire report. As our case study
6978	experiments suggest, in order to ensure that information is useful, decision makers must
6979	be able to affect the substance of climate information production and the method of
6980	delivery so that information producers know what are the key questions to respond to in
6981	the broad and varied array of decisional needs different constituencies require (Sarewitz
6982	and Pielke, 2007: 7; Callahan, et al., 1999; NRC, 1999a), and this is likely the most
6983	effective process by which true decision-support activities can be made useful.
6984	
6985	Efforts to identify factors that improve the usability of seasonal to interannual climate
6986	information have found that effective "knowledge-action" systems focus on promoting
6987	broad, user driven risk management objectives (Cash and Buizer, 2005: 9). These
6988	objectives, in turn, are shaped by the decision context, which usually contains multiple
6989	stresses and management goals. Research on water resource decision-making suggests
6990	that goals are defined very differently by agencies or organizations dedicated to

Do Not Cite or Quote

6991	managing single-issue problems in particular sectors (e.g., irrigation, public supply) when
6992	compared to decision-makers working in political jurisdictions or watershed-based
6993	entities designed to comprehensively manage and coordinate several management
6994	objectives simultaneously (e.g., flood control and irrigation, power generation, and in-
6995	stream flow). The latter entities face the unusual challenge of trying to harmonize
6996	competing objectives, are commonly accountable to numerous users, and require
6997	"regionally and locally tailored solutions" to problems (Water in the West, 1998; also,
6998	Kenney and Lord, 1994; Grigg, 1996).
6999	
7000	Effective knowledge-action systems should be designed for learning rather than knowing
7001	- the difference being that the former emphasizes the process of exchange between
7002	decision-makers and scientists, constantly evolving in an iterative fashion – rather than
7003	aiming for a one-time only completed product. Learning requires that knowledge-action
7004	systems have flexibility of processes and institutions in order to effectively produce and
7005	apply climate information (Cash and Buizer, 2005), encourage diffusion of boundary-
7006	spanning innovation, are themselves innovative and responsive, and are able to develop
7007	"operating criteria that measure responsiveness to changing conditions and external
7008	advisory processes" (Cash and Buizer, 2005). Often, nontraditional institutions that
7009	operate outside of "normal" channels, such as nongovernmental organizations (NGOs) or
7010	regional coordinating entities are less constrained by tradition or legal mandate and thus

- 7011 more able to innovate.
- 7012

7013 To encourage climate forecast and information producers and end-users to better 7014 communicate with one another, they need to be engaged in a long-term dialogue about 7015 one another's needs and capabilities. To achieve this, knowledge producers must be 7016 committed to establishing opportunities for joint learning. When such communication 7017 systems have been established, the result has been the gaining of knowledge by users. 7018 The discovery that climate information must be part of a larger suite of information can 7019 help producers understand the decision context, and better appreciate that users "manage 7020 a broad array of risks." Lead innovators within the user community can lay the 7021 groundwork for broader participation of other users and greater connection between 7022 producers and users (Cash and Buizer, 2005). 7023 7024 Such tailoring or conversion of information requires organizational settings that foster 7025 communication and exchange of ideas between users and scientists. For example, a 7026 particular user might require a specific type of precipitation forecast or even a different 7027 type of hydrologic model to generate a credible forecast of water supply volume. This 7028 producer-user dialogue must be long-term; allow users to independently verify the utility 7029 of forecast information; and, provide opportunities for verification results to feed back 7030 into new product development (Cash and Buizer, 2005; Jacobs et al., 2005). 7031 7032 Studies of this connection refer to it as an "end-to-end" system to suggest that knowledge 7033 systems need to engage a range of participants including those who generate scientific

tools and data, those who translate them into predictions for use by decision-makers, and

the decision-makers themselves. A forecast innovation might combine climate factor

Do Not Cite or Quote

Page 301 of 426

7036	observations, analyses of climate dynamics, and seasonal/interannual forecasts. In turn,
7037	users might be concerned with varying problems and issues such as planting times,
7038	instream flows to support endangered species, and reservoir operations.
7039	
7040	As Cash and Buizer note, "Often entire systems have failed because of a missing link
7041	between the climate forecast and these ultimate user actions. Avoiding the missing link
7042	problem varies according to the particular needs of specific users (Cash and Buizer,
7043	2005). Users want useable information more than they want answers – they want an
7044	understanding of things that will help them explain, for example, the role of climate in
7045	determining underlying variation in the resources they manage. This includes a broad
7046	range of information needed for risk management; not just forecasting particular threats.
7047	
7048	Organizational measures to hasten, encourage, and sustain these knowledge-action
7049	systems must include practices that empower people to use information through
7050	providing adequate training and outreach – as well as sufficient professional reward and
7051	development opportunities. Three measures are essential. First, organizations must
7052	provide incentives to produce boundary objects, such as decisions or products that reflect
7053	
	the input of different perspectives. Second, they must involve participation from actors
7054	the input of different perspectives. Second, they must involve participation from actors across boundaries. And finally, they must have lines of accountability to the various
7054 7055	
	across boundaries. And finally, they must have lines of accountability to the various
7055	across boundaries. And finally, they must have lines of accountability to the various

Do Not Cite or Quote

Page 302 of 426

7059	mechanisms for feedback and advice from clients, users, and community leaders.
7060	However, it is important that a review process not become an end in itself or be so
7061	burdensome as to affect the ability of the organization to function efficiently. This
7062	orientation is characterized by a mutual recognition on the part of scientists and decision-
7063	makers of the importance of social learning – that is, learning by doing or by experiment,
7064	and refinement of forecast products in light of real-world experiences and previous
7065	mistakes or errors – both in forecasts and in their application. This learning environment
7066	also fosters an emphasis on adaptation and diffusion of innovation (<i>i.e.</i> , social learning,
7067	learning from past mistakes, long-term funding).
7068	
7069	4.3.4 The Value of User-Driven Decision Support
7070	Studies of what makes climate forecasts useful have identified a number of common
7071	characteristics in the process by which forecasts are generated, developed, and taught to -
7072	and disseminated among – users (Cash and Buizer, 2005). These characteristics include:
7073	• Ensuring that the problems forecasters address are themselves driven by forecast
7074	users;
7075	• Making certain that knowledge-action systems (the process of interaction between
7076	scientists and users which produces forecasts) are end-to-end inclusive;
7077	• Employing "boundary organizations" (groups or other entities that bridge the
7078	communication void between experts and users) to perform translation and
7079	mediation functions between the producers and consumers of forecasts;
7080	• Fostering a social learning environment between producers and users (<i>i.e.</i> ,
7081	emphasizing adaptation); and

Do Not Cite or Quote

Page 303 of 426

7082	• Providing stable funding and other support to keep networks of users and
7083	scientists working together.
7084	
7085	As noted earlier, "users" encompass a broad array of individuals and organizations,
7086	including farmers, water managers, and government agencies; while "producers" include
7087	scientists and engineers and those "with relevant expertise derived from practice" (Cash
7088	and Buizer, 2005). Complicating matters is that some "users" may – over time – become
7089	"producers" as they translate, repackage, or analyze climate information for use by
7090	others.
7091	
7092	In effective user-driven information environments, the agendas of analysts, forecasters,
7093	and scientists who generate forecast information are at least partly set by the users of the
7094	information. Moreover, the collaborative process is grounded in appreciation for user
7095	perspectives regarding the decision context in which they work, the multiple stresses
7096	under which they labor, and their goals so users can integrate climate knowledge into risk
7097	management. Most important, this user-driven outlook is reinforced by a systematic
7098	effort to link the generation of forecast information with needs of users through soliciting
7099	advice and input from the latter at every step in the generation of information process.
7100	
7101	Effective knowledge-action systems do not allow particular research or technology
7102	capabilities (e.g., ENSO forecasting) to drive the dialogue. Instead, effective systems
7103	ground the collaborative process of problem definition in user perspectives regarding the
7104	decision context, the multiple stresses bearing on user decisions, and ultimate goals that

Do Not Cite or Quote

Page 304 of 426

7105	the knowledge-action system seeks to advance. For climate change information, this
7106	means shifting the focus toward "the promotion of broad, user-driven risk-management
7107	objectives, rather than advancing the uptake of particular forecasting technologies" (Cash
7108	and Buizer, 2005; Sarewitz and Pielke, 2007).
7109	
7110	In sum, there is an emerging consensus in the field of climate forecast information that
7111	the utility of information intended to make possible sustainable environmental decisions
7112	depends on the "dynamics of the decision context and its broader social setting" (Jasanoff
7113	and Wynne, 1998; Pielke et al., 2000; Sarewitz and Pielke, 2007). Usefulness is not
7114	inherent in the knowledge generated by forecasters – the information generated must be
7115	"socially robust." Robustness is determined by how well it meets three criteria: 1) it is
7116	valid outside, as well as inside the laboratory; (2) validity is achieved through involving
7117	an extended group of experts, including lay 'experts;' and 3) because society as-a-whole
7118	has participated in the generation of forecast models, the information derived from them
7119	is less likely to be contested (Gibbons, 1999).
7120	
7121	Finally, a user-driven information system relies heavily on two-way communication.
7122	Such communication can help bridge gaps between what is produced and what is likely to
7123	be used, thus ensuring that scientists produce products that are recognized by the users,
7124	and not just the producers, as useful. Effective user-oriented two-way communication can
7125	increase users' understanding of how they could use climate information and enable them

to ask questions about information that is uncertain or in dispute. It also affords an

7127 opportunity to produce "decision-relevant" information that might otherwise not be

Do Not Cite or Quote

Page 305 of 426

7128	produced because scientists may not have understood completely what kinds of
7129	information would be most useful to water resource decision makers (NRC, 2008).
7130	
7131	In conclusion, user-driven information as regards to seasonal to interannual climate
7132	variability for water resources decision-making must be salient (e.g., decision-relevant
7133	and timely), credible (viewed as accurate, valid, and of high quality), and legitimate
7134	(uninfluenced by pressures or other sources of bias) (see NRC, 2008; NRC, 2005). In the
7135	words of a recent National Research Council report, broad involvement of "interested and
7136	affected parties" in framing scientific questions helps ensure that the science produced is
7137	useful ("getting the right science") by ensuring that decision-support tools are explicit
7138	about any simplifying assumptions that may be in dispute among the users, and
7139	accessible to the end-user (NRC, 2008).
7140	
7141	4.3.5 Pro-Active Leadership – Championing Change
7142	Organizations – public, private, scientific, and political – have leaders: individuals
7143	charged with authority, and span of control, over important personnel, budgetary, and
7144	strategic planning decisions, among other venues. Boundary organizations require a kind
7145	of leadership called inclusive management practice by its principal theorists (Feldman
7146	and Khademian, 2001). Inclusive management is defined as management that seeks to
7147	incorporate the knowledge, skills, resources, and perspectives of several actors.
7148	
7149	While there is an enormous literature on organizational leadership, synthetic studies –
7150	those which take various theories and models about leaders and try to draw practical,

Page 306 of 426

7151	even anecdotal, lessons for organizations – appear to coalesce around the idea that
7152	inclusive leaders have context-specific skills that emerge through a combination of tested
7153	experience within a variety of organizations, and a knack for judgment (Bennis, 2003;
7154	Tichy and Bennis, 2007). These skills evolve through trial and error and social learning.
7155	Effective "change-agent" leaders have a guiding vision which sustains them through
7156	difficult times, a passion for their work and an inherent belief in its importance, and a
7157	basic integrity toward the way in which they interact with people and approach their jobs
7158	(Bennis, 2003).
7159	

7160 While it is difficult to discuss leadership without focusing on individual leaders – and 7161 difficult to disagree with such claims about virtuous leadership, inclusive management 7162 also embraces the notion of process accountability – that leadership is embodied in the 7163 methods by which organizations make decisions, and not in charismatic personality 7164 alone. Process accountability comes not from some external elected political principle or 7165 body that is hierarchically superior, but instead infuses through processes of deliberation 7166 and transparency. All of these elements make boundary organizations capable of being 7167 solution focused and integrative and, thus, able to span the domains of climate knowledge 7168 production and climate knowledge for water management use.

7169

7170 Adaptive and inclusive management practices are essential to fulfilling these objectives.

7171 These practices must empower people to use information through providing adequate

7172 training and outreach – as well as sufficient professional reward and development

7173 opportunities, and they must overcome capacity-building problems within organizations

7174	to ensure that these objectives are met, including adequate user support. The cases
7175	discussed below - on the California Department of Water Resources' role in adopting
7176	climate variability and change into regional water management, and the efforts of the
7177	Southeast consortium and its satellite efforts – are examples of inclusive leadership which
7178	illustrate how both scientists as well agency managers can be proactive leaders. In the
7179	former case, decision-makers consciously decided to develop relationships with other
7180	western states' water agencies and partnership (through a Memorandum of
7181	Understanding [MOU]) with NOAA. In the latter, scientists ventured into collaborative
7182	efforts – across universities, agencies, and states – because they shared a commitment to
7183	exchanging information in order to build institutional capacity among the users of the
7184	information themselves
7185	
7186	Case Study A:
7187	Leadership in the California Department of Water Resources
7100	The deep drought in the Coloredo Diver Design that become with the exact of a Le Nião

7188 The deep drought in the Colorado River Basin that began with the onset of a La Niña 7189 episode in 1998 has awakened regional water resources managers to the need to 7190 incorporate climate variability and change into their plans and reservoir forecast models. 7191 Paleohydrologic estimates of streamflow, which document extended periods of low flow 7192 and demonstrate greater streamflow variability than that found in the gage record, have 7193 been particularly persuasive examples of the non-stationary behavior of the hydroclimate 7194 system (Woodhouse et al., 2006; Meko et al., 2007). Following a 2005 scientist-7195 stakeholder workshop on the use of paleohydrologic data in water resource management 7196 (http://www.climas.arizona.edu/calendar/details.asp?event_id=21), NOAA RISA and 7197 California Department of Water Resources (CDWR) scientists developed strong 7198 relationships oriented toward improving the usefulness and usability of science in water 7199 management. Since the 2005 workshop, CDWR, whose mission in recent years includes 7200 preparation for potential impacts of climate change on California's water resources, has

Do Not Cite or Quote

7201 led western states' efforts in partnering with climate scientists to co-produce 7202 hydroclimatic science to inform decision-making. CDWR led the charge to clarify 7203 scientific understanding of Colorado River Basin climatology and hydrology, past 7204 variations, projections for the future, and impacts on water resources, by calling upon the 7205 National Academy of Sciences to convene a panel to study the aforementioned issues 7206 (NRC, 2007). This occurred, and in 2007, CDWR developed a Memorandum of 7207 Agreement with NOAA, in order to better facilitate cooperation with scientists in 7208 NOAA's RISA program and research laboratories (CDWR, 2007).

7209

7210 Case Study B:

7211 Cooperative extension services, watershed stewardship: the Southeast Consortium

7212 Developing the capacity to use climate information in resource management decision-7213 making requires both outreach and education, frequently in an iterative fashion that leads 7214 to two-way communication and builds partnerships. The Cooperative Extension Program 7215 has long been a leader in facilitating the integration of scientific information into decision 7216 maker of practice in the agricultural sector. Cash (2001) documents an example of 7217 successful Cooperative Extension leadership in providing useful water resources 7218 information to decision-makers confronting policy changes in response to depletion of 7219 groundwater in the High Plains aquifer. Cash notes the Cooperative Extension's history of 7220 facilitating dialogue between scientists and farmers, encouraging the development of 7221 university and agency research agendas that reflect farmers' needs, translating scientific 7222 findings into site-specific guidance, and managing demonstration projects that integrate

7223 farmers into researchers' field experiments.

7224

In the High Plains aquifer example, the Cooperative Extension's boundary spanning work
was motivated from a bottom-up need of stakeholders for credible information on
whether water management policy changes would affect their operations. By acting as a
liaison between the agriculture and water management decision-making communities,
and building bridges between many levels of decision-makers, Kansas Cooperative
Extension was able to effectively coordinate information flows between university and
USGS modelers, and decision-makers. The result of their effort was collaborative

Do Not Cite or Quote

Page 309 of 426

development of a model with characteristics needed by agriculturalists (at a sufficient
spatial resolution) and that provided credible scientific information to all parties. Kansas
Cooperative Extension effectiveness in addressing groundwater depletion and its impact
on farmers sharply contrasted with the Cooperative Extension efforts in other states
where no effort was made to establish multi-level linkages between water management
and agricultural stakeholders.

7238

7239 The Southeast Climate Consortium RISA (SECC), a confederation of researchers at six 7240 universities in Alabama, Georgia, and Florida, has used more of a top-down approach to 7241 developing stakeholder capacity to use climate information in the Southeast's \$33 billion 7242 agricultural sector (Jagtap et al., 2002). Early in its existence, SECC researchers 7243 recognized the potential to use knowledge of the impact of the El Niño-Southern 7244 Oscillation on local climate to provide guidance to farmers, ranchers, and forestry sector 7245 stakeholders on yields and changes to risk (e.g., frost occurrence). Through a series of 7246 needs and vulnerability assessments (Hildebrand et al., 1999, Jagtap et al., 2002), SECC 7247 researchers determined that the potential for producers to benefit from seasonal forecasts 7248 depends on factors that include the flexibility and willingness to adapt farming operations 7249 to the forecast, and the effectiveness of the communication process – and not merely 7250 documenting the effects of climate variability and providing better forecasts (Jones *et al.*, 7251 2000). Moreover, Fraisse et al. (2006) explain that climate information is only valuable 7252 when both the potential response and benefits of using the information are clearly 7253 defined. SECC's success in championing integration of new information is built upon a 7254 foundation of sustained interactions with agricultural producers in collaboration with 7255 extension agents. Extension specialists and faculty are integrated as members of the 7256 SECC research team. SECC engages agricultural stakeholders through planned 7257 communication and outreach, such as monthly video conferences, one-on-one meetings 7258 with extension agents and producers, training workshops designed for extension agents 7259 and resource managers to gain confidence in climate decision tool use and to identify 7260 opportunities for their application, and by attending traditional extension activities (*e.g.*, 7261 commodity meetings, field days) (Fraisse et al., 2005). SECC is able to leverage the trust 7262 engendered by Cooperative Extension's long service to the agricultural community and

Do Not Cite or Quote

7263	Extension's access to local knowledge and experience, in order to build support for its
7264	AgClimate online decision-support tool (http://www.agclimate.org) (Fraisse et al., 2006).
7265	This direct engagement with stakeholders provides feedback to improve the design of the
7266	tool and to enhance climate forecast communication (Breuer et al., 2007).
7267	
7268	Yet another Cooperative Extension approach to integrating scientific information into
7269	decision-making is the Extension's Master Watershed Steward (MWS) programs. MWS
7270	was first developed at Oregon State University
7271	<http: index.html="" seagrant.oregonstate.edu="" wsep="">. In exchange for 40 hours of training</http:>
7272	on aspects of watersheds that range from ecology to water management, interested citizen
7273	volunteers provide service to their local community through projects, such as drought and
7274	water quality monitoring, developing property management plans, and conducting
7275	riparian habitat restoration. Arizona's MWS program includes training in climate and
7276	weather (Garfin and Emanuel, 2006); stewards are encouraged to participate in drought
7277	impact monitoring through Arizona's Local Drought Impact Groups (GDTF, 2004;
7278	Garfin, 2006). MWS enhances the capacity for communities to deploy new climate
7279	information and to build expertise for assimilating scientific information into a range of
7280	watershed management decisions.

7282 4.3.6 Funding and Long-Term Capacity Investments Must Be Stable and

7283 Predictable

7284 Provision of a stable funding base, as well as other investments, can help to ensure

- 7285 effective knowledge-action systems for climate change. Stable funding promotes long-
- term stability and trust among stakeholders because it allows researchers to focus on user
- needs over a period of time, rather than having to train new participants in the process.
- 7288 Given that these knowledge-action systems produce benefits for entire societies, as well
- as for particular stakeholders in a society, it is not uncommon for these systems to be
- thought of as producing both public and private goods, and thus, needing both public and

7291	private sources of support (Cash and Buizer, 2005). Private funders could include, for
7292	example, farmers whose risks are reduced by the provision of climate information (as is
7293	done in Queensland, Australia – where the individual benefits of more profitable
7294	production are captured by farmers who partly support drought-warning systems). In less
7295	developed societies, by contrast, it would not be surprising for these systems to be
7296	virtually entirely supported by public sources of revenue (Cash and Buizer, 2005).
7297	
7298	Experience suggests that a public-private funding balance should be shaped on the basis
7299	of user needs and capacities to self-tailor knowledge-action systems. More generic
7300	systems that could afterwards be tailored to users' needs might be most suitable for
7301	public support, while co-funding with particular users can then be pursued for developing
7302	a collaborative system that more effectively meets users' needs. Funding continuity is
7303	essential to foster long-term relationship building between users and producers. The key
7304	point here is that – regardless of who pays for these systems, continued funding of the
7305	social and economic investigations of the use of scientific information is essential to
7306	ensure that these systems are used and are useful (Jacobs, et al., 2005).
7307	
7308	Other long-term capacity investments relate to user training – an important component
7309	that requires drawing upon the expertise of "integrators." Integrators are commonly self-
7310	selected managers and decision-makers with particular aptitude or training in science, or
7311	scientists who are particularly good at communication and applications. Training may

rail curriculum development, career and training development for users as well as

7313 science integrators, and continued mid-career in-stream retraining and re-education.

Do Not Cite or Quote

Page 312 of 426

7314	Many current integrators have evolved as a result of doing interdisciplinary and applied
7315	research in collaborative projects, and some have been encouraged by funding provided
7316	by NOAA's Climate Programs Office (formerly Office of Global Programs) (Jacobs, et
7317	<i>al.</i> , 2005).
7318	
7319	4.3.7 Adaptive Management for Water Resources Planning – Implications for
7320	Decision Support
7321	Since the 1970s an "adaptive management paradigm" has emerged that emphasizes
7322	greater public and stakeholder participation in decision-making; an explicit commitment
7323	to environmentally-sound, socially just outcomes; greater reliance upon drainage basins
7324	as planning units; program management via spatial and managerial flexibility,
7325	collaboration, participation, and sound, peer-reviewed science; and, embracing of
7326	ecological, economic, and equity considerations (Hartig, et al., 1992; Landre and Knuth,
7327	1993; Cortner and Moote, 1994; Water in the West, 1998; May et al., 1996; McGinnis,
7328	1995; Miller, et al., 1996; Cody, 1999; Bormann, et. al., 1993; Lee, 1993). Adaptive
7329	management traces its roots to a convergence of intellectual trends and disciplines,
7330	including industrial relations theory, ecosystems management, ecological science,
7331	economics, and engineering. It also embraces a constellation of concepts such as social
7332	learning, operations research, environmental monitoring, precautionary risk avoidance,
7333	and many others (NRC, 2004).
7334	
7335	Adaptive management can be viewed as an alternative water resource decision-making

paradigm that seeks insights into the behavior of ecosystems utilized by humans. In

Page 313 of 426

7337	regards to climate variability and water resources, adaptive management compels
7338	consideration of questions such as the following: what are the decision-support needs
7339	related to managing in-stream flows/low flows? How does climate variability affect
7340	runoff, degraded water quality due to higher temperatures, impacts on cold-water
7341	fisheries lower dissolved oxygen levels, and other environmental quality parameters
7342	related to endangered or threatened species? And, what changes to runoff and flow will
7343	occur in the future, and how will these changes affect water uses among future
7344	generations unable to influence the causes of these changes today? What makes these
7345	questions particularly challenging is that they are inter-disciplinary in nature ² .
7346	
7347	While a potentially important concept, applying adaptive management to improving
7348	decision-support requires that we deftly avoid a number of false and sometimes
7349	uncritically accepted suppositions. For example, adaptive management does not postpone
7350	actions until "enough" is known about a managed ecosystem, but supports actions that
7351	acknowledge the limits of scientific knowledge, "the complexities and stochastic
7352	behavior of large ecosystems," and the uncertainties in natural systems, economic
7353	demands, political institutions, and ever-changing societal social values (NRC, 2004;
7354	Lee, 1999). In short, an adaptive management approach is one that is flexible and subject
7355	to adjustment in an iterative, social learning process (Lee, 1999). If treated in such a

² Underscored by the fact that scholars concur adaptive management entails a broad range of processes to avoid environmental harm by imposing modest changes on the environment, acknowledging uncertainties in predicting impacts of human activities on natural processes, and embracing social learning (*i.e.*, learning by experiment). In general, it is characterized by managing resources by learning, especially about mistakes, in an effort to make policy improvements using four major strategies that include, 1) modifying policies in the light of experience – and 2) permitting such modifications to be introduced in "mid-course, 3) allowing revelation of critical knowledge heretofore missing and analysis of management outcomes, and 4) incorporating outcomes in future decisions through a consensus-based approach that allows government agencies and NGOs to conjointly agree on solutions (Bormann, *et al.*, 1993; Lee, 1993; Definitions of Adaptive Management, 2000).

7356	manner, adaptive management can encourage timely responses by encouraging
7357	protagonists involved in water management to bound disputes, discussing them in an
7358	orderly manner, investigating environmental uncertainties, continuing to constantly learn
7359	and improve the management and operation of environmental control systems, learning
7360	from error, and "reduc(ing) decision-making gridlock by making it clear that decisions
7361	are provisional, that there is often no "right" or "wrong" management decision, and that
7362	modifications are expected" (NRC, 2004).
7363	
7364	The four cases discussed below illustrate varying applications, and context specific
7365	problems, of adaptive management. The discussion of Integrated Water Resource
7366	Planning stresses the use of adaptive management in a variety of local political contexts
7367	where the emphasis is on reducing water use and dependence on engineered solutions to
7368	provide water supply. The key variables are the economic goals of cost savings coupled
7369	with the ability to flexibly meet water demands. The Arizona Water Institute case
7370	illustrates the use of a dynamic organizational training setting to provide "social learning"
7371	and decisional responsiveness to changing environmental and societal conditions. A key
7372	trait is the use of a boundary-spanning entity to bridge various disciplines.
7373	
7374	The Glen Canyon and Murray-Darling basin cases illustrate operations-level decision-
7375	making aimed at addressing a number of water management problems that, over time,
7376	have become exacerbated by climate variability: namely, drought, stream-flow, salinity,

and regional water demand. On one hand, adaptive management has been applied to "re-

engineer" a large reservoir system. On the other, a management authority that links

Do Not Cite or Quote

Page 315 of 426

7379	various stakeholders together has attempted to instill a new set of principles into regional
7380	river basin management.
7381	
7382	4.3.8 Integrated Water Resources Planning – Local Water Supply and Adaptive
7383	Management
7384	A significant innovation in U.S. water resources management that affects climate
7385	information use is occurring in the local water supply sector – the growing use of
7386	integrated water resource planning (or IWRP) as an alternative to conventional supply-
7387	side approaches for meeting future demands. IWRP is gaining acceptance in chronically
7388	water-short regions such as the Southwest and portions of the Midwest – including
7389	Southern California, Kansas, Southern Nevada, and New Mexico (e.g., Beecher, 1995;
7390	Warren, et al., 1995; Fiske and Dong, 1995; Wade, 2001).
7391	
7392	IWRP's goal is to "balanc(e) water supply and demand management considerations by
7393	identifying feasible planning alternatives that meet the test of least cost without
7394	sacrificing other policy goals" (Beecher, 1995). This can be variously achieved through
7395	depleted aquifer recharge, seasonal groundwater recharge, conservation incentives,
7396	adopting growth management strategies, wastewater reuse, and applying least-cost
7397	planning principles to large investor-owned water utilities. The latter may encourage
7398	IWRP by demonstrating the relative efficiency of efforts to reduce demand as opposed to
7399	building more supply infrastructure. A particularly challenging alternative is the need to
7400	enhance regional planning among water utilities in order to capitalize on the resources of

7401	every water user, eliminate unnecessary duplication of effort, and avoid the cost of
7402	building new facilities for water supply (Atwater and Blomquist, 2002: 1201).
7403	
7404	In some cases, short term least cost may increase long-term project costs, especially when
7405	environmental impacts, resource depletion, and energy and maintenance costs are
7406	included. The significance of least-cost planning is that it underscores the importance of
7407	long and short-term costs (in this case, of water) as an influence on the value of certain
7408	kinds of information for decisions. Models and forecasts that predict water availability
7409	under different climate scenarios can be especially useful to least-cost planning and make
7410	more credible efforts to reducing demand. Specific questions IWRP raises for decision-
7411	support-generated climate change information include: how precise must climate
7412	information be to enhance long term planning? How might predicted climate change
7413	provide an incentive for IWRP strategies? And, what climate information is needed to
7414	optimize decisions on water pricing, re-use, shifting from surface to groundwater use, and
7415	conservation?
7416	
7417	Case Study C:
7418	Approaches to building user knowledge and enhancing capacity building – the Arizona
7419	Water Institute
7420	The Arizona Water Institute was initiated in 2006 to focus the resources of the Arizona
- 101	

state university system on the issue of water sustainability. Because there are 400 faculty members in the three Arizona universities who work on water-related topics, it is clear that asking them and their students to assist the state in addressing the major water quantity and quality issues should make a significant contribution. This is particularly relevant given that the state budget for supporting water resources related work is exceedingly small by comparison to many other states, and the fact that Arizona is one of

Do Not Cite or Quote

Page 317 of 426

the fastest-growing states in the U.S. In addition to working towards water sustainability,
the Institute's mission includes water-related technology transfer from the universities to
the private sector to build economic opportunities, as well as capacity building to enhance
the use of scientific information in decision-making.

7431

7432 The Institute was designed from the beginning as a "boundary organization" to build 7433 pathways for innovation between the universities and state agencies, communities, Native 7434 American tribal representatives, and the private sector. In addition, the Institute is 7435 specifically designed as an experiment in how to remove barriers between groups of 7436 researchers in different disciplines and across the universities. All of the Institute's 7437 projects involve faculty members from more than one of the universities, and all involve 7438 true engagement with stakeholders. The faculty is provided incentives to engage both 7439 through small grants for collaborative projects and through the visibility of the work that 7440 the Institute supports. Further, the Institute's structure is unique, in that there are high 7441 level Associate Directors of the Institute whose assignment is to build bridges between 7442 the universities and the three state agencies that are the Institute's partners: Water 7443 Resources, Environmental Quality, and Commerce. These Associate Directors are 7444 physically located inside the state agencies that they serve. The intent is to build trust 7445 between university researchers who are often viewed as "out of touch with reality" by 7446 agency employees, and researchers who often believe that state workers have no interest 7447 in innovative ideas. Physical proximity of workspaces and daily engagement has been 7448 shown to be an ingredient of trust building.

7449

7450 A significant component of the Institute's effort is focused on capacity building: on 7451 training students through engagement in real-world water policy issues, on providing 7452 better access to hydrologic data for decision-makers, on assisting them in visualizing the 7453 implications of the decisions that they make, on workshops and training programs for 7454 tribal entities, on joint definition of research agendas between stakeholders and 7455 researchers, and on building employment pathways to train students for specific job 7456 categories where there is an insufficient supply of trained workers, such as water and 7457 wastewater treatment plant operators. Capacity-building in interdisciplinary planning

Do Not Cite or Quote

Page 318 of 426

7458	applications such as combining land use planning and water supply planning to focus on
7459	sustainable water supplies for future development is emerging as a key need for many
7460	communities in the state.
7461	
7462	The Institute is designed as a "learning organization" in that it will regularly revisit its
7463	structure and function, and redesign itself as needed to maintain effectiveness in the
7464	context of changing institutional and financial conditions.
7465	
7466	Case Study D:
7467	Murray-Darling Basin – sustainable development and adaptive management
7468	The Murray-Darling Basin Agreement (MDBA), formed in 1985 by New South Wales,
7469	Victoria, South Australia and the Commonwealth, is an effort to provide for the
7470	integrated and conjoint management of the water and related land resources of the
7471	world's largest catchment system. The problems initially giving rise to the agreement
7472	included rising salinity and irrigation-induced land salinisation that extended across state
7473	boundaries (SSCSE, 1979; Wells, 1994). However, embedded in its charter was a
7474	concern with using climate variability information to more effectively manage drought,
7475	runoff, riverine flow and other factors in order to meet the goal of "effective planning
7476	and management for the equitable, efficient and sustainable use of the water, land and
7477	environmental resources (of the basin)" (MDBC, 2002).
7478	
7479	Some of the more notable achievements of the MDBA include programs to promote the
7480	management of point and non-point source pollution; balancing consumptive and in-
7481	stream uses (a decision to place a cap on water diversions was adopted by the
7482	commission in 1995); the ability to increase water allocations – and rates of water flow –
7483	in order to mitigate pollution and protect threatened species (applicable in all states
7484	except Queensland); and an explicit program for "sustainable management." The latter
7485	hinges on implementation of several strategies, including a novel human dimension
7486	strategy adopted in 1999 that assesses the social, institutional and cultural factors
7487	impeding sustainability; as well as adoption of specific policies to deal with salinity,
7488	better manage wetlands, reduce the frequency and intensity of algal blooms by better

Do Not Cite or Quote

Page 319 of 426

managing the inflow of nutrients, reverse declines in native fisheries populations (a plan
which, like that of many river basins in the U.S., institutes changes in dam operations to
permit fish passage), and preparing floodplain management plans.

7492

7493 Moreover, a large-scale environmental monitoring program is underway to collect and 7494 analyze basic data on pressures upon the basin's resources as well as a "framework for 7495 evaluating and reporting on government and community investment" efforts and their 7496 effectiveness. This self-evaluation program is a unique adaptive management innovation 7497 rarely found in other basin initiatives. To support these activities, the Commission funds 7498 its own research program and engages in biophysical and social science investigations. It 7499 also establishes priorities for investigations based, in part, on the severity of problems, 7500 and the knowledge acquired is integrated directly into commission policies through a 7501 formal review process designed to assure that best management practices are adopted.

7502

7503 From the standpoint of adaptive management, the Murray-Darling Basin Agreement 7504 seeks to integrate quality and quantity concerns in a single management framework, has a 7505 broad mandate to embrace social, economic, environmental and cultural issues in 7506 decisions, and, has considerable authority to supplant, and supplement, the authority of 7507 established jurisdictions in implementing environmental and water development policies. 7508 While water quality policies adopted by the Basin Authority are recommended to states 7509 and the federal government for approval, generally, the latter defer to the commission and 7510 its executive arm. The MDBA also promotes an integrated approach to water resources 7511 management. Not only does the Commission have responsibility for functions as widely 7512 varied as floodplain management, drought protection, and water allocation, but for 7513 coordinating them as well. For example, efforts to reduce salinity are linked to strategies 7514 to prevent waterlogging of floodplains and land salinisation on the Murray and 7515 Murrumbidgee valleys (MDBC, 2002). Also, the basin commission's environmental 7516 policy aims to utilize water allocations not only to control pollution and benefit water 7517 users, but to integrate its water allocation policy with other strategies for capping 7518 diversions, governing in-stream flow, and balancing in-stream needs and consumptive

(*i.e.*, agricultural irrigation) uses. Among the most notable of MDBC's innovations is itscommunity advisory effort.

7521

In 1990, the ministerial council for the MDBC adopted a Natural Resources Management
Strategy that provides specific guidance for a community-government partnership to
develop plans for integrated management of the Basin's water, land and other

environmental resources on a catchment basis. In 1996 the ministerial council put in

place a Basin Sustainability Plan that provides a planning, evaluation and reporting

7527 framework for the Strategy, and covers all government and community investment for

sustainable resources management in the Basin.

7529

According to Newson, while the policy of integrated management has "received wide

rts31 endorsement," progress towards effective implementation has fallen short – especially in

the area of floodplain management. This has been attributed to a "reactive and

supportive" attitude as opposed to a proactive one (Newson, 1997). Despite such

criticism, it is hard to find another initiative of this scale that has attempted adaptive

7535 management based on community involvement.

7536

7537 Case Study E:

7538 Adaptive management in Glen Canyon, Arizona and Utah

7539 Glen Canyon Dam was constructed in 1963 to provide hydropower, water for irrigation, 7540 flood control, and public water supply – and to ensure adequate storage for the upper 7541 basin states of the Colorado River Compact (*i.e.*, Utah, Wyoming, New Mexico, and 7542 Colorado). Lake Powell, the reservoir created by Glen Canyon Dam, has a storage 7543 capacity equal to approximately two-years flow of the Colorado River. Critics of Glen 7544 Canyon Dam have insisted that its impacts on the upper basin have been injurious almost 7545 from the moment it was completed. The flooding of one of the West's most beautiful 7546 canyons under the waters of Lake Powell; increased rates of evapo-transpiration and 7547 other forms of water loss (e.g., seepage of water into canyon walls); and eradication of 7548 historical flow regimes are the most frequently cited problems. The latter has been the 7549 focus of recent debate. Prior to Glen Canyon's closure, the Colorado River was highly

Do Not Cite or Quote

- variable with flows ranging from 120,000 cubic feet per second (cfs) to less than 1,000cfs.
- 7552

7553 When the dam's gates were closed in 1963, the Colorado River above and below Glen 7554 Canyon was altered by changes in seasonal variability. Once characterized by muddy, 7555 raging floods, the river became transformed into a clear, cold stream. Annual flows were 7556 stabilized and replaced by daily fluctuations by as much as 15 feet. A band of exotic 7557 vegetation colonized a river corridor no longer scoured by spring floods; five of eight 7558 native fish species disappeared; and the broad sand beaches of the pre-dam river eroded 7559 away. Utilities and cities within the region came to rely on the dam's low cost power and 7560 water, and in-stream values were ignored (Carothers and Brown, 1991).

7561

7562 Attempts to abate or even reverse these impacts came about in two ways. First, in 1992 7563 under pressure from environmental organizations, Congress passed the Grand Canyon 7564 Protection Act that mandated Glen Canyon Dam's operations coincide with protection, 7565 migration, and improvement of the natural and cultural resources of the Colorado River. 7566 Second, in 1996 the Bureau of Reclamation undertook an experimental flood to restore 7567 disturbance and dynamics to the river ecosystem. Planners hoped that additional sand 7568 would be deposited on canyon beaches and that backwaters – important rearing areas for 7569 native fish - would be revitalized. They also hoped the new sand deposits would stabilize 7570 eroding cultural sites while high flows would flush some exotic fish species out of the 7571 system (Moody, 1997; Restoring the Waters, 1997). The 1996 flood created over 50 new 7572 sandbars, enhanced existing ones, stabilized cultural sites, and helped to restore some 7573 downstream sport fisheries. What made these changes possible was a consensus 7574 developed through a six-year process led by the Bureau that brought together diverse 7575 stakeholders on a regular basis. This process developed a new operational plan for Lake 7576 Powell, produced an EIS for the project, and compelled the Bureau (working with the 7577 National Park Service) to implement an adaptive management approach that encouraged 7578 wide discussion over all management decisions.

7579

7580 While some environmental restoration has occurred, improvement to backwaters has 7581 been less successful. Despite efforts to restore native fisheries, the long-term impact of 7582 exotic fish populations on the native biological community, as well as potential for long-7583 term recovery of native species, remains uncertain (Restoring the Waters, 1997). The 7584 relevance for climate variability decision-support in the Glen Canyon case is as that 7585 continued drought in the Southwest is placing increasing stress on the water resources of 7586 the region. Efforts to restore the river to conditions more nearly approximating the era 7587 before the dam was built will require changes in the dam's operating regime that will 7588 force a greater balance between instream flow considerations and power generation and 7589 offstream water supply. This will also require imaginative uses of forecast information to 7590 ensure that these various needs can be balanced.

7591

4.3.9 Measurable Indicators of Progress to Promote Information Access and Use

7593 These cases, and our previous discussion about capacity building, point to four basic 7594 measures that should be used to evaluate progress in providing equitable access to 7595 decision-support generated information. First, the overall process of tool development 7596 must be inclusive. Over time, it should be possible to document the development of such 7597 an inclusive process. This could be measured by the propensity of groups to continue to 7598 participate and to be consulted and involved. Participants should view the process of 7599 collaboration as fair and effective - this could be gauged by elicitation of feedback from 7600 process participants.

7601

Second, there must be progress in developing an inter-disciplinary and inter-agency
environment of collaboration, documented by the presence of dialogue, discussion, and
exchange of ideas among different professions – in other words, documented boundaryspanning progress. One documentable measure of inter-disciplinary, boundary-spanning

Do Not Cite or Quote

Page 323 of 426

7606	collaboration is the growth,	over time of	nrofessional	reward system	s within
/000	conaboration is the growth,	over time, or	professional	iewalu system	s wiunn

- 7607 organizations that reward and recognize people who develop, use, and translate such
- 7608 systems for use by others.
- 7609
- 7610 Third, the collaborative process must be viewed by participants as credible. This means
- that participants feel it is believable and trustworthy, that there are no hidden agendas,
- and that there are benefits to all who engage in it. Again, this can be documented by
- relicitation of feedback from participants. Finally, outcomes of decision-support tools
- 7614 must be implementable in the short term as well as longer-term. It is necessary to see
- 7615 progress in assimilating and using such systems in a short period of time in order to
- 7616 sustain the interest, effort, and participatory conviction of decision-makers in the process.
- 7617 Table 4.2 suggests some specific, discrete measures that can be used to assess progress
- toward effective information use.
- 7619

Table 4.2 Promoting Access to Information and its Use Between Scientists and Decision-Makers – A Checklist (adopted from: Jacobs, 2003)

7622

Information Integration

- Was information received by stakeholders and integrated into decision-makers' management framework or world view?
- Was capacity built? Did the process lead to a result where institutions, organizations, agencies, officials can use information generated by decision-support experts? Did experts who developed these systems rely upon the knowledge and experience of decision-makers and respond to their needs in a manner that was useful?
- Will stakeholders continue to be invested in the program and participate in it over the long-term?
- Stakeholder Interaction/Collaboration
- Were contacts/relationships sustained over time and did they extend beyond individuals to institutions?
- Did stakeholders invest staff time or money in the activity?
- Was staff performance evaluated on the basis of quality or quantity of interaction?
- Did the project take on a life of its own, become at least partially self-supporting after the end of the project?
- Did the project result in building capacity and resilience to future events/conditions rather than focus on mitigation?

•	Was quality of life or economic conditions improved due to use of information generated or
	accessed through the project?
•	Did the stakeholders claim or accept partial ownership of final product?
•	Tool Salience
•	Are the tools actually used to make decisions; are they used by high-valued uses and users?
•	Is the information generated/provided by these tools accurate/valid?
•	Are important decisions made on the basis of the tool?
•	Does the use of these tools reduce vulnerabilities, risks, and hazards?
•	Collaborative Process Efficacy
•	Was the process representative (all interests have a voice at the table)?
•	Was the process credible (based on facts as the participants knew them)?
•	Were the outcomes implementable in a reasonable time frame (political and economic support)?
-	Were the outcomes disciplined from a cost perspective (<i>i.e.</i> , there is some relationship between
	total costs and total benefits)?
	Were the costs and benefits equitably distributed, meaning there was a relationship between those
	who paid and those who benefited?
1 2 10	Manitaning Duagnage
4.3.10	Monitoring Progress

- An important element in the evaluation of process outcomes is the ability to monitor
- 7626 progress. A recent National Academy report (NRC, 2008) on NOAA's Sectoral
- 7627 Applications Research Program (SARP), focusing on climate-related information to
- 7628 inform decisions, encourages the identification of process measures that can be recorded
- on a regular basis, and of outcome measures tied to impacts of interest to NOAA and
- 7630 others which can also be recorded on a comparable basis.
- 7631

7624

- 7632 These metrics can be refined and improved on the basis of research and experience –
- vhile consistency is maintained to permit time-series comparisons of progress (NRC,
- 7634 2008). An advantage of such an approach includes the ability to document learning (e.g.,
- 7635 Is there progress on the part of investigators in better project designs? Should there be a
- re-direction of funding toward projects that show a large payoff in benefits to decision-
- 7637 makers?)
- 7638

7639	Finally, the ability to consult with agencies, water resource decision-makers, and a host
7640	of other potential forecast user communities can be an invaluable means of providing
7641	"mid-course" or interim indicators of progress in integrating forecast use in decisions.
7642	The Transition of Research Applications to Climate Services Program (TRACS), also
7643	within the NOAA Climate Program Offices, has as one of its mandates to support users
7644	of climate information and forecasts at multiple spatial and geographical scales – the
7645	transitioning of "experimentally mature climate information tools, methods, and
7646	processes, including computer related applications (e.g. web interfaces, visualization
7647	tools), from research mode into settings where they may be applied in an operational and
7648	sustained manner" (TRACS, 2008). While TRACS primary goal is to deliver useful
7649	climate information products and services to local, regional, national, and even
7650	international policy makers, it is also charged with learning from its partners how to
7651	better accomplish technology transition processes. NOAA's focus is to infer the
7652	effectiveness of how effectively transitions of research applications (i.e. experimentally
7653	developed and tested, end-user-friendly information to support decision making), and
7654	climate services (<i>i.e.</i> the routine and timely delivery of that information, including via
7655	partnerships) are actually occurring.
7656	

7657 While it is far too early to conclude how effectively this process of consultation has

advanced, NOAA has established criteria for assessing this learning process, including

7659 clearly identifying decision makers, research, operations and extension partners, and

7660 providing for post audit evaluation (*e.g.*, validation, verification, refinement,

7661 maintenance) to determine at the end of the project if the transition of information has

7662	been achieved and is sustainable – according to the partners, and focusing on developing
7663	means of communication and feedback, and on deep engagement with the operational
7664	and end-user communities (TRACS, 2008).
7665	
7666	The Southeast Climate Consortium case discussed below illustrates how a successful
7667	process of ongoing stakeholder engagement can be developed through the entire cycle
7668	(from development, introduction, and use) of decision-support tools. This experiment
7669	affords insights into how to elicit user community responses in order to refine and
7670	improve climate information products, and how to develop a sense of decision-support
7671	ownership through participatory research and modeling. The Potomac River case focuses
7672	on efforts to resolve a long-simmering water dispute and the way collaborative processes
7673	can themselves lead to improved decisions. Finally, the Upper San Pedro Partnership
7674	exemplifies the kind of sustained partnering efforts that are possible when adequate
7675	funding is made available, politicization of water management questions is prevalent, and
7676	climate variability has become an important issue on decision-makers' agenda, while the
7677	series of fire prediction workshops illustrate the importance of a highly-focused problem
7678	- one that requires improvements to information processes, as well as outcomes, to foster
7679	sustained collaboration.

7681 Case Study F:

7682 Southeast Climate Consortium capacity building, tool development

The Southeast Climate Consortium is a multidisciplinary, multi-institutional team, with
members from Florida State University, University of Florida, University of Miami,
University of Georgia, University of Auburn and the University of Alabama-Huntsville.

7686 A major part of the Southeast Climate Consortium's (SECC) effort is directed toward

Do Not Cite or Quote

Page 327 of 426

7687 developing and providing climate and resource management information through 7688 AgClimate (http://www.agclimate.org/), a decision-support system (DSS) introduced for 7689 use by Agricultural Extension, agricultural producers, and resource managers in the 7690 management of agriculture, forests, and water resources. Two keys to SECC's progress in 7691 promoting the effective use of climate information in agricultural sector decision-making 7692 are (1) iterative ongoing engagement with stakeholders, from project initiation to 7693 decision-support system completion and beyond (further product refinement, 7694 development of ancillary products, etc.) (Breuer et al., 2007; Cabrera et al., 2007), and 7695 (2) co-developing a stakeholder sense of decision-support ownership through 7696 participatory research and modeling (Meinke and Stone, 2005; Breuer et al., 2007; 7697 Cabrera et al., 2007). 7698 7699 The SECC process has begun to build capacity for the use of climate information with a 7700 rapid assessment to understand stakeholder perceptions and needs regarding application 7701 of climate information that may have benefits (e.g., crop yields, nitrogen pollution in 7702 water) (Cabrera et al., 2006). Through a series of engagements, such as focus groups, 7703 individual interviews, research team meetings (including stakeholder advisors), and 7704 prototype demonstrations, the research team assesses which stakeholders are most likely 7705 adopt the decision-support system and communicate their experience with other 7706 stakeholders (Roncoli et al., 2006), as well as stakeholder requirements for decision 7707 support (Cabrera et al., 2007). Among the stakeholder requirements gleaned from more 7708 than six years of stakeholder engagements, are: present information in an uncomplicated 7709 way (often deterministic), but allow the option to view probabilistic information; provide 7710 information timed to allow users to take ex ante action; include an economic component 7711 (because farmer survival, *i.e.* cost of practice adoption, takes precedence over 7712 stewardship concerns); and allow for confidential comparison of model results with 7713 proprietary data. 7714

The participatory modeling approach used in the development of DyNoFlo, a whole-farm

decision-support system to decrease nitrogen leaching while maintaining profitability

under variable climate conditions (Cabrera et al., 2007), engaged federal agencies,

7718 individual producers, cooperative extension specialists, and consultants (who provided 7719 confidential data for model verification). Cabrera et al. (2007) report that the dialogue 7720 between these players, as co-equals, was as important as the scientific underpinning and 7721 accuracy of the model in improving adoption. They emphasize that the process, including 7722 validation that is defined as occurring when researchers and stakeholders agree the model 7723 fits real or measured conditions adequately, is a key factor in developing stakeholder 7724 sense of ownership and desire for further engagement and decision-support system 7725 enhancement. These findings concur with recent examples of the adoption of climate 7726 data, predictions and information to improve water supply model performance by 7727 Colorado River basin water managers (Woodhouse and Lukas, 2006; B. Udall, personal 7728 communication).

7729

7730 Case Study G:

7731 The Potomac River Basin

7732 Water Wars, traditionally seen in the West, are spreading to the Midwest, East and South. 7733 The "Water Wars" report (Council of State Governments, 2003) underlines the stress a 7734 growing resident population is imposing on a limited natural resource, and how this stress 7735 is triggering water wars in areas formerly plentiful of water. An additional source of 7736 concern would be the effect on supply and the increase in demand due to climate 7737 variability and change. Although the study by Hurd et al. in 1999 indicated that the Northeastern water supply would be less vulnerable to the effect of climate change, the 7738 7739 Interstate Commission on the Potomac River Basin (ICPRB) periodically studies the 7740 impact of climate change on the supply reliability to the Washington metropolitan area 7741 (WMA).

7742

The ICPRB was created in 1940 by the States of Maryland and West Virginia, the

7744 Commonwealths of Virginia and Pennsylvania, and the District of Columbia. The ICPRB

was recognized by the US Congress, which provided also a presence in the Commission.

The ICPRB's purpose is "Regulating, controlling, preventing, or otherwise rendering

- unobjectionable and harmless the pollution of the waters of said Potomac drainage area
- 7748 by sewage and industrial and other wastes."

Do Not Cite or Quote

Page 329 of 426

7749	
7750	The Potomac River constitutes the primary source of water for the WMA. Out of the five
7751	reservoirs in the WMA, three are in the Potomac River Basin. The largest of the
7752	reservoirs, Jennings Randolph Reservoir, holds 13.4 billion gallons (BG) of water
7753	available to the WMA water suppliers. This reservoir is about 200 miles upstream of the
7754	water supply intakes. It takes more than a week for the releases to reach those intakes
7755	during low flow periods. The second reservoir, Little Seneca Reservoir holds 3.8 BG of
7756	water, and is only about one day's water travel time from the most downstream intake.
7757	This allows a joint operation of these two reservoirs, with the Jennings Randolph
7758	Reservoir being operated in a more strategic fashion, and the Little Seneca Reservoir in a
7759	tactical (day-to-day) mode. The third reservoir on the Potomac watershed is the Savage
7760	Reservoir, in the headwaters of the basin near the Jennings Randolph Reservoir, and
7761	owned by the Upper Potomac River Commission. This reservoir is operated under
7762	guidance from the U.S. Army Corps of Engineers and is used for water quality releases.
7763	From April, 1990 and every five years, the Commission evaluates the adequacy of the
7764	different sources of water supply to the Metropolitan Washington area. The latest report,
7765	(Kame'enui et al., 2005), includes a report of a 1997 study by Steiner et al. of the
7766	potential effects of climate variability and change on the reliability of water supply for
7767	that area.
7768	
7769	The ICPRB inputs temperature, precipitation from five general circulation models

(GCMs), and soil moisture capacity and retention, to a water balance model, to producemonthly average runoff records. The computed Potential Evapotranspiration (PET) is

also used to estimate seasonal water use in residential areas.

7773

The results of the 2005 study indicated that, depending on the climate change scenario, the demand in the Washington metropolitan area could increase in 2030 between 74 and 138 percent greater than the 1990 demand values. According to the report, "resources were significantly stressed or deficient" at that point. The water management component of the model helped determined that, with aggressive plans in conservation and operation policies, existing resources would be sufficient through 2030. In consequence, the study

recommended "that water management consider the need to plan for mitigation of
potential climate change impacts." (Kame'enui *et al.*, 2005, Steiner *et al.*, 1997).

7782

7783 *Case Study H:*

Fire prediction workshops as a model for a climate science-water management process to improve water resources decision support

Fire suppression costs the United States ~ \$1 billion each year. Almost two decades of 7786 7787 research into the associations between climate and fire (e.g., Swetnam and Betancourt, 7788 1998), demonstrate a high potential to predict various measures of fire activity, based on 7789 direct influences, such as drought, and indirect influences, such as growth of fine fuels 7790 such as grasses and shrubs (e.g., Westerling et al., 2002; Roads et al., 2005; Preisler and 7791 Westerling, 2007). Given strong mutual interests in improving the range of tools 7792 available to fire management, with the goals of reducing fire related damage and loss of 7793 life, fire managers and climate scientists have developed a long-term process to improve 7794 fire potential prediction (Garfin et al., 2003; Ochoa and Wordell, 2006) and to better 7795 estimate the costs and most efficient deployment of fire fighting resources. The strength 7796 of collaborations between climate scientists, fire ecologists, fire managers, and 7797 operational fire weather forecasters, is based upon mutual learning and meshing both 7798 complementary knowledge (e.g., atmospheric science and forestry science) and expertise 7799 (e.g., dynamical modeling and command and control operations management) (Garfin, 2005). The emphasis on process, as well as product, may be a model for climate science 7800 7801 in support of water resources management decision-making. Another key facet in 7802 maintaining this collaboration and direct application of climate science to operational 7803 decision-making has been the development of strong professional relationships between 7804 the academic and operational partners. Aspects of developing these relationships that are 7805 germane to adoption of this model in the water management sector include:

7806 7807 Inclusion of climate scientists as partners in annual fire management strategic planning meetings;

7808 7809 • Development of knowledge and learning networks in the operational fire management community;

- Inclusion of fire managers and operational meteorologists in academic research projects and development of verification procedures (Corringham *et al.*, 2008)
 Co-location of fire managers at academic institutions (Schlobohm, *et al.*, 2003).
- 7813

7814 Case Study I:

7815 Incentives to Innovate – Climate Variability and Water Management along the San 7816 Pedro River

7817 The San Pedro River, though small in size, supports one of the few intact riparian 7818 systems remaining in the Southwest. Originating in Sonora, Mexico, the stream flows 7819 northward into rapidly urbanizing southeastern Arizona, eventually joining with the Gila 7820 River, a tributary of the Lower Colorado River. On the American side of the international 7821 boundary, persistent conflict plagues efforts to manage local water resources in a manner 7822 that supports demands generated at Fort Huachuca Army Base and the nearby city of 7823 Sierra Vista, while at the same time preserving the riparian area. Located along a major 7824 flyway for migratory birds and providing habitat for a wide range of avian and other 7825 species, the river has attracted major interest of an array of environmental groups that 7826 seek its preservation. Studies carried out over the past decade highlight the vulnerability 7827 of the river system to climate variability. Recent data indicate that flows in the San Pedro 7828 have declined significantly due in part to ongoing drought. More controversial is the 7829 extent to which intensified groundwater use is depleting water that would otherwise find 7830 its way to the river.

7831

7832 The highly politicized issue of water management in the upper San Pedro River Basin has 7833 led to establishment of the Upper San Pedro Partnership, whose primary goal is balancing 7834 water demands with water supply in a manner that does not compromise the region's 7835 economic viability, much of which is directly or indirectly tied to Fort Huachuca. 7836 Funding from several sources, including among others several NOAA programs and the 7837 Netherlands-based Dialogue on Climate and Water, has supported ongoing efforts to 7838 assess vulnerability of local water resources to climate variability on both sides of the 7839 border. These studies, together with experience from recent drought, point toward 7840 escalating vulnerability to climatic impacts, given projected increases in demand and

Do Not Cite or Quote

Page 332 of 426

7841 likely diminution of effective precipitation over time in the face of rising temperatures 7842 and changing patterns of winter versus summer rainfall (IPCC, 2007). Whether recent 7843 efforts to reinforce growth dynamics by enhancing the available supply through water 7844 reuse or water importation from outside the basin will buffer impacts on the riparian 7845 corridor remain to be seen. In the meantime, climatologists, hydrologists, social 7846 scientists, and engineers continue to work with members of the Partnership and others in 7847 the area to strengthen capacity for an interest in using climate forecast products. A 7848 relatively recent decision to include climate variability and change in a decision-support 7849 model being developed by a University of Arizona engineer in collaboration with 7850 members of the Partnership constitutes a significant step forward in integrating climate 7851 into local decision processes.

7852

The incentives for engagement in solving the problems in the San Pedro include both a "carrot" in the form of federal and state funding for the San Pedro Partnership, and a newly formed water management district, and a "stick" in the form of threats to the future of Fort Huachuca. Fort Huachuca represents a significant component of the economy of southern Arizona, and its existence is at least in part dependent on a showing that endangered species in the river, and the water rights of the San Pedro Riparian Conservation Area, are protected.

7860

7861 4.4 SUMMARY FINDINGS AND CONCLUSIONS

7862 The decision-support experiments discussed here and in chapter 3, together with the

- analytical discussion, have depicted several barriers to use of decision-support
- 7864 experiment information on seasonal to interannual climate information by water resource
- managers. The discussion has also pinpointed a number of ways to overcome these
- 7866 barriers and ensure effective communication, transfer, dissemination, and use of
- information. Our major findings are as follows.
- 7868

7869	Effective integration of climate information in decisions requires identifying topics of
7870	mutual interest to sustain long-term collaborative research and application of decision-
7871	support outcomes: Identifying topics of mutual interests – through forums and other
7872	means of formal collaboration – can lead to information penetration into agency (and
7873	stakeholder group) activities, and produce self-sustaining, participant-managed spin-off
7874	activities. Long-term engagement also allows time for the evolution of science-decision-
7875	maker collaboration, ranging from understanding the roles of various players to
7876	connecting climate to a range of decisions, issues, and adaptation strategies - and
7877	building trust.
7878	
7879	Tools must engage a range of participants including those who generate them, those who
7880	translate them into predictions for decision-maker use, and the decision-makers
7881	themselves. Forecast innovations might combine climate factor observations, analyses of
7882	climate dynamics, and seasonal/interannual forecasts. In turn, users are concerned with
7883	varying problems and issues such as planting times, in-stream flows to support
7884	endangered species, and reservoir operations. While forecasts vary in their skill, multiple
7885	forecasts that examine various factors (e.g., snow pack, precipitation, temperature
7886	variability) are most useful because they provide decision makers better information than
7887	might previously have been available.
7888	
7889	A critical mass of scientists and decision-makers is needed for collaboration to succeed:
7890	Development of successful collaborations requires representation of multiple
7891	perspectives, including diversity of disciplinary and agency-group affiliation. For

Do Not Cite or Quote

Page 334 of 426

7892 example, operations, planning, and management personnel should be involved in 7893 activities related to integrating climate information into decision systems; and there 7894 should be sound institutional pathways for information flow from researchers to decision-7895 makers, including explicit responsibility for information use. Cooperative relationships 7896 that foster learning and capacity building within and across organizations, including 7897 restructuring organizational dynamics, are important, as is training of "integrators" who 7898 can assist stakeholders with using complex data and tools. 7899 7900 What makes a "critical mass critical?" Research on water resource decision-making 7901 suggests that agencies and other organizations define problems differently depending on 7902 whether they are dedicated to managing single-issue problems in particular sectors (*e.g.*, 7903

irrigation, public supply) as opposed to working in political jurisdictions or watershed-

based entities designed to comprehensively manage and coordinate several management

7905 objectives simultaneously (e.g., flood control and irrigation, power generation, and in-

stream flow). The latter entities face the unusual challenge of trying to harmonize

7907 competing objectives, are commonly accountable to numerous users, and require

regionally and locally tailored solutions" to problems (Water in the West, 1998; also,

Kenney and Lord, 1994; Grigg, 1996). A lesson that appears to resonate in our cases is

that decision-makers representing the affected organizations should be incorporated into

7911 collaborative efforts.

7912

Forums and other means of engagement must be adequately funded and supported:

7914 Discussions that are sponsored by boundary organizations and other collaborative

7915	institutions allow for co-production of knowledge, legitimate pathways for climate
7916	information to enter assessment processes, and a platform for building trust.
7917	Collaborative products also give each community something tangible that can be used
7918	within its own system (<i>i.e.</i> , information to support decision making, climate service, or
7919	academic research product). Experiments that effectively incorporate seasonal forecasts
7920	into operations generally have long term financial support, facilitated, in turn, by high
7921	public concern over potential adverse environmental and/or economic impacts. Such
7922	concern helps generate a "receptive audience" for new tools and ideas. Flexible and
7923	appropriate sources of funding must be found that recognize benefits received by various
7924	constituencies on the one hand, and ability to pay on the other. A combination of
7925	privately-funded, as well as publicly-supported revenue sources may be appropriate in
7926	many cases - both because of the growing demands on all sources of decision-support
7927	development, and because such a balance better satisfies demands that support for these
7928	experiments be equitably borne by all who benefit from them. Federal agencies within
7929	CCSP can help in this effort by developing a database of possible funding sources from
7930	all sectors – public and private (Proceedings: Western Governors Association, 2007).
7931	
7932	There is a need to balance national decision-support tool production against
7933	customizable, locally specific needs: Given the diversity of challenges facing decision-
7934	makers, the diverse needs and aspirations of stakeholders, and the diversity of decision-
7935	making authorities, there is little likelihood of providing comprehensive climate services
7936	or "one-stop-shop" information systems to support all decision-making or risk
7937	assessment. Support for tools to help communities and other self-organizing groups

Do Not Cite or Quote

Page 336 of 426

7938	develop their own capacity and conduct their own assessments within a regional context
7939	is essential.

There is a growing push for smaller scale products that are tailored to specific users but

- are expensive; as well as private sector tailored products (*e.g.*, "Weatherbug" and many
- reservoir operations proprietary forecasts have restrictions on how they share data).
- However, private sector products are generally available only to specific paying clients,

and private observing systems generate issues related to trustworthiness of information

and quality control. What are the implications of this push for proprietary vs. public

domain controls and access? This problem is well-documented in policy studies of risk-

based information in the fields of food labeling, toxic pollutants, medical and

7949 pharmaceutical information, and other forms of public disclosure programs (Graham,

7950 2002).

7951

7952 **4.5 FUTURE RESEARCH NEEDS AND PRIORITIES**

7953 Six major research needs are at the top of our list of priorities for investigations by

7954 government agencies, private sector organizations, universities, and independent

researchers. These are:

1) Better understanding the decision-maker context for tool use;

2) Understanding decision-maker perceptions of climate risk and vulnerability;

- 3) Improving the generalizability of case studies on decision-support experiments;
- 4) Understanding the role of public pressures and networks in generating demandsfor climate information;

7961	5) Improving the communication of uncertainties; and
7962	6) Lessons for collaboration and partnering from other natural resource areas.
7963	
7964	Better understanding of the decision-maker context for tool use is needed. While we
7965	know that decision-maker context has a powerful influence on the use of tools, we need
7966	to learn more about how to promote user interactions with researchers at all junctures
7967	within the tool development process.
7968	
7969	The institutional and cultural circumstances of decision-makers and scientists are
7970	important to determining how well – and how likely – collaboration will be. Among the
7971	questions that need to be answered are the following:
7972	• there is much that remains to be learned in regards to organizations and
7973	experiments engaged in transferring and developing climate variability
7974	information;
7975	• the decision space occupied by decision-makers;
7976	• ways to encourage innovation within institutions; and
7977	• the economic status of decision makers.
7978	
7979	Access to information is an equity issue – large water management agencies may be able
7980	to afford sophisticated modeling efforts, consultants to provide specialized information,
7981	and a higher quality of data management and analysis, while smaller or less wealthy
7982	stakeholders generally do not have the same access or the consequent ability to respond
7983	(Hartmann, 2001). Scientific information that is not properly disseminated can

Do Not Cite or Quote

Page 338 of 426

7984	inadvertently result in windfall profits for some and disadvantage others (Pfaff et al.,
7985	1999; Broad and Agrawalla, 2000; Broad et al., 2002). Access and equity issues also
7986	need to be explored in more detail.
7987	
7988	4.5.1 Understanding Decision-Makers' Perceptions of Climate Vulnerability
7989	Much more needs to be known about how to make decision-makers aware of their
7990	possible vulnerability from climate variability impacts to water resources. Research on
7991	the influence of climate science on water management in western Australia, for example,
7992	(Power et al., 2005) suggests that water resource decision-makers can be persuaded to act
7993	on climate variability information if a strategic program of research in support of specific
7994	decisions (e.g., extended drought) can be wedded to a dedicated, timely risk
7995	communication program.
7996	
7997	While we know based on research in specific applications that managers who find
7998	climate forecasts and projections to be reliable are no more likely to use them, those most
7999	likely to use weather and climate information are individuals who have experienced
8000	weather and climate problems in the recent past. The implication of this finding is that
8001	simply delivering weather and climate information to potential users may be insufficient
8002	in those cases in which the manager does not perceive climate to be a hazard – at least in
8003	humid, water rich regions of the U.S. that we have studied.3
8004	

³Additional research on water system manager perceptions is needed, in regions with varying hydrometeorological conditions, to discern if this finding is universally true.

8005 We also need to know more about how the financial, regulatory, and management 8006 contexts influence perceptions of usefulness (Yarnal et al., 2006; Dow et al., 2007). 8007 Achieving a better understanding of these contexts and of the informational needs of 8008 resource managers will require more investigation of their working environments and 8009 intimate understanding of their organizational constraints, motivations, and institutional 8010 rewards. generate much interest; presenting those managers with a Palmer Drought 8011 Severity Index tailored to their state that suggests a possible drought watch, warning, or 8012 emergency will grab their attention (Carbone and Dow, 2005). 8013

8014 4.5.2 Possible Research Methodologies

8015 Case studies increase understanding of how decisions are made by giving specific

8016 examples of decisions and lessons learned. A unique strength offered by the case study

8017 approach is that ". . .only when we confront specific facts, the raw material on the basis

8018 of which decisions are reached – not general theories or hypotheses – do the limits of

8019 public policy become apparent (Starling, 1989)." In short, case studies put a human face

8020 on environmental decision-making by capturing – even if only in a temporal "snapshot,"

8021 the institutional, ethical, economic, scientific, and other constraints and factors that

8022 influence decisions.

8023

8024 One school suggests that a key to case study research that would make it more

8025 generalizable is adoption of a "grounded theory" approach. This approach discerns

8026 general patterns (or principles of behavior common to decisions -e.g., the motives of

8027 decision-makers who collaborated on a common agreement). These patterns are not

Do Not Cite or Quote

Page 340 of 426

8028	experimental - instead, they occur within real-world settings where decision-makers and
8029	the public relied on local knowledge. Thus, they produce more accurate insights into
8030	decision-making than theory building or deduction alone (Glaser and Strauss, 1967;
8031	Goffman, 1974; Fischer, 1995: 78-9). The use of grounded theory also helps us identify
8032	additional cases – at different geographic or temporal scales – to confirm or disconfirm
8033	initial findings, provides "feedback" on real world conditions, and allows us to rethink
8034	initial assumptions, thus providing a foundation for testing theories, as well drawing
8035	lessons for decision makers, citizens, and students about the those conditions that
8036	promote – and inhibit – sustainable development. Finally, cases permit researchers to
8037	reason from analogy; draw comparisons and render contrasts; and capture subtle changes
8038	in decision-maker perceptions, attitudes, or beliefs over time (Yin, 1984; Stone, 1997,
8039	Babbie, 1989).

8041 4.5.3 Public Pressures, Social Movements and Innovation

8042 The extent to which public pressures can compel innovation in decision-support 8043 development and use is an important area of prospective research. As has been discussed 8044 elsewhere in this report, knowledge networks – which provide linkages between various 8045 individuals and interest groups that allow close, ongoing communication and information 8046 dissemination among multiple sectors of society involved in technological and policy 8047 innovations – can be one source of non-hierarchical movement to impel innovation 8048 (Sarewitz and Pielke, 2007; Jacobs, 2005). Such networks can allow continuous 8049 feedback between academics, scientists, policy-makers, and NGOs in at least two ways: 8050 1) by cooperating in seeking ways to foster new initiatives, and 2) providing means of

Do Not Cite or Quote

Page 341 of 426

8051	encouraging common evaluative and other assessment criteria to advance the
8052	effectiveness of such initiatives.

8054	Since the late 1980s, there has arisen an extensive array of local, state (in the case of the
8055	U.S.) and regional/sub-national climate change-related activities in an array of developed
8056	and developing nations. These activities are wide-ranging and embrace activities inspired
8057	by various policy goals – some of which are only indirectly related to climate variability.
8058	These activities include energy efficiency and conservation programs; land use and
8059	transportation planning; and regional assessment. In some instances, these activities have
8060	been enshrined in the "climate action plans" of so-called Annex I nations to the UN
8061	Framework Convention on Climate Change (UNCED, 1992; Rabe, 2004).
8062	
8063	An excellent example of an important network initiative is the International Council of
8064	Local Environmental Initiatives, or ICLEI. ICLEI is a Toronto, Canada-based NGO
8065	representing local governments engaged in sustainable development efforts worldwide.
8066	Formed in 1990 at the conclusion of the World Congress of Local Governments
8067	involving 160 local governments, it has completed studies of urban energy use useful for
8068	gauging growth in energy production and consumption in large cities in developing
8069	countries (e.g., Kugler, 2007; ICLEI, 2007). ICLEI is helping to provide a framework of
8070	cooperation to evaluate energy, transport, and related policies and, in the process, may be
8071	fostering a form of "bottom-up" diffusion of innovation process that functions across
8072	jurisdictions – and even entire nation-states (Feldman and Wilt, 1996; 1999). More
8073	research is needed on how – and how effectively networks actually function and whether

Do Not Cite or Quote

Page 342 of 426

8074	their efforts can shed light on the means by which the diffusion of innovation can be
8075	improved and evaluated.

8077	Another form of public pressure is social movements – hardly unknown in water policy
8078	(e.g., Donahue and Johnston, 1998). Can public pressures through such movements
8079	actually change the way decision-makers look at available sources of information? Given
8080	the anecdotal evidence, much more research is warranted. One of the most compelling
8081	recent accounts of how public pressures can change such perceptions is that by the
8082	historian Norris Hundley on the gradual evolution on the part of city leaders in Los
8083	Angeles, California, as well as members of the public, water agencies, and state and
8084	federal officials – toward diversion of water from the Owens Valley.
8085	
8086	After decades of protests – some violent – over efforts to, at first prevent and then later,
8087	roll back, the amount of water taken from the Owens River, growing pressures by
8088	environmental organizations throughout the state of California, and the nation as a whole
8089	- coupled with withering support by federal agencies that initially "looked the other way"
8090	led the city of Los Angeles to seek an out of court settlement over diversion; to look
8091	seriously at the reports of environmental degradation caused by the volumes of water
8092	transferred, and to compensate the valley for its damages (Hundley, 2001: 347ff). While
8093	Hundley's chronicling of resistance has a familiar ring to students of water policy,
8094	remarkably little research has been done to seek to draw lessons – through the grounded
8095	theory approach discussed earlier – about the impacts of such social movements.
8096	

8097	Communicating uncertainty to users of climate variability information: While uncertainty
8098	is an inevitable factor in regards to climate variability and weather information, the
8099	communication of uncertainty – as our discussion has shown – can be significantly
8100	improved. Better understanding of innovative ways to communicate uncertainty to users
8101	should draw on additional literatures from the engineering, behavioral and social, and
8102	natural science communities (e.g., NRC 2005; NRC 2006). Research efforts are needed
8103	by various professional communities involved in the generation and dissemination of
8104	climate information to better establish how to define and communicate climate variability
8105	risks clearly and coherently – and in ways that are meaningful to water managers.
8106	Additional research is needed to determine the most effective communication,
8107	dissemination and evaluation tools to deliver information on potential impacts of climate
8108	variability, especially with regards to such factors as further reducing uncertainties
8109	associated with future sea level rise, more reliable predictions of changes in frequency
8110	and intensities of tropical and extra-tropical storms, and how saltwater intrusion will
8111	impact freshwater resources, and the frequency of drought. Much can be learned from the
8112	growing experience of RISAs and other decision-support partnerships and networks.
8113	
8114	Research on lessons from other resource management sectors on decision-support use
8115	and decision-maker/researcher collaboration would be useful. While water issues are
8116	ubiquitous and connect to many other resource areas, a great deal of research has been
8117	done on the impediments to, and opportunities for collaboration in, other resource areas
8118	such as energy, forests, coastal zone and hydropower. This research suggests that there is
8119	much that water managers and those who generate seasonal to interannual information on

Do Not Cite or Quote

Page 344 of 426

8120	climate variability could learn from this literature. Among the questions that need further
8121	investigation are those that revolve around innovation (Are there resource areas in which
8122	tool development and use is proceeding at a faster pace than in water management?);
8123	organizational culture and leadership (Are some organizations and agencies more
8124	resistant to change; more hierarchical in their decision-making; more formalized in their
8125	decisional protocols) than is the case in water management?; and collaborative style (Are
8126	some organizations in certain resource areas – or science endeavors better at
8127	collaborating with stakeholder groups in the generation of information tools, or other
8128	activities? (e.g., Kaufman, 1967; Bromberg, 2000). Much can also be learned about
8129	public expectations and the expectations of user groups from their collaborations with
8130	such agencies that could be valuable to the water sector.
8131	
8132	
8133	
8134	
8135	
8136	
8137	
8138	
8139	
8140	
8141	
8142	

8143	CHAPTER 4 REFERENCES
8144	Atwater, R., and W. Blomquist, 2002: Rates, Rights, and Regional Planning in the
8145	Metropolitan Water District of Southern California, Journal of the American
8146	Water Resources Association, 38(5) 1195-1205.
8147	Babbie, E., 1989: The Practice of Social Research, 5th Edition (Belmont, CA:
8148	Wadsworth.
8149	Beecher, J.A., 1995: Integrated Resource Planning Fundamentals. Journal of the
8150	American Water Works Association, 87(6) June, 34-48.
8151	Bennis, W.G., 2003: On Becoming a Leader. De Capo Press,.pp256
8152	Bisson, P.A., B.E. Rieman, C. Luce, P.F. Hessburg, D.C. Lee, J.L. Kershner, G.H.
8153	Reeves, and R.E. Gresswell, 2003: Fire and aquatic ecosystems of the western
8154	USA: current knowledge and key questions. Forest Ecology and Management,
8155	178 , 213-229.
8156	Bormann, B.T., P.G. Cunningham, M.H. Brookes, V.W. Maning, M.W. Collopy, 1993:
8157	Adaptive Ecosystem Management in the Pacific Northwest. USDA Forest Service.
8158	Bras, R. L., 2006: Summary of Reviews of "Consideration of Long-Term Climatic
8159	Variation in SFWMD Planning and Operations" by Obeysekera et al. Report
8160	submitted to the South Florida Water Management District, July 17 2006, 5 pp.
8161	Available online at
8162	<http: bras_review_report.pdf="" pdfs="" root="" site="" sub="" www.sfwmd.gov="">.</http:>
8163	Breuer, N., V.E. Cabrera, K.T. Ingram, K. Broad, P.E. Hildebrand, 2007: AgClimate: a
8164	case study in participatory decision-support system development. Climatic
8165	Change. DOI 10.1007/s10584-007-9323-7.
8166	British Columbia Ministry of Forests, 2000: Definitions of Adaptive Management.
8167	Forest Practices Branch, Alberta, August.

8168	Broad, K., and S. Agrawalla, 2000: The Ethiopia Food Crisis—Uses and Limits of
8169	Climate Forecasts. American Association for the Advancement of Science,
8170	Science Reprint 289, pp 1693-1694.
8171	Broad, K., A. Pfaff, and M. Glantz. 2002: Effective and Equitable Dissemination of
8172	Seasonal-to-Interannual Climate Forecasts: Policy Implications from the Peruvian
8173	Fishery During El Nino 1997-98. Climate Change 00, pp 1-24.
8174	Bromberg, L., 2000: NASA and the Space Industry, Johns Hopkins University press,
8175	Baltimore.
8176	Brown, G., 1997: Environmental Science Under Siege in the U.S. Congress.
8177	Environment, 39, 13-30.
8178	Cabrera, V., N. Breuer et al., 2006: North Florida stakeholder perception toward the use
8179	of climate forecast technology, nutrient pollution, and environmental regulations.
8180	<i>Climatic Change</i> 78 , 479–491.
8181	Cabrera, V. E., N. E. Breuer et al., 2007: Participatory modeling in dairy farm systems:
8182	a method for building consensual environmental sustainability using seasonal
8183	climate forecasts. Climatic Change. DOI 10.1007/s10584-007-9371-z
8184	Cadavid, L.G., R. Van Zee, C. White, P. Trimble, and J. Obeysekera, 1999: Operational
8185	Hydrology in South Florida Using Climate Forecasts. 19th Annual Hydrology
8186	Days, Colorado State University, August 16-20, American Geophysical Union,
8187	Atherton, CA. Available online at
8188	http://sfwmd.gov/org/pld/hsm/reg_app/opln/Publications/opln_hyd_web.pdf.
8189	Callahan, B., E. Miles, D. Fluharty, 1999: Policy implications of climate forecasts for
8190	water resources management in the Pacific Northwest. Policy Sciences, 32(3),
8191	269–293.
8192	Carbone, G. J., and K. Dow, 2005: Water resource management and drought forecasts in
8193	South Carolina. Journal American Water Resources Association, 4, 44-155.

8194	Carothers, S.W., B.T. Brown 1991: The Colorado River Through Grand Canyon.
8195	Tuscon: The University of Arizona Press
8196	Cash, David W., and J. Buizer, 2005: Knowledge-Action Systems for Seasonal to Inter-
8197	annual Climate Forecasting: Summary of a Workshop. Report to the Roundtable
8198	on Science and Technology for Sustainability. Washington, D.C.: National
8199	Research Council/National Academy of Sciences.
8200	Cash, Donald W., W.C. Clark, F. Alcock, N.M. Dickson, N. Eckley, D.H. Guston, J.
8201	Jager, and R.B.H. Mitchell, 2003: Knowledge Systems for Sustainable
8202	Development. Proceedings of the National Academy of Science – Science and
8203	Technology for Sustainable Development 100: 8086-8091.
8204	Cash, D.W., 2001: In Order to Aid in Diffusing Useful and Practical Information:
8205	Agricultural Extension and Boundary Organizations. Science, Technology, &
8206	Human Values, 26(4) , 431-453.
8207	CDWR (California Department of Water Resources), 2007: DWR Signs Agreement with
8208	NOAA for Climate Research. Press Release.
8209	http://www.publicaffairs.water.ca.gov/newsreleases/2007/090707summit.cfm
8210	Cody, B.A., 1999: Western Water Resource Issues, A Congressional Research Service
8211	Brief for Congress. Washington, D.C.: Congressional Research Service, March
8212	18.
8213	Corringham, T., A.L. Westerling, and B. Morehouse, 2008 ^E : Exploring Use of Climate
8214	Information in Wildland Fire Management: A Decision Calendar Study. Journal
8215	of Forestry, accepted.
8216	Cortner, H.A., and M.A. Moote, 1994: "Setting the Political Agenda: Paradigmatic
8217	Shifts in Land and Water Policy," pp. 365-377, in R.E. Grumbine, ed.,
8218	Environmental Policy and Biodiversity. Washington, D.C.: Island Press.
8219	The Council of State Governments, Water Wars, July, 2003.

Do Not Cite or Quote

8220	Crawford, B., G. Garfin, R. Ochoa, R. Heffernan, T. Wordell, and T. Brown, 2006:
8221	NSAW Proceedings. Institute for the Study of Planet Earth, The University of
8222	Arizona, Tucson, AZ. < http://www.ispe.arizona.edu/climas/reports/>
8223	Desilets, S.L.E., B. Nijssen, B. Ekwurzel, and T.P.A. Ferré, 2006: Post-wildfire changes
8224	in suspended sediment rating curves: Sabino Canyon, Arizona. Hydrologic
8225	Processes, (in press).
8226	Donahue, J.M., and B.R. Johnston, 1998: Water, Culture, and Power: Local Struggles in
8227	a Global Context, Island Press, Washington, D.C.
8228	Dow, K., R.E. O'Connor, B.Yarnal, G.J. Carbone, and C.L. Jocoy, 2007: Why Worry?
8229	Community water system managers' perceptions of climate vulnerability. Global
8230	Environmental Change, 17, 228-237.
8231	Earles, T.A., K.R. Wright, C. Brown, and T.E. Langan, 2004: Los Alamos forest fire
8232	impact modeling. Journal of the American Water Resources Association, 40, 371-
8233	384.
8234	Ekwurzel, B., 2004: Flooding during a drought? Climate variability and fire in the
8235	Southwest. Southwest Hydrology, September/October 2004, pp. 16-17.
8236	Enfield, D.B., A.M. Nunez, and P.J. Trimble, 2001: The AMO and its Relationship to
8237	Rainfall and River Flow in the Continental U.S. Geophysical Research Letters,
8238	28, 2077-2080.
8239	Feldman, D.L., and C. Wilt, 1996: Evaluating the Implementation of State-Level Global
8240	Climate Change Programs. Journal of Environment and Development, 5(1), 46-
8241	72.
8242	Feldman, D.L., and C.A. Wilt, 1999: Climate-Change Policy from a Bioregional
8243	Perspective: Reconciling Spatial Scale with Human and Ecological Impact, pp.
8244	133-154, in Bioregionalism, ed. by Michael V. McGinnis. London: Routledge.

Do Not Cite or Quote

8245	Feldman, M., and A. Khademian, 2004: Inclusive Management: Building Relationships
8246	with the Public. Center for the Study of Democracy (University of California,
8247	Irvine). Paper 04'12.
8248	Fischer, F., 1995: "Situational Validation," in, Evaluating Public Policy. Chicago:
8249	Nelson-Hall.
8250	Fiske, G., and A. Dong, 1995: IRP: A Case Study From Nevada. Journal of the American
8251	Water Works Association, 87(6), 72-83.
8252	Florida Department of Environmental Protection and South Florida Water
8253	Management District, 2007: Executive Summary: 2007 South Florida
8254	Environmental Report, 49 pp. Available online at
8255	https://my.sfwmd.gov/portal/page?_pageid=2714,14424181,2714_14424223&_da
8256	d=portal&_schema=PORTAL.
8257	Fraisse, C., J. Bellow, N. Breuer, V. Cabrera, J. Jones, K. Ingram, G. Hoogenboom, J.
8258	Paz, 2005: Strategic Plan for the Southeast Climate Consortium Extension
8259	Program. Southeast Climate Consortium Technical Report Series. Gainesville,
8260	University of Florida: 12 pp. http://secc.coaps.fsu.edu/pdfpubs/SECC05-002.pdf
8261	Fraisse, C. W., N.E. Breuer, D. Zierden, J.G. Bellow, J. Paz, V.E. Cabrera, A. Garcia y
8262	Garcia, K.T. Ingram, U. Hatch, G. Hoogenboom, J.W. Jones, and J.J. O'Brien,
8263	2006: AgClimate: A climate forecast information system for agricultural risk
8264	management in the southeastern USA. Computers and Electronics in Agriculture,
8265	53 , 13–27.
8266	Gallaher, B.M., and R.J. Koch, 2004: Cerro Grande fire impacts to water quality and
8267	streamflow near Los Alamos National Laboratory: Results of four years of
8268	monitoring. LANL Report No. LA 14-177, issued September, 2004. Los Alamos
8269	National Laboratory, Los Alamos, New Mexico.
8270	Garfin, G. and B. Morehouse (eds.), 2001: 2001 Fire Climate Workshops. Proceedings
8271	of workshops held February 14-16 and March 28, 2001, Tucson, Arizona.

8272	Institute for the Study of Planet Earth, The University of Arizona, Tucson, AZ.
8273	<http: climas="" conferences="" fire2001="" fire2001.pdf="" www.ispe.arizona.edu=""></http:>
8274	Garfin, G.M., 2005: Fire Season Prospects Split East of the Rockies. Wildfire,
8275	(March/April).
8276	Garfin, G.M., T.Wordell, T. Brown, R. Ochoa, and B. Morehouse, 2003: The 2003
8277	National Seasonal Assessment Workshop: A Proactive Approach to Preseason
8278	Fire Danger Assessment. American Meteorological Society 5th Symposium on
8279	Fire and Forest Meteorology: Extended Abstracts, J9.12. Boston: AMS. 7 p.
8280	Garfin, G., 2006: Arizona Drought Monitoring. North American Drought Monitor
8281	Forum, Mexico City, D.F., Mexico, American Meteorological Society.
8282	<http: 2006="" climate="" nadm-<="" oa="" research="" td="" www.ncdc.noaa.gov=""></http:>
8283	workshop/20061018/1161187800-abstract.pdf>
8284	Garfin, G., R. Emanuel 2006: Arizona Weather & Climate. Arizona Watershed
8285	Stewardship Guide. Tucson, University of Arizona Cooperative Extension: 14 pp.
8286	<http: cals.arizona.edu="" index.html="" resources="" watershedsteward=""></http:>
8287	GDTF (Governor's Drought Task Force), 2004: Arizona Drought Preparedness Plan:
8288	Operational Drought Plan. Phoenix: Arizona Department of Water Resources, 107
8289	p. <http: adpplan.html="" drought="" dwr="" www.azwater.gov=""></http:>
8290	Gibbons, M., 1999: Science's new social contract with society. Nature 402, C81-C84
8291	(Supplemental).
8292	Gillilan, D., and T.C. Brown, 1997: Instream Flow Protection: Seeking a Balance in
8293	Western Water Use, Island Press, Washington, D.C.
8294	Glaser, B., and A. Strauss, 1967: The Discovery of Grounded Theory. Chicago: Aldine.
8295	Goffman, E., 1974: Frame Analysis, Harvard University Press, Cambridge, MA.

8296	Graham, M. 2002: Democracy by Disclosure: The Rise of Technopopulism, Brookings
8297	Institution Press, Washington, D.C.
8298	Grigg, N.S. 1996: Water Resources Management: Principles, Regulations, and Cases,
8299	McGraw Hill, New York.
8300	Guston, D.H., 2001: Boundary Organizations in Environmental Science and Policy: An
8301	Introduction. Science, Technology, and Human Values, 26(4), Special Issue:
8302	Boundary Organizations in Environmental Policy and Science, Autumn: 399-408.
8303	Hammer, G.L., J.W. Hansen, J.G. Philips, J.W. Mjelde, H. Hill, A. Love, A. Potgieter
8304	2001: Advances in application of climate prediction in agriculture. Agric.
8305	Systems, 70 , 515-553
8306	Hartig, J. H., D.P. Dodge, L. Lovett-Doust, and K. Fuller, 1992: "Identifying the Critical
8307	Path and Building Coalitions for Restoring Degraded Areas of the Great Lakes,"
8308	pp. 823-830, in Water Resources Planning and Management: Saving a
8309	Threatened Resource. New York: Conference on Water Resources Planning and
8310	Management, ASCE.
8311	Hartmann, H., 2001: Stakeholder Driven Research in a Hydroclimatic Context,
8312	Dissertation, Dept. of Hydrology and Water Resources, University of Arizona.
8313	Hartmann, H.C., T.C. Pagano, S. Sorooshian, and R. Bales, 2002: Confidence Builders:
8314	Evaluating Seasonal Climate Forecasts from User Perspectives. Bulletin of the
8315	American Meteorological Society, 683-698.
8316	Hayhoe, K., and 18 others, 2004: Emissions pathways, climate change, and impacts on
8317	California. Proceedings of the National Academy of Sciences 101(34):12422-
8318	12427.
8319	Hildebrand, P.E., A. Caudle, V. Cabrera, M. Downs, M. Langholtz, A. Mugisha, R.
8320	Sandals, A. Shriar, and D. Veach, 1999: Potential Use of Long Range Climate
8321	Forecasts by Agricultural Extension in Florida. Florida Consortium Technical
8322	Report Series. Gainesville.

Do Not Cite or Quote

Page 352 of 426

8323	HRC-GWRI, 2006: Integrated Forecast and Reservoir Management (INFORM) for
8324	Northern California: System Development and Initial Demonstration. California
8325	Energy Commission, PIER Energy-Related Environmental Research, CEC-500-
8326	2006-109, Sacramento, CA, 243pp. + 9 Appendices.
8327	<http: cec-500-2006-109.html="" final_project_reports="" pier="" www.energy.ca.gov=""></http:>
8328	Hundley, N. Jr., 2001: The Great Thirst – Californians and Water: A History,
8329	University of California press, Berkeley and Los Angeles.
8330	Hurd, B.H., N. Leary, R. Jones, and J.B. Smith, 1999: Relative Regional Vulnerability of
8331	Water Resources to Climate Change. Journal of the American Water Resources
8332	Association (JAWRA), 35(6), 1399-1410.
8333	ICLEI (International Council on Local Environmental Initiatives) 2007: ICLEI's
8334	Climate Resilient Communities Program Addresses Adaptation, Vulnerabilities.
8335	ICLEI – Local Governments for Sustainability, April 11.
8336	<http: index.php?id="1487&tx_ttnews" www.iclei.org=""></http:>
8337	Ingram, H., and B. Bradley, 2006: Sustainability: Policy Innovation
8338	and Conditions for Adaptive Learning. Draft discussion paper prepared for the
8339	SMEP Academy, November 18-19.
8340	IPCC, 2007a: Climate Change 2007. The Physical Science Basis. Contribution of
8341	Working Group I to the Fourth Assessment Report of the Intergovernmental Panel
8342	on Climate Change (Solomon, S., D. Qin, M. Manning, Z. Chen, M. Marquis,
8343	K.B. Averyt, M. Tignor, and H. L. Miller (eds.) Cambridge University Press,
8344	Cambridge, U.K., and New York, NY, U.S.A.
8345	IPCC, 2007b: Climate Change 2007. Impacts, Adaptation, and Vulnerability. Working
8346	Group II Contribution to the Intergovernmental Panel on Climate Change Fourth
8347	Assessment Report. Summary for Policymakers (Neil Adge, et. al.) Geneva,
8348	Switzerland: IPCC Secretariat, April.

8349	Jacobs, K., 2003: Connecting Science, Policy, and Decision-Making – A Handbook for
8350	Researchers and Science Agencies. Boulder, CO: Office of Global Programs,
8351	NOAA.
8352	Jacobs, K.L., G.M. Garfin and M. Lenart, 2005: More than Just Talk: Connecting
8353	Science and Decisionmaking. Environment, 47, No. 9, Nov. 2005, p 6-22.
8354	Jacobs, K, 2001: Infrastructure. In: C. Rosenzweig, & W. D. Solecki (Eds), Climate
8355	change and a global city: The potential consequences of climate variability and
8356	change – metro east coast. Report for the U.S. Global Change Program, National
8357	Assessment of the Potential Consequences of Climate Variability and Change for
8358	the United States. New York: Columbia Earth Institute.
8359	Jacobs, K., V. Gornitz, and C. Rosenzweig, 2007: Vulnerability of the New York City
8360	metropolitan area to coastal hazards, including sea level rise: Inferences for urban
8361	coastal risk management and adaptation policies. In Managing Coastal
8362	Vulnerability (L. McFadden, R. Nicholls, and E. Penning-Rowsell, Eds.), pp. 141-
8363	158. Elsevier.)
8364	Jagtap, S. S., J. W. Jones, et al. 2002: Responding to Stakeholders' Demands for Climate
8365	Information: From Research to Applications in Florida. Agricultural Systems, 74,
8366	415-430.
8367	Jasanoff, S., and B.Wynne, 1998: "Science and decision-making." in, Rayner, S.,
8368	Malone, E.L. (Eds.), Human Choice and Climate Change. Battelle Press,
8369	Columbus: pp. 1–88.
8370	Jones, J.W., J.W. Hansen, F.S. Royce, C.D. Messina, 2000: Potential benefits of climate
8371	forecast to agriculture. Agriculture, Ecosystems, and Environment 82, 169-184.
8372	Kame'enui, A., E. R. Hagen, and J. E. Kiang, 2005: Water Supply Reliability Forecast
8373	for the Washington Metropolitan Area, Interstate Commission on the Potomac
8374	River Basin, Report No. 05-06, June.

8375	Kaufman, H., 1967: The Forest Ranger: A Study in Administrative Behavior.
8376	Washington, DC: Resources for the Future.
8377	Kitzberger, T., P. M. Brown, E. K. Heyerdahl, T. W. Swetnam, and T. T. Veblen, 2007:
8378	Contingent Pacific-Atlantic Ocean influence on multicentury wildfire synchrony
8379	over western North America. Proceedings of the National Academy of Sciences of
8380	the United States of America, 104(2) , 543-548.
8381	Kenney, D.S., and W.B. Lord, 1994: Coordination Mechanisms for the Control of
8382	Interstate Water Resources: A Synthesis and Review of the Literature. Report for
8383	the ACF-ACT Comprehensive Study. U.S. Army Corps of Engineers, Mobile
8384	District, July.
8385	Knowles, N., M.D. Dettinger, and D.R. Cayan, 2006: Trends in snowfall versus rainfall
8386	in the western United States. Journal of Climate, 19:4545-4559.
8387	Kreutz, D., 2006: Sabino Canyon is 'forever changed." Arizona Daily Star, August 12,
8388	2006. <http: 141817="" printds="" sn="" www.azstarnet.com=""></http:>
8389	Kugler, S., 2007: "Greenhouse gas study says 1 pct from NYC." Associated Press –
8390	Press release, April 11.
8391	Kuyumjian, G., 2004: The BAER Team: Responding to post-fire threats. Southwest
8392	<i>Hydrology</i> , 3(5) , 14-15, 32.
8393	Landre, B. K., and B.A. Knuth, 1993: Success of Citizen Advisory Committees in
8394	Consensus Based Water Resources Planning in the Great Lakes Basin. Society
8395	and Natural Resources, 6(3), July-September: 229.
8396	Lee, K. N. 1999: Appraising adaptive management. <i>Conservation Ecology</i> 3(2) : 3.
8397	Lee, K.N., 1993: Compass and Gyroscope: Integrating Science and Politics for the
8398	Environment, Island Press, Washington, D.C.

8399	Lemos, M. C. and L. Dilling 2007: Equity in forecasting climate: Can science save the
8400	world's poor? Science and Public Policy, in press.
8401	Lemos, M.C., and B. Morehouse, 2005: The co-production of science and policy in
8402	integrated climate assessments. Global Environmental Change: Human and
8403	Policy Dimensions, 15, 57-68.
8404	Lund, J., E. Hanak, W. Fleenor, R. Howitt, J. Mount, and P. Moyle, 2007: Envisioning
8405	futures for the Sacramento-San Joaquin Delta. Public Policy Institute of
8406	California. 285 pp.
8407	May, P.J., R.J. Burby, N.J. Ericksen, J.W. Handmer, J.E. Dixon, S. Michael, and S.D.
8408	Ingle. 1996: Environmental Management and Governance: Intergovernmental
8409	Approaches to Hazards and Sustainability. New York: Routledge.
8410	McGinnis, M.V., 1995: On the Verge of Collapse: The Columbia River System, Wild
8411	Salmon, and the Northwest Power Planning Council. Natural Resources Journal,
8412	35 , 63-92.
8413	McNie, E., R. Pielke, Jr., D. Sarewitz, 2007: Climate Science Policy: Lessons from the
8414	RISAs – Workshop Report – Final Draft, August 15–17, 2005 East-West Center
8415	Honolulu, Hawaii. January 26, 2007.
8416	McNie, E., 2007: Reconciling the supply of scientific information with user demands: an
8417	analysis of the problem and review of the literature. Environmental Science and
8418	<i>Policy</i> , 10 , 17-38.
8419	(MDBC) Murray-Darling River Basin, 2002: About the Initiative.
8420	<http: about="" agreement_history.htm="" governance="" www.mdbc.gov.au="">.</http:>
8421	Meinke, H., and R. Stone, 2005: Seasonal and inter-annual climate forecasting: the new
8422	tool for increasing preparedness to climate variability and change in agricultural
8423	planning and operations. Climatic Change, 70, 221–253.

8424	Meixner, T., and P. Wohlgemuth, 2004: Wildfire impacts on water quality. Southwest
8425	<i>Hydrology</i> , 3(5) , 24-25.
8426	Meko D. M., C.A.Woodhouse, C.H. Baisan, T. Knight, J.J. Lukas, M.K. Hughes, and
8427	M.W. Salzer, 2007: Medieval drought in the Upper Colorado River Basin.
8428	Geophysical Research Letters, 34 (10, L10705), 10.1029/2007GL029988.
8429	Miller, K., S.L. Rhodes, L.J. MacDonnell, 1996: Global Change in Microcosm: The Case
8430	of U.S. Water Institutions. Policy Sciences, 29, 271-2.
8431	Moody, T., 1997: Glen Canyon Dam: Coming to an Informed Decision. Colorado River
8432	Advocate - Grand Canyon Trust (Fall)
8433	<http: articles97.htm="" www.glencanyon.org="">.</http:>
8434	Morehouse, B. (ed). 2000: The Implications of La Niña and El Niño for Fire
8435	Management. Proceedings of workshop held February 23-24, 2000, Tucson,
8436	Arizona. Climate Assessment for the Southwest, Institute for the Study of Planet
8437	Earth, The University of Arizona, Tucson, AZ.
8438	<http: climas="" conferences="" fire2000="" fireproc.pdf="" www.ispe.arizona.edu=""></http:>
8439	National Research Council (NRC), 2008: Research and Networks for Decision Support
8440	in the NOAA Sectoral Applications Research Program Panel on Design Issues for
8441	the NOAA Sector Applications Research Program, Helen M. Ingram and Paul C.
8442	Stern, Editors, National Research Council
8443	<http: 12015.html="" catalog="" www.nap.edu=""></http:>
8444	National Research Council (NRC), 2007: Colorado River Basin Water Management:
8445	Evaluating and Adjusting to Hydroclimatic Variability. Committee on the
8446	Scientific Bases of Colorado River Basin Water Management. Washington, D.C.,
8447	The National Academies Press, 222 p
8448	National Research Council (NRC), 2006: Toward a New Advanced Hydrologic
8449	Prediction Service (AHPS) Committee to Assess the National Weather Service
8450	Advanced Hydrologic Prediction Service Initiative. Washington, DC: National

8451	Research Council ISBN: 0-309-65847-0.			
8452	<http: 11598.html="" catalog="" www.nap.edu=""></http:>			
8453	National Research Council (NRC), 2005: Decision Making for the Environment: Social			
8454	and Behavioral Science Research Priorities. Garry D. Brewer and Paul C. Stern,			
8455	Editors, Panel on Social and Behavioral Science Research Priorities for			
8456	Environmental Decision Making, Committee on the Human Dimensions of			
8457	Global Change. Washington, DC.			
8458	National Research Council (NRC), 2004: Adaptive Management for Water Resources			
8459	Project Planning. Panel on Adaptive Management for Resource Stewardship.			
8460	Committee to Assess the U.S. Army Corps of Engineers Methods of Analysis and			
8461	Peer Review for Water Resources Project Planning. Washington, DC.			
8462	National Research Council (NRC), 1999a: Making Climate Forecasts Matter. Panel on			
8463	the Human Dimensions of Seasonal-to-Inter-annual Climate Variability.			
8464	Committee on the Human Dimensions of Global Change. Washington, D.C.:			
8465	National Academy Press.			
8466	National Research Council (NRC), 1999b: Our Common Journey: A Transition Toward			
8467	Sustainability. Washington, D.C.: National Academy Press.			
8468	National Research Council (NRC), 1996: Understanding Risk: Informing decisions in a			
8469	Democratic Society. P.C. stern and H.V. Fineberg, editors. Committee on Risk			
8470	characterization, Commission on Behavioral and Social Sciences and Education.			
8471	Washington, D.C.: National Academy Press.			
8472	National Research Council. (NRC), 1989: Improving Risk Communication. Committee			
8473	on Risk Perception and Communication. Commission on Behavioral and Social			
8474	Sciences and Education and Commission on Physical Sciences, Mathematics, and			
8475	Resources. Washington, D.C.: National Academy Press.			
8476	Newson, M., 1997: Land, Water and Development: Sustainable Management of River			
8477	Basin Systems. 2nd Edition. New York: Routledge.			

8478	Noss, R. F., J. F. Franklin, W. L. Baker, T. Schoennagel, and P. B. Moyle, 2006:
8479	Managing fire-prone forests in the western United States. Frontiers in Ecology
8480	and the Environment, 4(9) , 481-487.
8481	Obeysekera, J., P. Trimble, C. Neidrauer, C. Pathak, J. VanArman, T. Strowd, and C.
8482	Hall, 2007: Appendix 2-2: Consideration of long-term climatic variability in
8483	regional modeling for SFWMD planning and operations. 2007 South Florida
8484	Environmental Report, Florida Department of Environmental Protection and
8485	South Florida Water Management District, 47 pp. Available online at
8486	<http: appendices="" sfer="" sfer_2007="" v1_app_2-2.pdf="" www.sfwmd.gov=""></http:>
8487	Ochoa, R., and T. Wordell, 2006: Improved Decision Support For Proactive Wildland
8488	Fire Management. Fire Management Today.
8489	Pagano, T., H. C. Hartmann, and S. Sorooshian, 2002: Factors affecting seasonal forecast
8490	use in Arizona water Management: a case study of the 1997-98 El Niño. Climate
8491	Research, 21 , 259-269.
8492	Pfaff. A., K. Broad, and M. Glantz, 1999: Who Benefits from Climate Forecasts? Nature,
8493	397 , 645-646.
8494	Pielke Jr., R.A., D. Sarewitz, R. Byerly Jr., 2000: "Decision making and the future of
8495	nature: understanding and using predictions." in: Sarewitz, D., Pielke, Jr., R.A.,
8496	Byerly, Jr., R. (Eds.), Prediction: Science, Decision Making, and the Future of
8497	Nature. Island Press. Washington, DC: pp. 361–387.
8498	Power, S., B. Sadler, and N. Nicholls, 2005: The Influence of Climate Science on Water
8499	Management in Western Australia: Lesssons for Climate Scientists. Bulletin of the
8500	American Meteorological Society, June, 839-844.
8501	Preisler, H.K., and A.L. Westerling, 2007: Statistical Model For Forecasting Monthly
8502	Large Wildfire Events in Western United States. Journal of Applied Meteorology
8503	and Climatology, 46 , 1020-1030.

8504	Proceedings: Western Governors Association, Western States Water Council, and		
8505	California Department of Water Resources. 2007. May 2007 Climate Change		
8506	Research Needs Workshop, September.		
8507	Rabe, B.G., 2004: Statehouse and Greenhouse: The Emerging Politics of American		
8508	Climate Change Policy. Washington, D.C.: Brookings Institution.		
8509	Restoring the Waters, 1997: Boulder, CO: Natural Resources Law Center, the University		
8510	of Colorado School of Law, May.		
8511	Roads, J. O., F. M. Fujioka, S.C. Chen, and R.E. Burgan, 2005: Seasonal fire danger		
8512	forecasts for the USA. International Journal of Wildland Fire, 14, 1-18.		
8513	Roncoli, C., J. Paz, N. Breuer, K. Ingram, G. Hoogenboom, and K. Broad, 2006:		
8514	Understanding Farming Decisions and Potential Applications of Climate		
8515	Forecasts in South Georgia. Southeast Climate Consortium Technical Report		
8516	Series. Gainesville, FL, Southeast Climate Consortium: 24 pp.		
8517	Rosenzweig, C., D.C. Major, K. Demong, C. Stanton, R. Horton, and M. Stults, 2007:		
8518	Managing climate change risks in New York City's water systems: Assessment		
8519	and adaptation planning. Mitigation and Adaptation Strategies for Global Change		
8520	DOI 10.1007/s11027-006-9070-5.		
8521	Rosenzweig, C. and W.D. Solecki (Eds.), 2001: Climate Change and a Global City: The		
8522	Potential Consequences of Climate Variability and Change—Metro East Coast.		
8523	Columbia Earth Institute. New York. 224pp.		
8524	Sarewitz, D., and R.A. Pielke, Jr., 2007: The Neglected Heart of Science Policy:		
8525	Reconciling Supply of and Demand for Science. Environmental Science and		
8526	<i>Policy</i> . 10, 5-16.		
8527	Schlobohm, P.M., B.L. Hall, and T.J. Brown, 2003: Using NDVI to determine green-up		
8528	date for the National Fire Danger Rating System. Proceedings American		
8529	Meteorological Society Fifth Symposium on Fire and Forest Meteorology, 15 pp.		

8530	South Florida Water Ma	nagement District, 1996: Climate C	Change and Variability:
8531	How Should The District Respond? South Florida Water Management District,		
8532	West Palm Beach Florida, 27 pp.		
8533	<www.sfwmd.gov <="" td=""><td>/org/pld/hsm/pubs/ptrimble/solar/clin</td><td>n1.pdf>.</td></www.sfwmd.gov>	/org/pld/hsm/pubs/ptrimble/solar/clin	n1.pdf>.
8534	SSCSE (Senate Standing G	Committee on Science and the Envir	onment) 1979: Continuing
8535	Scrutiny of Pollution	on: the River Murray. Parliamentary	Paper 117/79.
8536	Government Printe	r, Canberra.	
8537	Starling, G., 1989: Strates	gies for Policy Making. Chicago: Do	rsey.
8538	Steiner, R.C., J.J. Boland,	N.N. Ehrlich, G.S. Choudhury, W.	Feitz, S. McCusker, and A.
8539	Yamamoto, 1997:	Water Resources Management in the	Potomac River Basin
8540	under Climate Unc	ertainty. Interstate Commission on th	ne Potomac River Basin,
8541	ICPRB 94-3.		
8542	Stone, D., 1997: Policy Po	aradox: The Art of Political Decision	Making. New York:
8543	W.W. Norton.		
8544	Swetnam, T. W., and J. L.	Betancourt, 1998: Mesoscale Distur	bance and Ecological
8545	Response to Decad	al Climatic Variability in the Americ	can Southwest. Journal of
8546	<i>Climate</i> , 11 , 3128-	47.	
8547	Tichy, N.M., and W.G. Be	ennis, 2007: Judgment: How Winning	g Leaders Make Great
8548	Calls. New York: I	Penguin Group.	
8549	Transition of Research A	pplications to Climate Services (T	RACS) Program, 2008:
8550	NOAA Climate pro	ogram Office, Washington, D.C.	
8551	<http: td="" www.cpo.n<=""><td>oaa.gov/cpo_pa/nctp/></td><td></td></http:>	oaa.gov/cpo_pa/nctp/>	
8552	Trimble, P.J., E.R. Santee	e, and C.J. Neidrauer, 1997: Including	g the Effects of Solar
8553	Activity for More Efficient Water Management: An Application of Neural		plication of Neural
8554	Networks. Second	International Workshop on Artificial	Intelligence Applications
8555	in Solar-Terrestria	l Physics, Sweden. Available at	
8556	<http: td="" www.sfwm<=""><td>d.gov/org/pld/hsm/pubs/ptrimble/sol</td><td>ar/final_dec3.pdf>.</td></http:>	d.gov/org/pld/hsm/pubs/ptrimble/sol	ar/final_dec3.pdf>.
	Do Not Cite or Quote	Page 361 of 426	Public Review Draft

8557	Trimble, P.J., E.R. Santee, and C.J. Neidrauer, 1998: A Refined Approach to Lake		
8558	Okeechobee Water Management: An Application of Climate Forecasts. South		
8559	Florida Water Management District Special Report, 73 pp. Available at		
8560	<http: hsm="" org="" pld="" ptrimble="" pubs="" report="" report.pdf="" solar="" www.sfwmd.gov="">.</http:>		
8561	Trimble, P.J., and B.M. Trimble, 1998: Recognition and Predictability of Climate		
8562	Variability within South-Central Florida. 23rd Annual Climate Diagnostic and		
8563	Prediction Workshop, Rosenstiel School of Marine and Atmospheric Science,		
8564	University of Miami, Florida, October 26-30. Available online at		
8565	<http: cpc_paper.ht<="" hsm="" org="" pld="" ptrimble="" pubs="" solar="" td="" workshop="" www.sfwmd.gov=""></http:>		
8566	m>		
8567	(UNCED) United Nations Conference on Environment and Development, 1992: Nations		
8568	of the Earth Report, volume 1: National Report Summaries. Geneva, Switzerland.		
8569	Wade, W.W., 2001: Least-Cost Water Supply Planning. Presentation to the Eleventh		
8570	Tennessee Water Symposium, Nashville, Tennessee, April 15.		
8571	Warren, D.R., G.T. Blain, F.L. Shorney, and L. J. Klein, 1995: IRP: A Case Study From		
8572	Kansas. Journal of the American Water Works Association, 87(6), 57-71.		
8573	Water in the West: Challenge for the Next Century, 1998: Report of the Western Water		
8574	Policy Review Advisory Commission. Published by National Technical		
8575	Information Service: Springfield, Virginia, June.		
8576	Wells, A. 1994: Up and Doing: a brief history of the Murray Valley Development		
8577	League, now the Murray Darling Association, from 1944 to 1994. Murray		
8578	Darling Association, Albury.		
8579	Westerling, A.L., A. Gershunov, D.R. Cayan, and T.P. Barnett, 2002: Long lead		
8580	statistical forecasts of area burned in western U.S. wildfires by ecosystem		
8581	province. International Journal of Wildland Fire, 11, 257-266.		

8582	Westerling, A. L., H. G. Hidalgo, D. R. Cayan, and T. W. Swetnam, 2006: Warming and		
8583	earlier spring increase western US forest wildfire activity. Science, 313(5789),		
8584	940-943.		
8585	Woodhouse, C.A. and J.J. Lukas, 2006: Drought, Tree Rings, and Water Resource		
8586	Management in Colorado. Canadian Water Resources Journal, 31(4), 1-14.		
8587	Woodhouse, C.A., and J.J. Lukas, 2006: Drought, tree rings, and water resource		
8588	management. Canadian Water Resources Journal, 31, 297-310.		
8589	Woodhouse, C.A., S.T. Gray, et al., 2006: Updated streamflow reconstructions for the		
8590	Upper Colorado River Basin. Water Resources Research, 42(W05415).		
8591	Yarnal, B., A.L. Heasley, R.E. O'Connor, K. Dow, and C.L. Jocoy, 2006: The potential		
8592	use of climate forecasts by Community Water System managers. Land Use and		
8593	<i>Water Resources Research</i> , 6 , 3.1-3.8, <hhtp: www.luwrr.com="">.</hhtp:>		
8594	Yin, R.K., 1984: Case Study Research: Design and Methods. Beverly Hills, CA: SAGE.		
8595	Zhang, E., and P.J. Trimble, 1996: Predicting Effects of Climate Fluctuations for Water		
8596	Management by Applying Neural Networks. World Resource Review, 8, 334-348.		
8597	Zimmerman, R., 2001: Institutional decision-making. In: C. Rosenzweig, & W. Solecki,		
8598	(Eds), Climate change and a global city: The potential consequences of climate		
8599	variability and change – metro east coast. Report for the U.S. Global Change		
8600	Program, National Assessment of the Potential Consequences of Climate		
8601	Variability and Change for the United States. New York: Columbia Earth		
8602	Institute.		
8603			
8604			
8605 8606			