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Black body spectrum observed by COBE
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Waves / centimeter

- close to thermal equilibrium:
temperature today of 2.726K ( ~ 3000K at z ~ 1000 because v ~ (1+z))



~ (almost) uniform 2.726K blackbody

‘ Dipole (local motion)

AT = 3.353 mK O(10'5) perturbations
- (+galaxy)

T = 2728 K

Observations:
the microwave
sky today

Source: NASA/WMAP Science Team



Can we predict the primordial perturbations?

* Maybe..

Inflation
make >1030 times bigger

Quantum Mechanics
“‘waves in a box” calculation
vacuum state, etc...

After inflation
Huge size, amplitude ~ 1079



Perturbation evolution — what we actually observe

CMB monopole source till 380 000 yrs (last scattering), linear in conformal time
scale invariant primordial adiabatic scalar spectrum

photon/baryon plasma + dark matter, neutrinos

Characteristic scales: sound wave travel distance; diffusion damping length



Observed AT
as function of angle on the sky

z=T100 recombination

observer



Calculation of theoretical perturbation evolution

Perturbations O(1O'5)

|:> Simple linearized equations are very accurate (except small scales)
Can use real or Fourier space

Fourier modes evolve independently: simple to calculate accurately

Physics Ingredients

» Thomson scattering (non-relativistic electron-photon scattering)
- tightly coupled before recombination: ‘tight-coupling’ approximation
(baryons follow electrons because of very strong e-m coupling)

» Background recombination physics (Saha/full multi-level calculation)

* Linearized General Relativity

 Boltzmann equation (how angular distribution function evolves with scattering)



CMB power spectrum Cj

« Theory: Linear physics + Gaussian primordial fluctuations

a, = fdsz AT Y,

Theory prediction C, = <| a,, |2>

- variance (average over all possible sky realizations)
- statistical isotropy implies independent of m

linearized GR

» N + Boltzmann equations
Initial conditions > CI

+ cosmological parameters

CMBFAST: cmbfast.org
CAMB: camb.info
CMBEASY: cmbeasy.org
COSMICS, etc..



Sources of CMB anisotropy

Sachs Wolfe:
Potential wells at last scattering cause redshifting as photons climb out

Photon density perturbations:
Over-densities of photons look hotter

Doppler:
Velocity of photon/baryons at last scattering gives Doppler shift

Integrated Sachs Wolfe:
Evolution of potential along photon line of sight:
net red- or blue-shift as photon climbs in an out of varying potential wells

Others:
Photon quadupole/polarization at last scattering, second-order effects, etc.



CMB temperature power spectrum
Primordial perturbations + later physics

B .

diffusion

acoustic oscillations damping
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Hu & White, Sci. Am., 290 44 (2004)



Why Cj oscillations?
Think in k-space: modes of different size

Co-moving Poisson equation: (k/a)2 ®=kdp/2
- potentials approx constant on super-horizon scales

- radiation domination p ~ 1/a%

adplp ~kZ a2 o _/
a since ® ~ constant, super-horizon density perturbations grow ~ a2

After entering horizon pressure important: perturbation growth slows, then

bounces back J\/

a series of acoustic oscillations (sound speed ~ c/3)

CMB anisotropy (mostly) from a surface at fixed redshift: phase of
oscillation at time of last scattering depends on time since entering the
horizon

a k-dependent oscillation amplitude in the observed CI\/I\B/—\/
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Fig. 3. Evolution of the combination §.,/4 + ¢ (top left) and the photon velocity
vy (bottom left) which determine the temperature anisotropies produced at last
scattering (denoted by the arrow at nx). Three modes are shown with wavenumbers
k = 0.001, 0.1 and 0.2 Mpc™, and the initial conditions are adiabatic. The fluctu-
ations at the time of last scattering are shown as a function of linear scale in the
right-hand plot.

Challinor: astro-ph/0403344



Contributions to temperature Cj

Total

=W + other

0 00 1000

Challinor: astro-ph/0403344
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Anisotropy observations
Current WMAP + other CMB data

ACDM model
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Redhead et al: astro-ph/0402359



What can we learn from the CMB?

Initial conditions
What types of perturbations, power spectra, distribution function (Gaussian?);

=> |earn about inflation or alternatives.
(distribution of AT; power as function of scale; polarization and correlation)

What and how much stuff
Matter densities ( p, cdm);: heutrino mass
(details of peak shapes, amount of small scale damping)

Geometry and topology
global curvature K of universe; topology
(angular size of perturbations; repeated patterns in the sky)

Evolution
Ex ansion rate as function of time; reionization
ubble constant Hg - dark energy evolution w = pressure/density

(angular size of perturbatlons | < 50 large scale power; polarizationr)

Astrophysics
S-Z effect (clusters), foregrounds, etc.



« Cosmic Variance: only one sky

_ . obs 1 2
Use estimator for variance: C, zm| a, |

T+

WMAP data with best fit model and diagonal errors
T T

Assume a|m gaussian: | — %
7000 - 95%
obs 2 . L P
C," ~x~ with2/+1d.o.f. T TN
6000 |- 9 i
. . . ., WMAP low | AN
Cosmic Variance 5000 -
2 =
obs 12 2CZ g_ 4000 |-
G P~ 20+1  F
+ 3000

2000 -

P(C,|C™)

- inverse gamma distribution
(+ noise, sky cut, etc). 0

1000 |-

| — L Il L 1
2 10 40 I 100 200

Cosmic variance gives fundamental limit on how much we can learn from CMB



Parameter Estimation

Can compute P({ }|data)=P(C|{ })]|c/oPS)

Often want marginalized constraints. e.g.
<0, >=f61P(616263...6n | data)d6,df,..do

BUT: Large n integrals very hard to compute!

If we instead sample from P({ } | data)then it is easy:

L@ a0
<61 > zNZ 91()

:: > Can easily learn everything we need from set of samples




Markov Chain Monte Carlo sampling

* Metropolis-Hastings
algorithm - 1

* Number density of
samples proportional to
probability density )

* At its best scales linearly
with number of -

parameters
(as opposed to exponentially
for brute integration)

Now standard method for parameter estimation. Public CosmoMC code available
at http://cosmologist.info/cosmomc (Lewis, Bridle: astro-ph/0205436)
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Plot number density of samples as function of parameters
Often better constraint by combining with other data

e.g. CMB+galaxy lensing +BBN prior
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Contaldi, Hoekstra, Lewis: astro-ph/0302435



Thomson Scattering Polarization

W Hu




CMB Polarization

Generated during last scattering (and reionization) by Thomson
scattering of anisotropic photon distribution

Quadrupole

Anisotropy \
E.l'

v
Thomson

E."

»

Scatterin g
o

Linear
IPolarizat
olarization

Hu astro-ph/9706147



Polarization: Stokes’ Parameters

— /N

Q

Q — -Q, U — -U under 90 degree rotation

Q — U, U — -Q under 45 degree rotation

U -Q

> Spin-2 field Q + i U 0 U
or Rank 2 trace free symmetric tensor P = ( )

\ 0

/ 0 =%tan"1 U/Q
sqrt(Q2 + U2)



E and B polarization
Par =V (aVeyPp — ¢ (aVy) V. Pp

/ \

“gradient” modes “curl” modes
E polarization B polarization
e.g. I /"
NS | & —



E and B harmonics

« Expand scalar Pg and Pg in spherical
harmonics

. Expan( :‘LAA‘A--‘LA-A‘I ===~ nIics
Pap = \/— Z (Efm (Im)ab + Bim Y(Emjab)
E,.=v2 [ dS (?ﬂt:)b*pﬂb B = V2 ) dS (?;)b*?;ﬂb
41 ™

Harmonics are orthogonal over the full sky:

E/B decomposition is exact and lossless on the full sky

Zaldarriaga, Seljak: astro-ph/9609170
Kamionkowski, Kosowsky, Stebbins: astro-ph/9611125



Primordial Perturbations

fluid at redshift < 109

Photons

Nearly massless neutrinos
Free-streaming (no scattering) after neutrino decoupling atz ~ 109

Baryons + electrons
tightly coupled to photons by Thomson scattering

Dark Matter

Assume cold. Coupled only via gravity.

Dark energy
probably negligible early on



Perturbations O(1O‘5)

|:> « Linear evolution

» Fourier k mode evolves independently
« Scalar, vector, tensor modes evolve
independently

» Various linearly independent solutions

Scalar modes: Density perturbations, potential flows l

op,Vop,etc
Vector modes: Vortical perturbations

velocities, v (Vey=0)

Tensor modes: Anisotropic space distortions
— gravitational waves

http://www.astro.cf.ac.uk/schools/6thFC2002/GravWaves/sld009.htm



General regular linear primordial perturbation

regﬁlar perturbation J

%calar ]
Adiabatic )
(olhserved) ) / \
Matfr density ) / \
J / \

celling matter density A ﬂ
(unobservable) Y, T
N ﬂ

Neutrfino density
(c@ntrived) ) N\ /

Neutrjno velocity h - >

(veryl contrived) ) )
)(ector ]
Neutriho vorticity

(very\ contrived)

!(ensor j

(:ravitg{ional waves ]

+ irregular modes, neutrino n-pole modes, n-Tensor modes Rebhan and Schwarz: gr-qc/9403032
+ other possible components, e.g. defects, magnetic fields, exotic stuff...

-isocurvature-
Q




Irregular (decaying) modes

* Generally ~ a1l a2oral/2

« E.g. decaying vector modes unobservable at late times
unless ridiculously large early on

10000 [

Adiabatic decay ~ a-1/2 after -
neutrino decoupling. - ST

% BOOC -
possibly observable if generated
around or after neutrino & 000
decoupling x :

- EGDDT
Otherwise have to be very large D:_ ,hm e
(non-linear?) at early times e

L M SRS |
1 114 100 1000

|
Amendola, Finelli: astro-ph/0411273



CMB Polarization Signals

» E polarization from scalar, vector and tensor modes

B polarization only from vector and tensor modes (curl grad = 0)
+ non-linear scalars

Average over possible realizations (statistically isotropic):

(E;me!m> — 5!’!5m‘mCIEE (B;me!m> — 5!'35m’mCJBB

* —

Parity symmetric ensemble: (El,m; BIm) =0

Power spectra contain all the useful information if the field is Gaussian



Scalar adiabatic mode

1* ErTTT T T
=T ]
1000 E polarization only

correlation to temperature T-E

10—4:|||||||| poaov vl Lo sl ]
10 100 1000




General isocurvature models

T -1

Temperature

EEGD: <ADAD>
- <NIV.NIV>
[ < {1, 2
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General mixtures currently
poorly constrained

= . n
Q.0 0.2 0.4
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Bucher et al: astro-ph/0401417



(1+1) C/2 =

Primordial Gravitational Waves

(tensor modes)

Well motivated by some inflationary models
- Amplitude measures inflaton potential at horizon crossing
- distinguish models of inflation

Observation would rule out other models

- ekpyrotic scenario predicts exponentially small amplitude
- small also in many models of inflation, esp. two field e.g. curvaton

Weaklv Constralned-fc@gm{;}w.éanmefﬁw@oamaotropy

1 1
100 1000

- degenerate with other parameters (tilt, reionization, etc)

Look at CMB polarization:
‘B-mode’ smoking gun



CMB polarization from primordial
gravitational waves (tensors)

____ Tensor B-mode

Tensor E-mode

V|
_ Adiabatic E-mode
Weak lensing
, Planck noise
100 @ = ==== (optimistic)

« Amplitude of tensors unknown
 Clear signal from B modes — there are none from scalar modes
« Tensor B is always small compared to adiabatic E

Seljak, Zaldarriaga: astro-ph/9609169



Relonization

lonization since z ~ 6-20 scatters CMB photons

Temperature signal similar to tensors

Ll 1 [ A | TR N T B B
10 100 1000
'

Quadrupole at reionization implies large scale polarization signal

TE Cross Power

Measure optical depth with WMAP T-E correlation ’ Refonzation .

(I+1)Cy/2m (UK2)

1 1 1 1 1 1 1 1 1 L 1
0 10 40 100 200 400 800 1400
Multipole moment (2)



Cosmic variance limited data — resolve structure in EE power spectrum

U(1+1)ckE/2m (uK?)

|:> (Weakly) constrain ionization history

0'01?IIIIIII|III|IIII|III__

Holder et al: astro-ph/0302404

Weller, Lewis, Battye (in prep)
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 Topological defects

Other B-modes?

Seljak, Pen, Turok: astro-ph/9704231

: : E — strings
Non-Gaussian Slgnals I S T S mongpoles
5 ———-- textures
N — _— nt. textures
8-. 0.1
global defects: +
~0.01
10% local strings from
brane inflation:
&
Sy

Pogosian, Tye, Wasserman, Wyman:
hep-th/0304188

L~

lensing. ~
7

Ve
Ve

P
-

10

10 10



- Regular vector mode: ‘neutrino vorticity mode’
- logical possibility but unmotivated (contrived). Spectrum unknown.

10°

107k

1072}

10°}

f’(f’—|— 1)C;3/(27T,{LK2)

10 F — Vectoré -
— — Lensing
— — Tensors

10’ 10° 10°

Similar to gravitational wave spectrum on large scales: distinctive small scale

Lewis: astro-ph/0403583



- Primordial magnetic fields
- not well motivated theoretically, though know magnetic fields exist
- contribution from sourced gravity waves (tensors) and vorticity (vectors)

e.g. Inhomogeneous field B = 3x109 G, spectral index n =-2.9

10 T

Tensor amplitude uncertain.
Non-Gaussian signal.

Check on galaxy/cluster
evolution models.

T ' Lewis, astro-ph/0406096.
a‘e"m_m_ : | Subramanian, Seshadri, Barrow,
astro-ph/0303014
107" 1 Iz Ia
10 10 10
?

the initial properties of the magnetic field. (¢) Concerning studies of generation of cosmic microwave
background (CMBR) anisotropies due to primordial magnetic fields of B ~ 10~% Gauss on Z 10 Mpc
scales, such fields are not only impossible to generate in early causal magnetogenesis scenarios but
also seemingly ruled out by distortions of the CMBR spectrum due to magnetic field dissipation on
smaller scales and the overproduction of cluster magnetic fields. (d) The most promising detection

Banerjee and Jedamzik: astro-ph/0410032

» Also Faraday rotation B-modes at low frequencies
Kosowsky, Loeb: astro-ph/9601055, Scoccola, Harari, Mollerach: astro-ph/0405396



- Small second order effects, e.qg.

Second order vectors and tensors: Inhomogeneous reionization

Mollerach, Harari, Matarrese: astro-ph/0310711  Santon, Cooray, Haiman, Knox, Ma:
astro-ph/0305471; Hu: astro-ph/9907103

10_1‘2_ T 1 TTT T T LI T T rl T 1 T "

10-19 | o 1 3

1e19 |

10-u \ ;

tensors lensing

1820 | ammas vectors H{ . e

I(1+1)C, Blrzn

1e-21 |

no reion

.
- EL T . 10-19 |

- -
LT e L g

1e-22

10 100 1000 10-=

non-Gaussian



- Systematics and foregrounds, e.g.

Galactic dust (143 and 217 GHz): Extragalactic radio sources:
Lazarian, Prunet: astro-ph/0111214 Tucci et al: astro-ph/0307073
10_45 ' ""MIOdes' B'C'je' 'F?c'jjloriso'tio'n"""l :||||| T T 1] T T T 1T T f
10‘5;— /\""’\.\% i _
? : _ 100GHz
: 10_6;— ] {
— _ § '\:u-"‘:__x\ o
i 0.1 E ‘-s:
1077 . : :
_105 1 -||||| L1 1 1450 4 1 1111 || 1 -|
10 Ll Ll Lyl
10 100 1000 10 100 IDDD

1
B modes potentially a good diagnostic of foreground subtraction problems or

systematics



Partial sky E/B separation problem

Pavr = V(aViyPp — (4 V)V . Pp

Pure E:  V°V'Pu = (V3 +2)V2Pg

Pure B: € .V°V*P,;, = (V2 +2)V2Pg

Inversion non-trivial with boundaries
Likely important as reionization signal same scale as galactic cut

:> Use set of E/B/mixed harmonics that are orthogonal and complete
over the observed section of the sphere.
Project onto the "pure’ B modes to extract B.

(Nearly) pure B modes do exist Lewis, Challinor, Turok astro-ph/0106536




Underlying B-modes Part-sky mix with scalar E

Observation P i I

Wz | Separation method

LT e e TR T Recovered B modes
A S Y i i Lot ‘map of gravity waves’

Lewis: astro-ph/0305545



Weak lensing of the CMB

Last scattering surface

Inhomogeneous universe
- photons deflected

Observer




Lensing Potential

Xn)=X1n") =X( n+Vyn) )

10 100 1000
[

Deflections O(1O'3), but coherent on degree scales a important!



Lensing potential and deflection angles

LensPix sky simulation code: hitp://cosmologist.info/lenspix
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Lensed CMB power spectra
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Series expansion in deflection angle?

— X( n+Vy(@) )

% {v'i“w*’wfwd}w{uvbvcvd}r + LWy PV VI Vi (AV + 8)T + LV [*V2 (3V7 + 9}1"}
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Series expansion only good on large and very small scales

Accurate calculation uses correlation functions: Seljak 96; Challinor, Lewis 2005
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Lensing of CMB polarization

10°

Y " -1 Nearly white BB spectrum on large scales
10" | -~/

Potential confusion with tensor modes

Lensing effect can be largely
subtracted if only scalar modes +
lensing present, but approximate and
complicated (especially posterior

statistics).
Hirata, Seljak : astro-ph/0306354,
Okamoto, Hu: astro-ph/0301031

Ao (T+1)1]

| L L | L |
10 100 1000
l

Lewis, Challinor review in prep



Planck (2007+) parameter constraint simulation
(neglect non-Gaussianity of lensed field; BB noise dominated so no effect on parameters)
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Important effect, but using lensed CMB power spectrum gets ‘right’ answer
Lewis 2005



Other non-linear effects

Thermal Sunyaev-Zeldovich

Inverse Compton scattering from hot gas: frequency dependent
signal

Kinetic Sunyaev-Zeldovich (kSZ)

Doppler from bulk motion of clusters; patchy reionization;
(almost) frequency independent signal

Ostriker-Vishniac (OV)

same as kSZ but for early linear bulk motion

Rees-Sciama

Integrated Sachs-Wolfe from evolving non-linear potentials:
frequency independent

General second order
includes all of the above + more



Conclusions

CMB contains lots of useful information!
- primordial perturbations + well understood physics (cosmological parameters)

Precision cosmology . . . .
- constrain many cosmological parameters + primordial perturbations

Currently no evidence for any deviations from standard near scale-invariant purely adiabatic
primordial spectrum

E-polarization and T-E measure optical depth, constrain reionization; constrain isocurvature modes

Large scale B-mode polarization from primordial gravitational waves:
- energy scale of inflation
- rule out most ekpyrotic and pure curvaton/ inhomogeneous reheating models and others

Small scale B-modes
- Strong signal from any vector vorticity modes, strong magnetic fields, topological defects

Weak lensing of CMB :
- B-modes potentially confuse primordial signals
- Important correction to theoretical linear result

Foregrounds, systematics, etc, may make things much more complicated!
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