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Abstract

We present a stable and convergent method for the computation of flows of DNA-

laden fluids in microchannels with complex geometry. The numerical strategy com-

bines a ball-rod model representation for polymers tightly coupled with a projection

method for incompressible viscous flow. We use Cartesian grid embedded bound-

ary methods to discretize the fluid equations in the presence of complex domain

boundaries. A sample calculation is presented showing flow through a packed array

microchannel in 2D.
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1 Introduction

Modeling complex biological fluids is a challenge because these types of flows

are not well understood, and the constitutive behavior of these types of fluids

are not easily represented. Modeling is further complicated when restricted

to the microscale due to the presence of large particles in the fluid whose

molecular lengths are comparable to the flow geometry. For example, a highly

concentrated solution of suspended polymer molecules may be represented

at large scales with a continuum Oldroyd-B constitutive model (e.g., [12]).

However, when the geometry length scales are comparable to the inter-polymer

spacing a continuum approximation is no longer appropriate. Additionally,

when the length scale of the geometry is comparable to the length of an

individual polymer macromolecule, new physical behavior may be observed.

Here we are concerned with this dilute microscale limit, which finds application

in microfluidic biomedical processing and sensor technology. Our model will

consider discrete polymers or macromolecules suspended in an incompressible

viscous solvent.

We use the Navier-Stokes equations to model the solvent as a continuum on

domain Ω:

∂u

∂t
+ (u · ∇)u +

1

ρ
∇P = ν∆u +

1

ρ
F (1)

∇ · u=0. (2)

These equations describe an incompressible fluid of density ρ, pressure P ,

velocity u, and Newtonian viscosity ν, subject to an additional body force F.

On the domain boundary δΩ we have the no-slip boundary condition u = 0.
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The polymer solute is represented as a collection of point masses each subject

to Newton’s second law of motion

mα

d2xα

dt2
= mα

dvα

dt
= fα. (3)

Here mα is the mass of the αth particle, xα is its coordinate, and vα is its

velocity. The particle is subject to a force fα which combines a Stokes drag

term with a stochastic (Brownian) perturbation,

fα = mαγ(u(xα)− vα) + FBα. (4)

Here, 1/γ is a phenomenological relaxation time (mγ = 6πµb for a Stokes

sphere of radius b) , and FB is the stochastic force

〈FBα(t)〉=0 (5)

〈FBα(t)FBα(t
′)〉=σ2αIδ(t− t′) (6)

σα =
√

2mαγkBT , (7)

with kB being Boltzmann’s constant and T the temperature.

The force F acting on the fluid is

F(x) = −
∑

α

fαδε(x− xα) (8)

where δε represents a smoothed Dirac delta function with length scale ε.

In addition to the incompressibility condition (2) we have two additional con-

straints: (i) that interparticle spacing is constant

‖xα − xβ‖ = a (9)

if particles α and β represent adjacent nodes in a ball-rod polymer represen-

tation; and (ii) that particles cannot pass through a physical boundary,
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xα ∈ Ω. (10)

2 Numerical Method

We use a Cartesian grid embedded boundary method to discretize the fluid

equations in the presence of irregular boundaries. In this approach, the irreg-

ular domain is discretized as a collection of control volumes formed by the

intersection of the problem domain with the cubic Cartesian grid cells. The

various operators are approximated using finite volume differences on the irreg-

ular control volumes, with the fluxes computed using the primary discretized

dependent variables, which approximate the solution evaluated at the centers

of the original Cartesian cells. This approach has been used as the basis for

second-order accurate methods for elliptic, parabolic, and hyperbolic PDE in

two and three dimensions [6,9,5,11]. These methods also have been combined

using the predictor-corrector approach in [2] to provide a second-order ac-

curate method for the incompressible Navier-Stokes equations for problems

in irregular geometries [1], which is the underlying fluids algorithm for the

present work.

We discretize time in steps ∆t, with tn = tn−1 + ∆t; and we discretize space

with a rectangular Cartesian grid, xi,j,k = h(i, j, k), regardless of the geometry

of the fluid domain Ω. The domain boundary δΩ is given indirectly by assign-

ing to each rectangular grid cell a set of volume and area fractions, which

describe the intersection of the cell with the fluid boundary. In the follow-

ing, the discrete divergence ∇·, discrete gradient ∇, and discrete Laplacian ∆

operators use standard symmetric second-order discretizations in interior re-

gions of the flow. These operators are modified by the presence of boundaries
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as described above.

A tilde will be used to denote quantities computed in the predictor step of our

predictor-corrector strategy; no tilde is used for the corrector. Superscripts ∗

and † will denote a provisional quantities; e.g., u∗ is a fluid velocity subject

to divergence cleaning, and x∗,v∗ and x†,v† are particle coordinates and ve-

locities subject to correction by appropriate constraints. Where it provides

clarity, the subscripts cc and ec will be used to denote cell– and edge–centered

quantities, respectively.

Our approach to solving (1,2) is a projection method based on [2]. This fluid

solver is tightly coupled to the particle solver with a predictor-corrector strat-

egy. To advance the solution through a single time step ∆t consists of the

following four steps, in sequence.

Step 1: Particle Predictor. We base our solution to the particle equations

on O(∆t2.5)–accurate Ito-Taylor [8] expansions of the Langevin equations for

variables xα and eγt vα.

The predictor is derived using time–n quantities only to estimate the time–

(n+ 1) state of the particles:

ṽ∗,n+1
α =un(xn

α) + (vn
α − un(xn

α)) e
−γ∆t +

σ

mα

Rn
v,α(∆t) (11)

x̃∗,n+1
α =xn

α + (vn
α − un(xn

α))
1− e−γ∆t

γ
+ un(xn

α)∆t+
σ

γmα

Rn
x,α(∆t) (12)

∆t fnα =mα

(

ṽ∗,n+1
α − vn

α

)

(13)

Fn(x)=−
∑

α

fnαδε(x− xn
α), (14)

with Rn
v,α(∆t) and Rn

x,α(∆t) vectors of independent random numbers drawn

from Gaussian distributions with zero mean and variances
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〈

Rv(∆t)
2
〉

=
1

2γ

(

1− e−2γ∆t
)

(15)

〈

Rx(∆t)
2
〉

=
1

2γ

[

2γ∆t− e−2γ∆t +4 e−γ∆t−3
]

(16)

〈Rx(∆t)Rv(∆t)〉=
1

2γ

(

1− e−γ∆t
)2

(17)

for variables of identical vector index, and all covariances are zero for terms

with different vector indices. In Eq. (11) un(xn
α) is evaluated by linear interpo-

lation of the cell-centered discretization un
cc. The discrete Dirac delta function

is represented using a PIC or cloud-in-cell model [3].

The particle coordinates x̃∗ do not in general obey the constraint (9). To

enforce this condition we use the Lagrange multiplier technique described in

[4]. This correction consists of iterative solution of a tridiagonal linear system

obtained by linearization of (9). We refer to this corrected state as x̃†, and

ṽ†
α = ṽn+1

α +
1

∆t
(x̃†

α − x̃∗,n+1
α ) (18)

is the corresponding corrected velocity.

The time-linear trajectory xn
α → x̃†

α may carry particle α across the fluid

domain boundary, thereby violating constraint (10). We use a continuous dis-

tance function representation of the domain boundary to detect such collisions.

If the trajectory contacts the domain at a point χ ∈ δΩ at relative time τ ,

0 < τ ≤ ∆t, we elastically “bounce” the particle off the boundary at χ as

follows. Let n be unit normal to the boundary at χ:

ṽn+1= ṽ† − 2(n · ṽ†)n (19)

x̃n+1
α =χ+ (∆t− τ)ṽn+1. (20)

If no collision is indicated, then ṽn+1
α = ṽ†

α, etc.
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Step 2: Fluid Predictor. We begin the fluid calculation by estimating edge–

and time–centered velocities u
∗,n+

1
2

ec , e.g., u
∗,n+

1
2

i+
1
2
,j,k

, using an upwind Taylor se-

ries expansion of (1), including a transverse velocity correction [10], an explicit

determination of the viscous source term, and the explicit source Fn, but omit-

ting the pressure. These provisional edge states are then made divergence-free

with a MAC-stencil Hodge projection,

u
n+
1
2

ec = (I −∇∆−1∇·)u
∗,n+

1
2

ec . (21)

The edge states u
n+
1
2

ec are used to estimate the term (u ·∇)u appearing below.

Then,

ũn+1
cc − un

cc

∆t
= −

1

ρ
(∇π

n−
1
2

cc )− [(u · ∇)u]n+
1
2

cc +
1

ρ
F n

cc + ν∆ũn+1
cc (22)

is solved implicitly for the time–(n+1) cell-centered velocity field ũn+1
cc . Here, π

is a cell-centered pressure estimate carried over from a previous time step (see

(31)). One would normally center the viscous source in time, but in complex

geometries a Crank-Nicholson discretization is not stable [7,9].

Step 3: Particle Corrector. The particle update is reevaluated using a

mean fluid velocity ū:

ūα =
un(xn

α) + ũn+1(x̃n+1
α )

2
(23)

if particle α was not predicted to have bounced off the interface, or

ūα =
τ

2∆t
un(xn

α) +
(∆t− τ)

2∆t
(I − 2nnT )ũn+1(x̃n+1

α ) (24)

if it was predicted to have bounced. Eq. (24) is the average field u on the

particle’s trajectory, referenced to the particle’s original tn orientation. This
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expression takes into account the u = 0 no slip boundary condition experi-

enced at relative time τ . For the particle trajectory we then have the O(∆t2.5)

estimate

v∗,n+1
α = ūα + (vn

α − ūα) e
−γ∆t +

σ

mα

Rn
v,α(∆t) (25)

x∗,n+1
α =xn

α + (vn
α − ūα)

1− e−γ∆t

γ
+ ūα∆t+

σ

γmα

Rn
x,α(∆t) (26)

(27)

and

∆t fn+1α =mα

(

v∗,n+1
α − vn

α

)

(28)

Fn+1(x)=−
∑

α

fn+1α δε(x− x̃n+1
α ) (29)

gives the fluid-particle coupling centered at tn+1.

Note that the random variables R appearing in the corrector are identical to

those used in the predictor. The provisional terms x∗,n+1
α ,v∗,n+1

α are corrected

to enforce constraints (9) and (10) following the procedures used in the particle

predictor step.

Step 4: Fluid Corrector. The fluid corrector calculation resembles the pre-

dictor, and in particular uses the same calculation of (u ·∇)u; i.e., the forcing

used to estimate u
n+
1
2

e.c remains time-centered. We use the so-called “pressure

formulation” projection strategy:

u∗
cc − un

cc

∆t
=−

1

ρ
∇πn−

1
2 − [(u · ∇)u]n+

1
2

cc +
1

2ρ
(Fn

cc + Fn+1
cc ) + ν∆u∗ (30)

∆t

ρ
∆π

n+
1
2

cc =∇ ·

[

u∗
cc +

∆t

ρ
∇π

n−
1
2

cc

]

(31)

un+1
cc =u∗

cc −
∆t

ρ
∇

[

π
n+
1
2

cc − π
n−
1
2

cc

]

(32)

A divergence-cleaning projection (31,32) is applied at this step, resulting in
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the cell– and time–centered pressure estimate π appearing also in (22).

3 Conclusions and Discussion

Sample calculations are displayed in Figures 1–4. The run parameters (width

450µm, Re=0.45, a=6.8µm, γ=1012/s, m=1.9 × 10−17g, ρ=1 g/cm3) ap-

proximate DNA in an actual microfluidic device used for extraction. The left

boundary condition is plug flow with a velocity of 0.1 cm/s; the right bound-

ary is outflow (homogeneous Neumann); the top and bottom boundaries, and

the interior circular boundaries, are solid wall. The polymer is a 26-node ap-

proximation of DNA, introduced near the left boundary as an inclined linear

array after the fluid flow field reached steady state. The polymer’s trajec-

tory causes it to become wrapped around the first circular element, where it

remains pinned until the stochastic perturbations work it loose.

The fluid dynamic steps of this method are subject to an advective Courant-

Friedrichs-Lewy stability condition only. The particle steps, without constraints,

are also stable with this CFL timestep. When particles move far from the con-

straint manifold (9), however, the Lagrange multiplier algorithm of Ciccotti et

al. [4] may diverge. We have found that the maximum particle displacement

per timestep for which the Ciccotti et al. algorithm is stable may be extended

for most systems by centering the constraint force at the conclusion of the

time step, versus at the start. With this modification, a maximum particle

displacement of O(a/10) works well.

The stochastic term Rx is unbounded, thus for any CFL-limited hydrody-

namic time step ∆t there may be particle displacements much greater than
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a/10, resulting in convergence problems. In the current implementation, we

limit our stochastic variables R to lie within ±3 standard deviations of zero.

Statistically, this results in 0.26% of random numbers being truncated. In our

numerical tests, this has not yet resulted in discernible negative consequences.

An alternative approach we will explore is to compute particle trajectories with

adaptive time steps that are decoupled from the fluid dynamic time steps.

We use a backward Euler time stepping strategy in e.g., (22,30), which is

formally first order accurate. To make the overall method second-order, it

will be necessary to replace at least (30) with a Runge-Kutta time stepping

strategy as described by [13], and which has been used in a computational

context similar to ours in [9].
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Figures

Fig. 1. Contours of horizontal velocity at 0.1, 0.2, 0.3, and 0.4 cm/s. Time

0.0956576s.

Fig. 2. Time 0.381831s.
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Fig. 3. Time 0.668005s.

Fig. 4. Time 0.906483s.
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