## The NPOESS Preparatory Project NPP

Presentation to NASA Ocean Science Meeting April 16, 2004

> Dr. Wayne Esaias NASA GSFC

## **NPP Sensors**

- The Visible Infrared Imaging Spectroradiometer Suite (VIIRS) extends measurement series initiated by MODIS on EOS Terra & Aqua
  - Design is evolutionary from MODIS
- The Cross-track Infrared Sounder (CrIS) continues
  measurement series initiated by AIRS on EOS Aqua
  - Utilizes a Michelson interferometer in contrast to AIRS, which is a spectrometer
- The Advanced Technology Microwave Sounder (ATMS) continues the measurement series initiated by the AMSU on NOAA-15
  - MMIC Technology used to reduce mass, power & volume
- The Ozone Mapping and Profiling Suite (OMPS) continues the measurement series of SBUV & TOMS and adds a new limb profiler

# **Brief Background**

- Tri Agency (Integrated Program Office) convergence by directive.
- Environmental Data Record (EDR) Requirements were generated by operational agencies (NOAA, DOD) for NPOESS.
- Multiple Competitive (Algorithm + Instrument) Studies.
- Overall system operation and product delivery approach evolved to a shared (gov + contractor) responsibility.
- NPOESS Preparatory Project originated (by NASA) as a useful data continuity and risk reduction step.

### Visible Infrared Imaging Radiometer Suite (VIIRS)

- <u>Purpose:</u> Global observations of land, ocean, & atmosphere parameters at high temporal resolution (~ daily)
- <u>Predecessor Instruments:</u> AVHRR, OLS, MODIS, SeaWiFS
- <u>Management</u>: Integrated
  Program Office
- <u>Status:</u>Phase C/D (Raytheon)
- <u>Approach</u>: Multi-spectral scanning radiometer (22 bands between 0.4 μm and 12 μm) 12-bit quantization
- <u>Swath width:</u> 3000 km

- Changes to specifics of band dynamic ranges, bandpasses & band centers negotiated
- Consideration of adding 6.7 micrometer water vapor band to FU3 & later models
- CDR Completed March 2002



### Visible Infrared Imaging Spectroradiometer (VIIRS)



## Compact, All Reflective Optical Design

Yields Lower Scattered Light than MODIS



W Esaias April 16, 2004

# **VIIRS Spectral Bands**

- 22 Bands
  - Subset of MODIS bands plus day-night panchromatic band
- Two spatial resolutions
  - Imagery resolution bands: 370 m at nadir
  - Moderate resolution bands: 740 m at nadir
- Features
  - 8 (Moderate) or 16 (Imagery) detectors per scan
  - Bands spatially nested
  - Some bands have dual gain
    - > Maximize dynamic range without precision penalties
- Constrained pixel growth with scan angle
- Ocean bands derived from OCCG recommendations

#### VIIRS' Optimized Bandset Provides Rich Data for All EDRs

| nin/µm                      |     |     |     |     |                 |      |     |       |     |             |      |       |      |      |      |      |      |      |      |      |      |      |
|-----------------------------|-----|-----|-----|-----|-----------------|------|-----|-------|-----|-------------|------|-------|------|------|------|------|------|------|------|------|------|------|
| Band name                   | DNB | M1  | M2  | M3  | M4              | I1   | M5  | M6    | M7  | I2          | M8   | M9    | M10  | I3   | M11  | M12  | I4   | M13  | M14  | M15  | I5   | M16  |
| Band position               | 700 | 412 | 445 | 488 | 555             | 645  | 672 | 751   | 865 | 865         | 1.2  | 1.4   | 1.6  | 1.6  | 2.3  | 3.7  | 3.7  | 4.1  | 8.6  | 10.8 | 11.5 | 12.0 |
| Band width                  | 400 | 20  | 18  | 20  | 20              | 50   | 20  | 15    | 39  | 39          | 0.02 | 0.015 | 0.06 | 0.06 | 0.05 | 0.18 | 0.38 | 0.16 | 0.30 | 1.00 | 1.90 | 0.95 |
|                             |     |     |     |     |                 |      |     |       |     |             |      |       |      |      |      |      |      |      |      |      |      |      |
| Imagery                     |     |     |     |     |                 |      |     |       |     |             |      |       |      |      |      |      |      |      |      |      |      |      |
| Sea Surface Temp.           |     |     |     |     |                 |      |     |       |     |             |      |       |      |      |      |      |      |      |      |      |      |      |
| Soil Moisture               |     |     |     |     |                 |      |     |       |     |             |      |       |      |      |      |      |      |      |      |      |      |      |
| <b>Cloud Base Height</b>    |     |     |     |     |                 |      |     |       |     |             |      |       |      |      |      |      |      |      |      |      |      |      |
| <b>Cloud Cover/Layers</b>   |     |     |     |     |                 |      |     |       |     |             |      |       |      |      |      |      |      |      |      |      |      |      |
| Cloud Partical Size         |     |     |     |     |                 |      |     |       |     |             |      |       |      |      |      |      |      |      |      |      |      |      |
| Cloud Thickness             |     |     |     |     |                 |      |     |       |     |             |      |       |      |      |      |      |      |      |      |      |      |      |
| Cloud Top Height            |     |     |     |     |                 |      |     |       |     |             |      |       |      |      |      |      |      |      |      |      |      |      |
| <b>Cloud Top Pressure</b>   |     |     |     |     |                 |      |     |       |     |             |      |       |      |      |      |      |      |      |      |      |      |      |
| Cloud Top Temp.             |     |     |     |     |                 |      |     |       |     |             |      |       |      |      |      |      |      |      |      |      |      |      |
| Land Surface Temp.          |     |     |     |     |                 |      |     |       |     |             |      |       |      |      |      |      |      |      |      |      |      |      |
| Fire                        |     |     |     |     |                 |      |     |       |     |             |      |       |      |      |      |      |      |      |      |      |      |      |
| Vegetation Index            |     |     |     |     |                 |      |     |       |     |             |      |       |      |      |      |      |      |      |      |      |      |      |
| <b>Snow Cover (Binary)</b>  |     |     |     |     |                 |      |     |       |     |             |      |       |      |      |      |      |      |      |      |      |      |      |
| <b>Snow Cover (Fraction</b> | I)  |     |     |     |                 |      |     |       |     |             |      |       |      |      |      |      |      |      |      |      |      |      |
| Vegetation/Type             |     |     |     |     |                 |      |     |       |     |             |      |       |      |      |      |      |      |      |      |      |      |      |
| Albedo                      |     |     |     |     |                 |      |     |       |     |             |      |       |      |      |      |      |      |      |      |      |      |      |
| Fresh Water Ice             |     |     |     |     |                 |      |     |       |     |             |      |       |      |      |      |      |      |      |      |      |      |      |
| Ice Surface Temp.           |     |     |     |     |                 |      |     |       |     |             |      |       |      |      |      |      |      |      |      |      |      |      |
| Littoral Transport          |     |     |     |     |                 |      |     |       |     |             |      |       |      |      |      |      |      |      |      |      |      |      |
| Net Heat Flux               |     |     |     |     |                 |      |     |       |     |             |      |       |      |      |      |      |      |      |      |      |      |      |
|                             |     |     |     |     |                 |      |     |       |     |             |      |       |      |      |      |      |      |      |      |      |      |      |
| Sea Ice age/motion          |     |     |     |     |                 |      |     |       |     |             |      |       |      |      |      |      |      |      |      |      |      |      |
| Mass (turbidity)            |     |     |     |     |                 |      |     |       |     |             |      |       |      |      |      |      |      |      |      |      |      |      |
| Ocean Currents              |     |     |     |     |                 |      |     |       |     |             |      |       |      |      |      |      |      |      |      |      |      |      |
| Aer Opt Thick (Ocear        | 1)  |     |     |     |                 |      |     |       |     |             |      |       |      |      |      |      |      |      |      |      |      |      |
| Aer Opt Thick (Land)        | )   |     |     |     |                 |      |     |       |     |             |      |       |      |      |      |      |      |      |      |      |      |      |
| Aer Part Size (Ocean)       |     |     |     |     |                 |      |     |       |     |             |      |       |      |      |      |      |      |      |      |      |      |      |
| Aer Part Size (Land)        |     |     |     |     |                 |      |     |       |     |             |      |       |      |      |      |      |      |      |      |      |      |      |
| Suspended Matter            |     |     |     |     |                 |      |     |       |     |             |      |       |      |      |      |      |      |      |      |      |      |      |
| Total Prec. Water           |     |     |     |     |                 |      |     |       |     |             |      |       |      |      |      |      |      |      |      |      |      |      |
| Cloud Mask                  |     |     |     | ١٨  |                 |      |     | il 47 |     |             |      |       |      |      |      |      |      |      |      |      |      |      |
|                             |     |     |     |     | <del>/ E€</del> | anac |     |       | . Z | <b>50</b> T |      |       |      |      |      | _    |      |      |      | _    |      |      |

-----

#### MODIS Ocean Bands in the Vis/NIR





#### **VIIRS Ocean Bands in the Vis/NIR** VIIRS: R-1 R-2 R-3 R-7 R-4 R-5 R-6 1 0.8 0.6 0.4 0.2 0 0.4 0.48 0.56 8.0 0.88 0.96 0.64 0.72

## **Detector Aggregation Reduces Pixel Growth**



## Reduced Pixel Growth Along Scan



W Esaias April 16, 2004

#### **Dual Gain Bands Meet Ocean & Land Needs**



Unaggregated Pixels -

W Esaias April 16, 2004

# CDR Quality data from NPP VIIRS

NPP is a Risk-Reduction Mission for NPOESS, but a Data Continuity Mission for NASA and Climate. With sufficient interest and effort on the part of the ocean color stake holders, these may not be incompatible.

#### INSTRUMENT PERFORMANCE and CHARACTERIZATION EDU DELIVERY SOON FLIGHT UNIT 1 (FU1, FOR NPP) DELIVERY FALL '05

ALGORITHMS

**DATA SEGMENT** 

CALIBRATION/VALIDATION Vicarious Adjustments Data sources (MOBY)

## Ocean Color/Chlorophyll EDR -RDR Data Summary

|              |            | Native Sensor |     |           |     |      |       | NADIR         |                             |               |              |             |            |                  |            |            |  |  |
|--------------|------------|---------------|-----|-----------|-----|------|-------|---------------|-----------------------------|---------------|--------------|-------------|------------|------------------|------------|------------|--|--|
|              |            |               |     |           |     |      |       |               |                             |               | Fine         | coasta      | l          |                  |            |            |  |  |
| Band<br>Name | Wavelength |               | G   | SD        |     | Ltyp | SNR   | Onb           | Onboard On ground Effective |               | tive         | Effective   |            |                  |            |            |  |  |
|              |            | NADIR         |     | NADIR EOS |     |      |       | Aggreg<br>Fac | gation<br>ctor              | Aggreg<br>Fac | ation<br>tor | Algor<br>GS | ithm<br>SD | Algorithm<br>SNR | Proc<br>H( | luct<br>CS |  |  |
|              |            |               |     |           |     |      |       |               |                             |               |              |             |            |                  |            |            |  |  |
|              |            | Trk           | Scn | Trk       | Scn |      |       | Trk           | Scn                         | Trk           | Scn          | Trk         | Scn        |                  | Trk        | Scn        |  |  |
| M1           | 0.412      | 742           | 262 | 1094      | 617 | 44.9 | 352.0 | 1             | 3                           | 1             | 1            | 742         | 786        | 609.7            | 1300       | 1300       |  |  |
| M2           | 0.445      | 742           | 262 | 1094      | 617 | 40.0 | 337.8 | 1             | 3                           | 1             | 1            | 742         | 786        | 585.2            | 1300       | 1300       |  |  |
| M3           | 0.488      | 742           | 262 | 1094      | 617 | 32.0 | 310.6 | 1             | 3                           | 1             | 1            | 742         | 786        | 538.0            | 1300       | 1300       |  |  |
| M4           | 0.555      | 742           | 262 | 1094      | 617 | 21.0 | 257.1 | 1             | 3                           | 1             | 1            | 742         | 786        | 445.3            | 1300       | 1300       |  |  |
| M5           | 0.672      | 742           | 262 | 1094      | 617 | 10.0 | 242.1 | 1             | 3                           | 3             | 3            | 2226        | 2358       | 1258.0           | 1300       | 1300       |  |  |
| M6           | 0.751      | 742           | 262 | 1094      | 617 | 9.6  | 199.1 | 1             | 3                           | 3             | 3            | 2226        | 2358       | 1034.6           | 1300       | 1300       |  |  |
| M7           | 0.865      | 742           | 262 | 1094      | 617 | 6.4  | #N/A  | 1             | 3                           | 3             | 3            | 2226        | 2358       | #N/A             | 1300       | 1300       |  |  |

## Performance Summary for Low-gain State of Dual-gain Bands

| Source File: F.VRPMO14.xls     |           |                     |                                 | Low gain for dual-gin bands  |                           |                    |                         |                    |                     |                       |                            |                          |                               |  |
|--------------------------------|-----------|---------------------|---------------------------------|------------------------------|---------------------------|--------------------|-------------------------|--------------------|---------------------|-----------------------|----------------------------|--------------------------|-------------------------------|--|
| $Q=watt m^{-2} sr-1\mu m^{-1}$ |           |                     |                                 | 1 x 3 aggro                  | egation                   | 1 x 2 aggre        | gation                  | 1 x 1 aggregation  |                     |                       |                            |                          |                               |  |
| Band                           | λ<br>(μm) | # in<br>TDI<br>Gain | Ltyp<br>or<br>Ttyp<br>Q or<br>K | Lmax<br>or<br>Tmax<br>Q or K | SNR @<br>Ltype<br>(c-/c-) | NEdT @<br>Ttyp (K) | SNR@<br>Ltyp<br>(c-/c-) | NEdT @<br>Ttyp (K) | SNR2 Lty<br>(c-/c-) | NEdT<br>@ Ttyp<br>(K) | SNR<br>Required<br>(c-/c-) | NEdT<br>Require<br>d (K) | SNR<br>margin<br>in<br>Design |  |
| M1                             | 0.4       | 1 Dual              | 200.0                           | 465.0                        | 1780.5                    | n/a                | 145.8                   | n/a                | 1028.0              | n/a                   | 841.0                      | n/a                      | 22%                           |  |
| 2.0                            | 0.4       | 1 Dual              | 55.5                            | 469.0                        | 2456.0                    | n/a                | 2005.4                  | n/a                | 1418.0              | n/a                   | 866.0                      | n/a                      | 60.0%                         |  |
| M3                             | 0.5       | 1 Dual              | 51.8                            | 541.0                        | 3050.1                    | n/a                | 2490.4                  | n/a                | 1761.0              | n/a                   | 963.0                      | n/a                      | 82.9%                         |  |
| 4.0                            | 0.6       | 1 Dual              | 29.0                            | 590.0                        | 3275.3                    | n/a                | 2674.3                  | n/a                | 1891.0              | n/a                   | 1018.0                     | n/a                      | 85.8%                         |  |
| M5                             | 0.7       | 1 Dual              | 22.0                            | 468.0                        | 3346.3                    | n/a                | 2732.3                  | n/a                | 1932.0              | n/a                   | 1379.0                     | n/a                      | 40.1%                         |  |
| M7                             | 0.9       | 1 Dual              | 25.0                            | 278.0                        | 3713.1                    | n/a                | 3032.1                  | n/a                | 2144.0              | n/a                   | 1059.0                     | n/a                      | 102.5%                        |  |
| M13                            | 4.1       | 1 Dual              | 380                             | 500                          | 844.7                     | 0.039              | 844.7                   | 0.048              | 597.3               | 0.068                 | 386.5                      | 0.105                    | 54.5%                         |  |

# NPP Science Team Roles

To advise NASA on potentials of NPP for CDR data continuity, algorithm, instrument concerns

Provides input to <u>VIIRS</u> <u>Operational</u> <u>Algorithm</u> <u>Team</u> (VOAT), IPO Cal/Val Team

Interact with contractor and IPO teams as appropriate

Weekly PI level & NPP Project Steering Group meetings

**BiWeekly VIIRS Telecons** 

NPP Cal/Val - Guenther; IPO lead Germain; NIST

VOAT Presentation on MODIS ocean lessons learned.

## CURRENT ACTIVITIES - OCEAN COLOR GROUP

Reviewing sensor specs and performance expectations Providing input to NPP, IPO, NGST Reviewing sensor test plans - characterization Recommending additional tests, modifications Reviewing Cal/Val plans Post-Launch performance verification/evaluation

Algorithm ATBD reviews - comments

### **VIIRS Summary Report to NPP Project**

- T. Pagano editor, Land, Ocean, Atmos inputs

Beginning review of data segment, Ops/con. Products needed for cal/val, e.g. (P. Kealy) Prototype climate analysis and research system

W Esaias April 16, 2004

### MODIS Ocean Color Lessons for VIIRS

Improve performance and characterization of the Solar **Diffuser and Stability Monitor**. Eliminate **Earthshine**.

Improve characterization of **Polarization**.

Improve characterization and analysis of stray light.

SIRCUS testing is needed to characterize the **out-of-band**.

**Optical modeling** is required to address long term stability of polarization sensitivity on orbit (add spectral response)

A greater level of effort, and greater coordination, will be needed **post-launch** to develop and implement the on-orbit corrections. They may not be successful without the recommended testing recommendations.

## SSPR Cal/Val Working Group

| CVWG Executive Board           |                                 |                                 |                   |  |  |  |  |  |  |
|--------------------------------|---------------------------------|---------------------------------|-------------------|--|--|--|--|--|--|
| Contract                       | ors                             | Gove                            | ernment           |  |  |  |  |  |  |
| Cal/Val Lead:                  | Brian Lottman                   | IPO NPOESS/NPP Cal/Val<br>Lead: | Karen St. Germain |  |  |  |  |  |  |
| Cal/Val Scientist:             | Mike Mussetto, Scott<br>Shipley | NASA NPP Cal/Val Lead:          | Bruce Guenther    |  |  |  |  |  |  |
| Payload Performance<br>Lead:   | Jim McCarthy                    | IPO Program Scientist:          | Steve Mango       |  |  |  |  |  |  |
| Algorithm Performance<br>Lead: | Pam Emch                        | NASA NPP Project<br>Scientist:  | Bob Murphy        |  |  |  |  |  |  |

## Multi-Faceted Approach to Cal/Val

| SSPR (Northrop)                                                                          | IPO<br>(IORD Driven)                                           | NASA<br>(ESE Driven)                                                                                       | Other Government<br>Participation                                    | International<br>Participation          |
|------------------------------------------------------------------------------------------|----------------------------------------------------------------|------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------|-----------------------------------------|
| Sensor Vendor<br>Calibration Team                                                        | IGS<br>NIST                                                    | Science team (L1)<br>NCST                                                                                  |                                                                      | CEOS Calibration<br>Protocols&Standards |
| Sensor Vendor<br>Science Team                                                            | VOAT<br>SOAT                                                   | Science team (L2)                                                                                          |                                                                      | CEOS Validation<br>Protocols&Standards  |
| Test Resources<br>Instrument Tests<br>TV Chambers                                        | Centrals<br>NOAA<br>Air Force<br>Navy                          | Test Resources<br>Protocols<br>Expertise                                                                   |                                                                      |                                         |
| IWPTB<br>RT Modeling                                                                     | NAST (aircraft sensor)<br>RT Modeling<br>Traceable Calibration | AERONET, MOBY<br>MAS, AVIRIS, etc.<br>Validation Sites<br>Field Campaigns (e.g., SAFARI)<br>EOS satellites | ARM Sites<br>Buoy Network<br>Balloon Network<br>NOAA/DMSP satellites | CEOS Validation<br>Sites                |
| IDPS: Operational<br>Data Production                                                     |                                                                | SDS: Climate Data Processing                                                                               | ADS: Long Term<br>Archive                                            |                                         |
| Level 1 (L1B and SDF<br>Level 2 (EDR and CD<br>Physical Resources<br>Programs and Networ | R)<br>R)<br>In generation                                      | al, the government team                                                                                    | will be responsible                                                  | for                                     |

Data Processing and Archiving

01/17/03

## Milestones Sensor Charact. and Calib.



## **OBSERVATIONS**

Managerial complexity increases by orders of magnitude SeaWiFS/MODIS/VIIRS.

There is a tremendous amount of VIIRS documentation, not all is readily available to NPP Science Team, but accessability is improving.

The IPO, NGST, and SBRS have welcomed the expert input from the NPP teams, and have been very receptive to concerns.

Changes at this stage for improved performance are very constrained by cost and schedule, and will require solid justification and support from the community and HQ to implement.

### Backup

## **MODIS Solar Diffuser Geometry**



#### ISS photo of sunrise over the Pacific



Pacific Ocean 07/21/2003 ISS007E 377 km Alt.



# Some Web Sites

- A description of the NPP mission may be found at:
  - http://jointmission.gsfc.nasa.gov
- The VIIRS instrument is described at:
  - http://www.ipo.noaa.gov/viirs.html
- The VIIRS ATBDs are at:
  - http://npoess.lib.ipo.noaa.gov/atbd\_viirs.htm
- The complete list of NPOESS requirements may be obtained at:
  - http://npoesslib.ipo.noaa.gov/Req\_Docs.htm

# Summary

- VIIRS instrument has potential to deliver quality measurements for NPP and the operational system (NPOESS)
- Similar radiometric quality to MODIS, SeaWiFS
- Improved geometric resolution
- Continued commitment to characterization and calibration is needed and is being worked