# LISA Technology Package (LTP) System Design and Operation



8



#### **Guide to the Presentation**



- □ LTP System Overview and Responsibilities
- □ LTP Accommodation on LISA Pathfinder
- Inertial sensor / Optical Metrology Alignment
- □ Test Mass Release by Caging Mechanism
- LTP Operations: Caging Mechanism Control Process
- □ Metrology Acquisition
- LTP Operations: Charge Management Control Process



### **LTP System Overview and Responsibilities**



#### Earth Observation, Navigation & Science LISA Pathfinder - LISA Technology Package (LTP) Mission Goals



- Releasing Test Masses in an inertial system and, by using the "Drag-Free Attitude Control System (DFACS)", to compensate for disturbing forces and torques acting on the test masses.
- Compensation quality shall demonstrate performance in terms of Acceleration Spectral Density and bandwidth, so that LISA requirements can be safely extrapolated.
- Demonstration of feasibility of a suitably accurate distance measurement techniques:
  - Laser-Heterodyn-Interferometry with a determination accuracy of the time resolved Test Mass position and lateral attitude of
    9 \* 10<sup>-12</sup> m Hz<sup>-1/2</sup> \* [1+(f/3mHz)<sup>2</sup>]; 10 nrad/ Hz<sup>-1/2</sup> for 3 30 mHz
  - Capacitive sensors for absolute distance measurements with accuracies of < 3 nm/√Hz in translation and < 200 nrad /√Hz in rotation</li>
- Demonstration of the feasibility to release test masses in orbit with residual disturbances to secure the drag-free mode operation

Page 4 6th Int. LISA Symp., June 23, 2006 R.Gerndt, W.Fichter: / LTP + LPF/DFACS Team, EADS Astrium GmbH

**LTP-Elements** 

Charge Management Device control of Test Masses → Electric Charges

#### Data Management & Diagnostic Subsystem (DDS)

- ➔ Command & Control of LTP
- ➔ Optical Metrology Control
- Diagnostic
  Experiments (Heater, Magnetic Coils, Rad-Monitor, etc.)

 ISS Front-End Electronic / control of Test Masses
 → Electrostatic actuation
 → Electrostatic Positionand Attitude determination

Page 5 6th Int. LISA Symp., June 23, 2006



➔ TM handling during launch and in Orbit (Caging Mechanism)

## LTP Consortium (Customers, Sub-Co's, Suppliers)



(in red contractual relations to ASD)

LTP Architect: EADS Astrium, Immenstaad, D

#### in cooperation with:

University of Trento, Italy (PI) Albert-Einstein-Institut, Hannover (Co-PI) ETH Zürich, Schweiz

| Carlo Gavazzi, Mailand, Italy 🔶            | ISS     |
|--------------------------------------------|---------|
| Alenia-Laben, Mailand, Italy 🗲             | CMA     |
| Kayser-Threde, München, D 🗲                | LA      |
| Tesat, Backnang, D 🔶                       | RLU     |
| University of Glasgow, UK →                | OBI     |
| University of Birmingham, UK $\rightarrow$ | PMA     |
| Imperial College London, UK 🔸              | CMD     |
| Contraves, Zürich, CH →                    | FEE, LM |
| SRON, Delft, Netherlands                   | IS SCOE |
| NTE, Barcelona, Spain -                    | DDS     |

PPARC, UK Page 6 6th Int. I

ASI, Rom, Italy

ESA/ESTEC, Noordwijk

**AEI/DLR, Germany** 

**CNES**, Paris, France

IEEC, Barcelona, Spain

**Customers:** 

## Astrium Germany's LTP Industrial Architect Role ASTRIUM

- Overall System Engineering and LTP performance
- LTP Core Assembly system design
- Product Assurance
- Coordination of the contributions by other LTP Contributors
- Consolidate the LTP design on basis of previous activities Definition of LTP items for which no technical preparatory TRP programs were conducted
- Definition of LTP System and Unit requirements & definition of LTP SW modules
- Procurement of certain items (LA, RLU, CMA & LM)
- Integration of the LTP with respective GSE
- Test & Verification of LTP on instrument level
- Support of integration into the spacecraft and S/C level testing
- Support of in-orbit commissioning of LTP





## **Current Most Risky Technical Items in LTP**

- 1. Caging and Release Mechanism
- 2. LTP Core Assembly Mounting to Spacecraft
- 2. Laser Modulator Performance and Qualification
- 3. Inertial Sensor Housing Vacuum System
- 4. Inertial Sensor Front End Electronics re-design
- 5. LTP Performance Verification
- 6. Software
- 7. Inertial Sensor / Optical metrology System Alignment Procedure



Start with Interferometer Bench...



























## LTP Core Assembly



## **LTP Core Assembly Configuration**







## LTP Accommodation on LISA Pathfinder



Page 18 6th Int. LISA Symp., June 23, 2006 R.Gerndt, W.Fichter: / LTP + LPF/DFACS Team, EADS Astrium GmbH



### **Accommodation of LTP on LPF Science Module**



### Internal View –X-Y







### **Inertial Sensor and Optical Metrology Alignment**



### Alignment Task: Items to be Aligned (LTP internal) EADS



### **Alignment Reference Frames**







## **Test Mass Release by Caging Mechanism**



## Caging Mechanism Assembly (CMA)



- □ The CMA Release function feasibility is currently <u>the</u> challenge of LTP development.
- Demonstration of release feasibility is ongoing and concepts have to be proven by breadboard tests yet
  - Caging Mechanism SubSystem (CMSS) will hold TM during launch and will release TM from caged position
     requires large holding forces up to 3000 N to be applied to a gold-gold contact surface and consequentially strong adhesion forces are to be controlled
  - Grabbing, Positioning, and Release Mechanism (GPRM) shall release TMs into free fall after TM has been separated from CMSS
    → requires separation of gold-gold contacts which were exposed to contact forces up to 300 N
    → requires release of the TMs with residual initial velocities suitable for the DFCAS / Front-End Electronics range of control forces

## Caging Mechanism (CM) Design Principle





## **CMA Critical Issue**



#### Demonstration of release feasibility and reliability

- Caging Mechanism SubSystem (CMSS) holding of TM for launch and release from caged position
- Grabbing, Positioning, and Release Mechanism (GPRM) release of TM into free fall after TM has been separated from CMSS





### LTP Operations: Caging Mechanism Control Process



### LTP Operations: Caging Mechanism Control Process

- □ Functionalities modeled
  - TM caged by CMSS
  - TM held/positioned by GPRM
  - TM grabbed
  - TM released
- □ The model is interfaced with:
  - IS sensing/actuation
    - plunger in contact
    - electrical field variation
  - DFACS
    - release/positioning commands
    - TM velocity estimation for automatic grabbing/recaging







### LTP Operations: Caging Mechanism Control Process



## LTP Operations: Caging Mechanism Control Process



- □ Release Procedure
  - 1. Fast&Short Retraction GPRM Plungers
  - 2. Check TM velocity < Threshold
  - 3. YES  $\rightarrow$  Full retraction GPRM Plungers NO  $\rightarrow$  Recage, Repeat Procedure
- □ Simulation Setup @ TM Release
  - Velocity 5.10<sup>-6</sup> m/s 1.10<sup>-4</sup> rad/s
  - Displacement 200 m 2 mrad
- Transient time
  - TM centered within 600 sec
- Overshoots

TM steady state accuracy (3σ)

< 2 m, < 40 rad

#### □ TM velocity estimation

Reliable estimation (<10% error) provided to the CMA within 6 sec







<sup>&</sup>lt; 100 m, < 2 mrad

## LTP operations: Optical Metrology Acquisition





## **Acquisition sequence**





## Simulation results (E2E)





Page 35 6th Int. LISA Symp., June 23, 2006 R.Gerndt, W.Fichter: / LTP + LPF/DFACS Team, EADS Astrium GmbH

## LTP Operations: Charge Management Control Process







## Charge Management Control Process Top-Level Architecture



Page 37 6th Int. LISA Symp., June 23, 2006 R.Gerndt, W.Fichter: / LTP + LPF/DFACS Team, EADS Astrium GmbH

## **Charge Management Control Process Principle of Charge Measurement**



Goal: Determine Charge on TM (illustrated for measurement along x)

 $V_1 = V_2 = B \cdot sin(\omega \cdot t + \pi)$ 

 $V_3 = V_4 = B \cdot sin(\omega \cdot t)$ 

**Apply Oscillating Voltage with Proper Phase to Electrodes 1-4:** 

Force Proportional to Charge is Generated:  $F_x^Q(t) = -\frac{4 \cdot \varepsilon_o \cdot A}{c_{tot} \cdot d_x^2} \cdot Q_{TM} \cdot V_1(t)$ 

Equal electrodes, no dc voltage, and constant d<sub>x</sub> assumed 

z

Sinusoidal force with same frequency and phase as V(t) produced  $\Box$ 

Force not Directly Measurable, but Displacement:  $x^{Q}(t) = \frac{F_{x}^{Q}}{m_{TM} \cdot (2\pi f)^{2}}$ 

#### Finally: Estimate Charge out of Measured Signal $x^{Q}(t)$

Data-recursive estimation algorithms used for online estimation  $\Box$ 



## Charge Management Control Process Charge/Discharge Control

#### Discharge Rate Depending on:

- Commanded UV Lamp Current I<sub>UV</sub>
- Potential Difference between TM and EH  $\rightarrow$  Apply Bias Voltage V<sub>DC</sub> to Enhance Discharge

#### □ Constraint: Max. 2 UV Lamps can be Used at Same Time

One Lamp per TM for simultaneous discharging



## Charge Management Control Process Fast Discharge Results (based on ICL model)



- $\Box$  Control Accuracy:  $Q_{TM} < \pm 1 \cdot 10^5 e$
- Duration: 3 Charge Estimation/Discharge Cycles Required
  Less than 4000 sec for Fast Discharging of Both TMs



## LTP operations: Optical Metrology Acquisition





### Summary



- □ Astrium has to manage a "can of worms" and has to forge together heterogeneous preparatory work
- Current critical issues identified and mitigation ongoing
- Close interaction of DFACS modes development, LTP performance engineering and LTP hardware development most critical
- Initalisation of operation modes well understood and verified in simulation