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We describe an improved artificial neural network (ANN)-
based method for predicting peptide retention times in
reversed-phase liquid chromatography. In addition to the
peptide amino acid composition, this study investigated
several other peptide descriptors to improve the predictive
capability, such as peptide length, sequence, hydropho-
bicity and hydrophobic moment, and nearest-neighbor
amino acid, as well as peptide predicted structural
configurations (i.e., helix, sheet, coil). An ANN architec-
ture that consisted of 1052 input nodes, 24 hidden
nodes, and 1 output node was used to fully consider the
amino acid residue sequence in each peptide. The net-
work was trained using ∼345 000 nonredundant peptides
identified from a total of 12 059 LC-MS/MS analyses of
more than 20 different organisms, and the predictive
capability of the model was tested using 1303 confidently
identified peptides that were not included in the training
set. The model demonstrated an average elution time
precision of ∼1.5% and was able to distinguish among
isomeric peptides based upon the inclusion of peptide
sequence information. The prediction power represents
a significant improvement over our earlier report (Petritis,
K.; Kangas, L. J.; Ferguson, P. L.; Anderson, G. A.; Pasa-
Tolic, L.; Lipton, M. S.; Auberry, K. J.; Strittmatter, E.
F.; Shen, Y.; Zhao, R.; Smith, R. D. Anal. Chem. 2003,
75, 1039-1048) and other previously reported models.

The analysis of peptides (e.g., tryptically digested proteins)
by on-line coupling of liquid chromatography (LC) with electro-
spray ionization-mass spectrometry (ESI-MS) is presently the most
common approach for characterizing complex proteomes. While
several methods and software tools are available for identifying
peptides/proteins from mass spectra, the high complexity of a
digested proteome (containing thousands or even millions of

detectable peptides) and the vastly larger number of possible
peptide sequences make accurate peptide/protein identification
challenging; final results can include large numbers of false
positive identifications.1

We have been working to apply additional information such
as LC retention time to improve the confidence in peptide
identifications, an approach also recently suggested by a group
working to establish publication guidelines for peptide and protein
identification.2 The use of peptide retention time information has
proved useful in the past for LC method development of simple
peptide mixtures,3,4 purification of peptides of interest,4,5 and
identification of simple peptide mixtures in conjunction with UV
and/or fluorescence and/or colorimetric methods of detection.6

Efforts to predict the chromatographic behavior of peptides
on the basis of amino acid composition are not new. In 1951,
Knight7 and Pardee8 showed that synthetic peptide retardation
factors (Rf) in paper chromatography could be predicted with some
accuracy. In 1952, Sanger9 demonstrated that peptides of the same
amino acid composition, but different sequence, could frequently
be separated. More recently, there have been several reports on
the prediction of peptide elution times in reversed-phase (RP)10-15
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and normal-phase16,17 LC. Most of this reported work used the
so-called “retention coefficient” approach, which is based on the
summation of empirically determined amino acid residue retention
coefficients. The assumption that the chromatographic behavior
of peptides is mainly or solely dependent on amino acid composi-
tion holds up fairly well for small peptides (up to 15-20 residues),
but is inadequate for proteomic applications, e.g., involving tryptic
peptides, where the practical upper limit can exceed 50 amino
acid residues. Furthermore, with the retention coefficient ap-
proach, isomeric peptides are predicted to elute at the same time,
which is not the case.18-21

Improving peptide retention time prediction in RPLC requires
an understanding of the various factors affecting peptide retention.
These factors have been thoroughly investigated, and it is now
widely accepted that retention behavior of peptides in RPLC is
governed by (1) amino acid composition,10-15 (2) peptide length
(or mass),13,22-24 and (3) sequence-dependent effects.25-37 The third
category can be further divided into nearest-neighbor and con-
formation effects, where the former is defined to be amino acid
sequence-dependent, but independent of peptide conformation.25

Mant et al.13 tried to improve peptide retention time prediction
by extending the retention coefficient approach by including the
peptide length. Krokhin et al.38 used separate retention coefficients
for amino acids at the N-terminus of the peptide in addition to
the peptide length, further improving the retention coefficient
model. Liu et al.39 applied a support vector machine and the
heuristic method to develop nonlinear and linear models between
the capacity factor (log k) and seven peptide molecular constitu-
tional and topological descriptors (i.e., number of single bonds,

number of rings, etc.), but did not take into account peptide
structure. Recently, Kaliszan and co-workers40,41 used quantitative
structure-retention relationships (QSRR) to predict peptide reten-
tion times. Descriptors used to derive the necessary QSRR
included the logarithm of the sum of retention times of the amino
acids that composed the peptide, the logarithm of the van der
Waals volume of the peptide, and the logarithm of the peptide
calculated 1-octanol-water partition coefficient. Makrodimitris et
al.42 used a mesoscopic simulation that employed Langevin dipoles
on a lattice for the solvent and calculated partial charges for the
solute to estimate free energies of adsorption from data on
reversed-phase chromatography. The authors were able to predict
the elution order of nine derivatized peptides that covered a wide
range of structures. In 2003, we introduced an artificial neural
networks (ANNs) method for predicting peptide elution times43

that was originally based on amino acid composition and later
extended to include partial peptide sequence information.44

We have previously reported an accurate mass and time (AMT)
tag proteomics approach that uses accurate mass measurements
in conjunction with observed peptide retention time information
to more confidently identify peptides. 45-48 Palmblad et al.49,50 have
more recently shown that retention time prediction can be
combined with accurate mass measurements to improve proteom-
ics measurements; however, their peptide elution time prediction
error was high, possibly due to the limitations of the retention
coefficient approach used. In various applications, we have shown
that when peptide retention time prediction was combined with
peptide/protein identification programs such as SEQUEST, the
number of false positive identifications could be decreased and/
or the number of confident peptide identifications from LC-MS/
MS experiments51-53 increased. Le Bihan et al.54 used peptide

(16) Yoshida, T. J. Chromatogr., A 1998, 811, 61-67.
(17) Yoshida, T.; Okada, T. J. Chromatogr., A 1999, 841, 19-32.
(18) Hearn, M. T. W.; Aguilar, M. I. J. Chromatogr. 1987, 392, 33-49.
(19) Petritis, K.; Brussaux, S.; Guenu, S.; Elfakir, C.; Dreux, M. J. Chromatogr.,

A 2002, 957, 173-185.
(20) Houghten, R. A.; Ostresh, J. M. BioChromatography 1987, 2, 80-84.
(21) Terabe, S.; Konaka, R.; Inouye, K. J. Chromatogr. 1979, 172, 163-177.
(22) O’Hare, M. J.; Nice, E. C. J. Chromatogr. 1979, 171, 209-221.
(23) Wehr, C. T.; Correia, L.; Abbott, S. R. J. Chromatogr. Sci. 1982, 317, 129-

135.
(24) Su, S. J.; Grego, B.; Niven, B.; Hearn, M. T. W. J. Liq. Chromatogr. 1981,

4, 1745-1753.
(25) Zhou, N. E.; Mant, C. T.; Hodges, R. S. Pept. Res. 1990, 3, 8-20.
(26) Blondelle, S. E.; Buttner, K.; Houghten, R. A. J. Chromatogr. 1992, 625,

199-206.
(27) Buttner, K.; Pinilla, C.; Appel, J. R.; Houghten, R. A. J. Chromatogr. 1992,

625, 191-198.
(28) Sereda, T. J.; Mant, C. T.; Sonnichsen, F. D.; Hodges, R. S. J. Chromatogr.,

A 1994, 676, 139-153.
(29) Su, J. Y.; Hodges, R. S.; Kay, C. M. Biochemistry 1994, 33, 15501-15510.
(30) Rothemund, S.; Krause, E.; Beyermann, M.; Dathe, M.; Engelhardt, H.;

Bienert, M. J. Chromatogr., A 1995, 689.
(31) Sereda, T. J.; Mant, C. T.; Hodges, R. S. J. Chromatogr., A 1995, 695, 205-

221.
(32) Blondelle, S. E.; Ostresh, J. M.; Houghten, R. A.; Perez-Paya, E. Biophys. J.

1995, 68, 351-359.
(33) Wimley, W. C.; Creamer, T. P.; White, S. H. Biochemistry 1996, 35, 5109-

5124.
(34) Steer, D. L.; Thompson, P. E.; Blondelle, S. E.; Houghten, R. A.; Aguilar,

M. I. J. Pept. Res. 1998, 51, 401-412.
(35) Yu, Y. B.; Wagschal, K. C.; Mant, C. T.; Hodges, R. S. J. Chromatogr., A

2000, 890, 81-94.
(36) Wieprecht, T.; Rothemund, S.; Bienert, M.; Krause, E. J. Chromatogr., A

2001, 912, 1-12.
(37) Chen, Y.; Mant, C. T.; Hodges, R. S. J. Chromatogr., A 2003, 1010, 46-61.
(38) Krokhin, O. V.; Craig, R.; Spicer, V.; Ens, W.; Standing, K. G.; Beavis, R. C.;

Wilkins, J. A. Mol. Cell. Proteomics 2004, 3, 908-919.
(39) Liu, H. X.; Xue, C. X.; Zhang, R. S.; Wao, X. J.; Liu, M. C.; Hu, Z. D.; Fan,

B. T. J. Chem. Inf. Comput. Sci. 2004, 44, 1979-1986.

(40) Kaliszan, R.; Baczek, T.; Cimochowska, A.; Juszczyk, P.; Wisniewska, K.;
Grzonka, Z. Proteomics 2005, 5, 409-415.

(41) Baczek, T.; Wiczling, P.; Marszall, M.; Heyden, Y. V.; Kaliszan, R. J. Proteome
Res. 2005, 4, 555-563.

(42) Makrodimitris, K.; Fernandez, E. J.; Woolf, T. B.; O’Connell, J. P. Anal. Chem.
2005, 77, 1243-1252.

(43) Petritis, K.; Kangas, L. J.; Ferguson, P. L.; Anderson, G. A.; Pasa-Tolic, L.;
Lipton, M. S.; Auberry, K. J.; Strittmatter, E. F.; Shen, Y.; Zhao, R.; Smith,
R. D. Anal. Chem. 2003, 75, 1039-1048.

(44) Petritis, K.; Kangas, L. J.; Strittmatter, E. F.; Xu, Y.; Yan, B.; Camp II, D. G.;
Lipton, M. S.; Smith, R. D. 52nd ASMS conference on Mass Spectrometry
and Allied Topics, Nashville, TN, 2004; poster.

(45) Conrads, T. P.; Anderson, G. A.; Veenstra, T. D.; Pasa-Tolic, L.; Smith, R.
D. Anal. Chem. 2000, 72, 3349-3354.

(46) Smith, R. D.; Anderson, G. A.; Lipton, M. S.; Pasa-Tolic, L.; Shen, Y.; Conrads,
T. P.; Veenstra, T. D.; Udseth, H. R. Proteomics 2002, 2, 513-523.

(47) Lipton, M. S.; Pasa-Tolic, L.; Anderson, G. A.; Anderson, D. J.; Auberry, D.
L.; Battista, J. R.; Daly, M. J.; Fredrickson, J.; Hixson, K. K.; Kostandarithes,
H.; Masselon, C.; Markillie, L. M.; Moore, R.; Romine, M. F.; Shen, Y.;
Strittmatter, E.; Tolic, N.; Udseth, H. R.; Venkateswaran, A.; Wong, K. K.;
Zhao, R.; Smith, R. D. Proc. Natl. Acad. Sci. U.S.A. 2002, 99, 11049-011054.

(48) Strittmatter, E. F.; Ferguson, P. L.; Tang, K.; Smith, R. D. J. Am. Soc. Mass
Spectrom. 2003, 14, 980-991.

(49) Palmblad, M.; Ramstrom, M.; Markides, K. E.; P., H.; Bergquist, J. Anal.
Chem. 2002, 74, 5826-5830.

(50) Palmblad, M.; Ramstrom, M.; Bailey, G. B.; McCutchen-Maloney, S. L.;
Bergquist, J.; Zeller, L. C. J. Chromatogr., B 2004, 803, 131-135.

(51) Strittmatter, E. F.; Kangas, L. J.; Petritis, K.; Mottaz, H. M.; Anderson, G.
A.; Shen, Y.; Jacobs, J. M.; Camp, D. G., 2nd; Smith, R. D. J. Proteome Res.
2004, 3, 760-769.

(52) Varnum, S. M.; Covington, C. C.; Woodbury, R. L.; Petritis, K.; Kangas, L.
J.; Abdullah, M. S.; Pounds, J. G.; Smith, R. D.; Zangar, R. C. Breast Cancer
Res. Treat. 2003, 80, 87-97.

(53) Qian, W. J.; Liu, T.; Monroe, M. E.; Strittmatter, E. F.; Jacobs, J. M.; Kangas,
L. J.; Petritis, K.; Camp, D. G., 2nd; Smith, R. D. J. Proteome Res. 2005, 4,
53-62.

Analytical Chemistry, Vol. 78, No. 14, July 15, 2006 5027



elution time prediction parameters to build an empirical model
for predicting peptides that are likely to be observable by LC-
MS/MS; the model was used for targeted mass spectrometric
identification of low-abundance proteins in complex protein
samples. Kawakami et al.55 developed a program that validates
peptide assignments based solely on the correlation between the
measured and predicted LC elution time of each peptide. In a
recent publication, Norbeck et al.56 demonstrated how accurate
mass and normalized elution time (NET) information improved
peptide identifications in the study of proteomes of high complex-
ity. Such improvements can significantly extend the protein
coverage of highly confident peptide identifications. Similarly,
Cargile et al.57-59 demonstrated confident peptide identifications
could be further enhanced by the application of information from
isoelectric focusing fractionation as a first dimension in shotgun
proteomics. The good correlations observed between predicted
and experimental peptide pI values allowed pI information to be
used as an additional filtering step to increase the confidence of
peptide/protein identifications.

In the model development reported herein, we have explored
various approaches for increasing peptide elution time prediction
accuracy in RPLC. In addition to more complex ANN architec-
tures, we examined several peptide physicochemical (peptide
length, hydrophobicity, etc.) and sequence-dependent parameters
(peptide sequence, amphipathicity, nearest neighbor, etc.) that
have been shown to affect the peptide retention time in LC. The
predictive capability of the model was evaluated by comparing it
with several other previously described peptide retention time
prediction models. The result shown here has been a significant
improvement in predictive capability.

EXPERIMENTAL SECTION
Sample Preparation of Bacterial Tryptic Peptides. Peptide

identifications from a number of different bacterial organisms and
from an array of studies were used to train and test the ANN.
Table 2 lists the bacteria and cites published studies providing
the detailed sample preparation for each organism.60-70 In general,
bacterial cells were cultured in tryptone, glucose, and yeast extract

medium to an approximate optical density of 600 nm and harvested
by centrifugation at 10000g at 4 °C. Prior to lysis, cells were
resuspended and washed 3 times with 100 mM ammonium
bicarbonate and 5 mM EDTA (pH 8.4). Cells were lysed by beating
with 0.1-mm acid zirconium beads for three, 1-min cycles at 5000
rpm, and incubated on ice for 5 min between each cycle. The
supernatant containing soluble cytosolic proteins was recovered
following centrifugation at 15000g for 15 min to remove cell debris.
Proteins were denatured and reduced in 50 mM Tris buffer (pH
8.2), 8 M urea, 10 mM tributyl phosphine for 1 h at 37 °C. The
protein sample was diluted 10 times using 20 mM Tris buffer (pH
8.2) and then digested overnight at 37°C using sequencing grade,
modified porcine trypsin (Promega, Madison, WI) at a trypsin/
protein ratio of 1:50. The digests were purified using SPE C18
columns (Supelco, Bellefonte, PA) according to the manufacturer’s
instructions and dried under vacuum.

Preparation of Yeast (Saccharomycess cerevisiae) Pro-
tein Digests. S. cerevisiae (ATCC 26108, Lot 137504) was grown
in a batch shaker flask at 37 °C on yeast nitrogen base without
amino acids. Medium was prepared with the addition of 5 g/L
glucose and 5 g/L fructose. Cells were harvested at mid-
logarithmic and stationary phases by centrifugation at 4000 rpm
for 10 min. Cells were combined in a ratio of 1:3 stationary-phase
cells to mid-logarithm cells. Half of the cells were resuspended
in 4 pellet volumes of a denaturation solution (7 M urea, 2 M
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C. E.; Riley, M.; Collart, F. R.; Yates, J. R.; Smith, R. D.; Giometti, C. S.;
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Table 1. Filtering Criteria (XCorr Thresholds) Used To
Select Development Dataa

LCQ LTQ

charge state
and MW

partially
tryptic

fully
tryptic

partially
tryptic

fully
tryptic

CS +1, MW <1000 NO 1.6 NO 1.7
CS +1, MW >1000 2.8 2.2 2.9 2.3
CS +2, MW any 3 2.2 4.3 2.4
CS +3, MW any 3.7 2.9 4.7 3.2

a The criteria are different depending on the ion trap instrument,
the charge state of the peptides, and the peptide molecular weight (in
the case of singly charged peptides no partially tryptic peptides with
MW <1000 were used).
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thiourea, in 50 mM ammonium bicarbonate buffer, pH 7.8). Lysis
was achieved by bead beating the cell mixture with 0.1-mm
zirconia/silica beads in a minibead beater (Biospec, Bartlesville,
OK) for 90 s at 4500 rpm. Lysate was collected and placed
immediately on ice to inhibit proteolysis. The other half of the
cells were subjected to bead beating with a denaturation solution,
in which thiourea was absent.

The lysates were reduced by adding neutralized Tris-2-
carboxyethylphosphine (Pierce, Rockford IL) to a final concentra-
tion of 5 mM and incubated for 30 min at 60 °C. The lysates were
then diluted 10-fold with 50 mM ammonium bicarbonate (pH 7.8),
and 1 M calcium chloride was added to a final concentration of 1
mM. Proteolysis was achieved by adding sequencing grade
modified trypsin (Promega) in an approximate protease to lysate
protein ratio of 1:50. The samples were digested for 5 h at 37°C.
The lysate that contained no thiourea was alkylated by adding
195 mM iodoacetamide to a final concentration of 10 mM and
incubated at room temperature for 30 min. Finally, the lysates
were combined, and the peptides were desalted using Supelco
(St. Louis, MO) Supelclean C-18 tubes with a Supelco vacuum
manifold.

Preparation of Mouse Brain Tissue and Voxel Samples.
Brain tissue samples from C57BL/6J male mice were prepared
as previously described.72 The samples were lysed in 80 µL of 5

mM PBS with 80 µL of TFE with intermittent sonication in an
ice-water bath. The lysate was reduced with 5 mM TBP and
digested by trypsin overnight, and the digests were lyophilized
immediately after digestion without further cleanup. Peptide
samples were redissolved in 100 µL of 50 mM NH4HCO3, and
the peptide concentrations were measured by using the BCA
protein assay.

Preparation of Human Mammalian Epithelial Cell Protein
Digests. Samples were prepared as described previously.65

Nearest-Neighbor Effect. The simplest and most direct way
of incorporating the nearest-neighbor effect of the 21 amino acids
is to construct either a 21 × 21 or 21 × 21 × 21-dimensional array
that includes all 441 or 9261 possible combinations (i.e., AA, AC,
AD, ... or AAA, AAC, AAD, ...), respectively. The bipeptides/
tripeptides in a given peptide are either counted or structured in
the ANN in the same way as they appear in the peptide sequence.
Alternatively, it is possible to construct the nearest-neighbor list
based on an amino acid property. The 21 amino acids can be
divided on the basis of their side-chain properties into five
groups: (1) nonpolar aliphatic (AGILPV), (2) polar uncharged
(CMNQST and C alkylated), (3) aromatic (FWY), (4) positively
charged (HKR), and (5) negatively charged (DE). We used this
alternative approach to obtain a reduced 5 × 5 dimensional
nearest-neighbor array, which is optimal when the number of
training peptides is not large enough.

Quasi-Sequence-Order Approach. Due to the extremely
large number of possible amino acid residue sequences, it is

(71) Hixson, K. K.; Adkins, J. N.; Gonzales, A.; Moore, R. J.; Smith, R. D.;
McCutchen-Maloney, S. L.; Lipton, M. S. J. Proteome Res., in press.
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Cherry, S. R.; Leahy, R. M.; Smith, D. J. Genome Res. 2002, 12, 868-884.

Table 2. Organisms from Which the Peptides Were Identified, Number of LC-MS/MS Analyses for Each Organism,
Number of Redundant Peptides Identified from Each Organism before Any Filtering, and Number of Different
Peptides Used from Each Organism after Filtering with the Criteria of Table 1a

organism

no. of LC-
MS/MS

runs

total
peptide

IDs

unique
filtered

peptides ref

Arabidopsis thaliana 36 8 567 2 049 unpublished
Borrelia burgdorferi 186 145 067 6 945 Jacobs et al.60

bovine serum albumin 45 5 853 32 na
cytomegalovirus 125 88 166 3 342 Varnum et al.61

Deinococcus radiodurans 1063 491 437 21 912 Lipton et al.62

Desulfovibrio desulfuricans 426 624 901 28 826 unpublished
Desulfovibrio vulgaris 66 49 332 650 in preparation
Escherchia coli 16 7 247 126 unpublished
Geobacter metallireducens 116 400 292 21 509 unpublished
Geobacter sulfurreducens 791 909 730 26 446 Ding et al.63

Homo sapiens 1254 523 142 31 505 Liu et al.,64

Jacobs et al.65

Mus musculus 697 570 471 34 579 in preparation
Plasmodium falciparum 21 73 421 7 059 unpublished
protein standard mixtureb 1067 1 183 116 1 154 Purvine et al.66

Rhodobacter sphaeroides 1062 432 450 22 766 Callister et al.67

Rhodopseudomonas palustris 131 15 750 4 433 unpublished
Saccharomyces cerevisia 606 286 528 12 035 Prokisch et al.68

Salmonella typhi 418 1 353 968 27 411 in preparation
Salmonella typhimurium 492 1 692 917 32 920 Adkins et al.69

Shewanella oneidensis 2348 3 040 760 33 480 Kolker et al.70

synechocystis 343 274 200 15 185 in preparation
Vaccinia virus 13 27 298 1 546 in preparation
Yersina pestis 737 221 196 10 052 Hixson et al.71

total 12 059 12 425 809 345 962

a The references are meant to be representative of the samples and sample preparation methods for each organism; it should be noted that the
peptide identifications for each organism may contain some quantity of samples and sample preparations that are currently unpublished. b The
protein standard mixture contains the same peptides and proteins as described by Purvine et al. 2004.66
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difficult to directly incorporate the amino acid sequence order
effectively into a statistical prediction algorithm. As a result, we
used the “quasi-sequence-order” approach, first introduced by
Chou73,74 to predict protein subcellular locations and attributes.
The idea is to assume that the sequence order effect of L-amino
acids with the form a1a2a3a4a5‚‚‚aL, can be approximately reflected
through the following set of sequence-order-coupling factors:

where τ1 denotes the first-rank sequence-order coupling factor
that reflects the sequence-order correlation among all the most
contiguous residues along a peptide sequence, τ2 is the second-
rank sequence-order-coupling factor that reflects the sequence-
order correlation between all the second most contiguous resi-
dues, and so forth; when λ g L, we assignτλ ) 0. The correlation
function is described by

where D(ai,aj) is the physicochemical evolution distance from
amino acid ai to amino acid aj that was derived on the basis of
the residue properties hydrophobicity, hydrophilicity, polarity, and
side-chain volume (see Table 1 of Schneider and Wrede75).

Secondary Structure Contributions. To incorporate confor-
mational information that can influence chromatographic behavior,
we introduced the predicted secondary structural contents (SSC)
for each peptide. The SSC attempts to represent the percentage
of a peptide’s residues that reside in a secondary structural state,
e.g., R-helix, â-sheet, or coil. In this study, two different approaches
were used to calculate the SSC. In the first approach, the SSC
was predicted from the amino acid composition using the shared
program SSCP.76 In the second approach, the SSC was converted
from the secondary structure predicted by SSP, which makes use
of profiles generated by the PSI-BLAST program. and the
PSIPRED secondary structure prediction method of Jones.77

Generally, peptides with only sufficient lengths have secondary
structures, so the SSP was employed for peptides with at least 15
amino acid residues. For those peptides with residues of <15,
we arbitrarily treated them as coil.

Hydrophobic Moment. A known phenomenon that causes
retention time shifts for isomer peptides is the amphipathicity of
the peptides. The amphiphilic helices are those in which one
surface of each helix projects mainly hydrophilic side chains, while
the opposite surface projects mainly hydrophobic side chains. To
quantify the amphiphilicity of a helix, we applied the hydrophobic
moment proposed by Eisenberg et al.78-80 The mean hydrophobic
moment can be calculated for an amino acid sequence of N
residues and their associated hydrophobicities Hn with the
following equation:

A large value for 〈µH〉 equates to a large peptide amphipathicity.
Capillary LC Coupled with ESI-MS. HPLC-grade water and

acetonitrile were purchased from Aldrich (Milwaukee, WI). Fused-
silica capillary columns (30-85 cm, 50-50 µm i.d. × 180-360
µm o.d., Polymicro Technologies, Phoenix, AZ) packed with 3.5-
µm C18 Jupiter300 particles (Phenomenex, Torrance, CA) were
manufactured in-house as described previously.81 Capillary RPLC
was performed using an ISCO LC system (model 100DM, ISCO,
Lincoln, NE), and the mobile phases for the gradient elution
consisted of (A) acetic acid/TFA/water (0.2:0.05:100 v/v) and (B)
TFA/acetonitrile/water (0.1:90:10, v/v). The mobile phases were
delivered at 5000-10000 psi, using two ISCO pumps to a stainless
steel mixer (∼2.5 mL), where they were mixed using a magnetic
stirrer. The flow was split prior to entering the separation capillary
to generate a nonlinear (exponential) gradient82 and an analysis
separation time of ∼100 min. Fused-silica capillary flow splitters
(various lengths) were used to control the gradient speed.
Capillary RPLC was coupled on-line with MS through an ESI
interface (a stainless steel union was used to connect the ESI
emitter and the capillary separation column).82

The peptide database was generated from analyses performed
previously using several mass spectrometers, including 3.5, 7, 9,
and 11.4 T capillary LC-FTICR instruments (described elsewhere
in detail83 and in references therein), an LTQ-FT (ThermoFinni-
gan, San Jose, CA), and LCQ Duo, LCQ Deca, LCQ XP, and LTQ
(ThermoFinnigan) ion trap mass spectrometers. The ANN soft-
ware NeuroWindows Version 4.5 (Ward Systems Group) utilized
a standard back-propagation algorithm on a Pentium 3.0-GHz
personal computer.

RESULTS AND DISCUSSION
In this study, parameters that have been shown to affect the

peptide retention time in LC were examined, to investigate their

(73) Chou, K. C. Biochem. Biophys. Res. Commun. 2000, 278, 477-483.
(74) Chou, K. C. Proteins: Struct., Funct., Genet. 2001, 43, 246-255.
(75) Schneider, G.; Wrede, P. Biophys. J 1994, 66, 335-344.
(76) Eisenhaber, F.; Imperiale, F.; Argos, P.; Frommel, C. Proteins: Struct., Funct.,

Genet. 1996, 25, 157-168.
(77) Jones, D. T. J. Mol. Biol. 1999, 292, 195-202.

(78) Eisenberg, D.; Weiss, R. M.; Terwillinger, T. C. Nature 1982, 299, 371-
374.

(79) Eisenberg, D. Annu. Rev. Biochem. 1984, 53, 595-623.
(80) Eisenberg, D.; Weiss, R. M.; Terwillinger, T. C. Proc. Natl. Acad. Sci. U.S.A.

1984, 81, 140-144.
(81) Shen, Y.; Zhao, R.; Belov, M. E.; Conrads, T. P.; Anderson, G. A.; Tang, K.;

Pasa-Tolic, L.; Veenstra, T. D.; Lipton, M. S.; Smith, R. D. Anal. Chem. 2001,
73, 1766-1775.

(82) Shen, Y.; Tolic, N.; Zhao, R.; Pasa-Tolic, L.; Li, L.; Berger, S. J.; Harkewicz,
R.; Anderson, G. A.; Belov, M. E.; Smith, R. D. Anal. Chem. 2001, 73, 3011-
3021.

(83) Harkewicz, R.; Belov, M. E.; Anderson, G. A.; Pasa-Tolic, L.; Masselon, C.
D.; Prior, D. C.; Udseth, H. R.; Smith, R. D. J. Am. Soc. Mass Spectrom.
2002, 13, 144-154.
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incorporation in approaches for improvement in the predictive
capability of the model. Some of these values (i.e., hydrophobic
moment, secondary structure, etc.) are calculated/predicted
values, while others (i.e., length, sequence, etc.) are known
valuessas long as the peptide identification is correctsthat have
been encoded in the model by using more complex artificial neural
networks. In the case of full encoding of the peptide sequence, a
large number of peptide identifications were necessary for the
training set. As a result, for reasons described later, new filtering
criteria for selection of the most confidently identified peptides
as well as improved peptide LC elution time normalization
procedures were needed.

Normalization of Peptide LC Elution Times. The ANN and
training algorithms employed for the present model development
effort were described in our previous relevant work.43 Briefly,
peptides identified from the radiation-resistant organism Deino-
coccus radiodurans (∼7000 peptides) were used to train the ANN,
and peptides identified from the metal-reducing organism Sh-
ewanella oneidensis (∼5200) were used to test it. A genetic

algorithm developed to normalize the peptide elution times into
a range (from 0 to 1) and correlate data sets enabled accurate
comparison of numerous LC-MS data sets and improved the
peptide elution time reproducibility to ∼1%. This algorithm was
based on a linear regression of a set of six peptides identified
frequently in both organisms of the study43 and normalized peptide
elution times coming from both the same and different organisms.

While generating excellent results, this normalization approach
became time prohibitive as the number of peptides used increased
significantly. To train/test the present model, we employed
confidently identified peptides from 22 different organisms, as well
as a mixture of standard proteins/peptides,66 that provided a set
of ∼12 million peptide identifications. The time needed to
normalize this set of peptide identifications using the genetic
algorithm (described above) would be on the order of several
weeks due to the many generations (iterations) required to align
all analyses through multiple regressions.84,85 Consequently, we
revised the process to normalize each LC-MS/MS analysis
independently by regressing all the observed peptide elution times

Figure 1. Schematic representation of the present study normalization method. (A1-3) Figure depicts the base peak chromatograms of given
mouse brain voxels from different brain regions of the same mouse. The voxels 4B1 and 7E4 were analyzed by LC-FTICR MS on the same
day and with the same chromatographic column. The voxels B09 was analyzed 3 months later using different chromatographic column (but
having the same dimensions and chromatographic packing). (B1-3) Observed accurate mass and time are regressed against computed masses
and average observed NET values from LC-MS/MS using an iterative process. The regression residual converges when the observed accurate
mass and time match their theoretical/predicted ones. The slope and intercept of the trendline are used for the linear (regression) based mapping
of observed elution time to observed NET (C1,2) These plots show the correlation of observed NET values for the peptides in common between
different LC-FTICR MS analyses.
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in a given analysis against the predicted NET for the same
peptides. Although we initially constructed the scale of predicted
NET values by using the previously trained genetic algorithm,
once the algorithm had been trained, we were able to use the
NET values predicted by this algorithm for LC-MS/MS align-
ment. The alignment of each LC-MS/MS data set against the
list of predicted NET values provided the means to convert the
observed elution time for each peptide to an observed NET value
on the basis of the relationship NETobserved ) (slope × elution
timeobserved) + intercept.

A step in the accurate mass and time (AMT) tag proteomics
approach developed in our laboratory involves using peptide
observations from multiple (and often extensive sets of) LC-MS/
MS analyses of appropriately related samples45,46 to create a
reference database of accurate mass and observed LC NET values
for each identified peptide. These AMT tags are used to identify
peptides in subsequent high-throughput LC-MS analyses of the
same organism. For peptides observed in several LC-MS/MS
analyses, the observed NET values are averaged, which provides
statistics on the distribution of NET values for each peptide. In
analyses by LC-MS, e.g., LC-Fourier transform ion cyclotron
resonance (FTICR), data consist of a list of observed peptide
“features,” wherein each feature consists of a monoisotopic mass
(after collapse of the isotopic distribution for the peptide and
subtraction of the proton(s) mass) and an observed elution time.
To derive NET values for the detected features, we used an
iterative process to regress the observed accurate mass and
elution time against the computed masses and averaged observed
NETs in the reference database. The regression residual con-
verges when the observed accurate mass and elution time match
their theoretical/predicted ones. The slope and intercept of the
trend line are used for linear (regression)-based mapping of
observed elution time to observed NET. Figure 1 shows some
representative “real-world” data of the present normalization
method applied to LC-FTICR experiments of mouse brain voxels.
Figure 1A depicts the base peak chromatograms of given mouse
brain voxels from different spatial brain sections of the same
mouse. The voxels 4B1 and 7E4 were analyzed by LC-FTICR-
MS on the same day while the voxel B09 was analyzed 3 months
later in a different chromatographic column of the same dimen-
sions. Figure 1B shows the correlations obtained when observed
accurate mass and time are regressed against computed masses
and average observed NET values from LC-MS/MS using an
iterative process. Finally, Figure 1C of this figure shows that the
NETs of peptides in common among LC-FTICR analyses are
highly correlated (R2 > 0.99), even for experiments that were
performed three months apart. By normalizing the elution time
of all peptides, we optimize the overall alignment of both LC-
MS and LC-MS/MS data sets, an important step for more
effective peptide identification45,46 and quantitation using the AMT
tag approach.86

Peptide Identification Data for the Training and Testing
of the Artificial Neural Network Model. Our earlier work43 was
limited by both the uncertain levels of confidence associated with
peptide identifications and the relatively small number of different

peptides. However, by using different organisms to train and test
the ANN model, we demonstrated that the earlier model was
unbiased toward the peptides of a specific organism, and therefore,
peptides from any organism could be used to populate the
training/testing database.

One of the main objectives of this study was to incorporate
peptide sequence information into an ANN architecture, and it
was evident from the start that a large training set would be
required. Based on our experience, the best way to obtain a large
number of new peptide structures was by analyzing different
organisms. We eliminated the filtering requirement of g3 iden-
tifications per peptide so that peptides from “new” organisms (that
had not been analyzed multiple times) were included in the data
set, and we also changed our filtering criteria. A peptide database
of ∼12 million redundant peptides identified by SEQUEST from
LC-MS/MS analyses of tryptically digested proteomes for an
array of organisms was assembled and used to calculate a new
set of criteria that provided the best correlation between observed
and predicted peptide NETs. A minimum of five amino acid
residues was required for each peptide identification, and the data
were filtered to include only those peptides with Xcorr g 1.5 for a
peptide mass of <1000 Da and Xcorr g 2.0 for a peptide mass of
g1000 Da. The filtered peptides were separated into categories
according to their charge (1+, 2+, 3+), tryptic state (fully and
partial tryptic), and ion trap MS analyzer (LCQ or LTQ). In the
case of singly charged peptides, peptides were further categorized
on the basis of mass, i.e., MW <1000 Da and MW g1000.

For each category, we calculated the elution time prediction
error versus the different peptide Xcorr values by using one of our
previously developed peptide elution time predictors.44 Figure 2
illustrates these calculations for triply charged peptides, analyzed
by LC-ion trap (LCQ) MS for fully and partial tryptic peptides.
The Xcorr thresholds were set to values that provided good
correlations between observed and predicted NETs. Table 1
summarizes the Xcorr threshold for each peptide category. Note
that higher Xcorr threshold values were needed for the LTQ-based
analyses than for the LCQ. This finding might be attributed to

(84) Holland, J. H. Adaptation in Natural and Artificial Systems; University of
Michigan Press: Ann Arbor, MI, 1975.

(85) Goldberg, D. E. Genetic Algorithms in Search, Optimization and Machine
Learning; Addison-Wesley: Reading. MS, 1989.

(86) Qian, W. J.; Jacobs, J. M.; Camp, D. G., II; Monroe, M. E.; Moore, R. J.;
Gritsenko, M. A.; Calvano, S. E.; Lowry, S. F.; Xiao, W.; Moldawer, L. L.;
Davis, R. W.; Tompkins, R. G.; Smith, R. D. Proteomics 2005, 5, 572-584.

Figure 2. Peptide retention time prediction error distribution vs
peptide Xcorr values for partial and fully tryptic triply charged peptides
run on a ThermoFinnigan LCQ ion trap. The filtering criteria given in
Table 1 were generated based upon plots.
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the better signal-to-noise ratios provided by LTQ mass spectrom-
eters.87 For singly charged ions, lower Xcorr threshold values
worked better with MW <1000 than with MW g1000. This finding
may be potentially attributed to the known bias of the SEQUEST
algorithm toward peptide mass.88

Table 2 provides the organism from which peptides were
identified, the number of LC-MS/MS analyses for each organism,
the number of unfiltered redundant peptides identified from each
organism, and the number of unique peptides identified from each
organism after filtering with the criteria used to train/test our
model (Table 1). Note that the 12 059 LC-MS analyses generated
345 965 unique filtered peptides for training/testing the present
model.

Improvement of the Peptide Elution Time Prediction by
Incorporating Peptide Sequence and Conformation Informa-
tion. Our previous ANN peptide elution time prediction model43

was based solely on amino acid composition, but had the added
advantage over other similar models in that the ANN architecture
could better handle nonlinearities. To further improve the peptide
elution time prediction, we explored incorporation of several
sequence/structural peptide descriptors, including peptide length,
sequence, predicted secondary conformation (i.e., helix, sheet,
or coil), and hydrophobic moment. In addition to the 20 protei-
nogenic amino acids, we added alkylated cysteine, since cysteines
are reduced and alkylated in most of our mammalian proteomic
research.

The first peptide descriptors tested were length and hydro-
phobic moment. Added to our previous ANN architecture as two
additional inputs, these descriptors provided a slight improvement
in predictive capability. This improvement is evidenced by looking
at the first four rows in Table 3, which show that the correlation
between predicted and observed peptide elution time increased
from 0.870 to 0.884. Next, we investigated the effect of incorporat-
ing peptide sequence into the model by using the quasi-sequence-
order approach (see Experimental Section) to describe peptide

sequence, and the results were compared with our previous ANN
model.43 This approach did not provide any noticeable improve-
ment over our previous model, so we searched for alternative
approaches.

Our prediction models were based on increasingly large
quantities of peptide sequence information as the number of data
sets grew significantly larger. While increasing the complexity of
the ANN model, both in sequence information and in number of
hidden nodes, we carefully monitored the process to avoid
“overfitting” by using cross-validation during the training process.
All results presented here are from ANN models that were trained
until both the training and cross-validation errors converged at
their lowest values. Thus, early stopping was not necessary, and
overfitting was avoided in the final ANN models presented.

(87) Mayya, V.; Rezaul, K.; Cong, Y. S.; Han, D. Mol. Cell. Proteomics 2005, 4,
214-223.

(88) MacCoss, M. J.; Wu, C. C.; Yates, J. R. Anal. Chem. 2002, 74, 5593-5599.

Table 3. Improvement in Peptide Retention Time
Prediction with Implementation of Sequence
Information, Hydrophobic Moment, and Length of the
Peptide in the ANN Modela

encoding hidden length
hydro

moment
train
rmse

test
rmse R2

0/0 4 no no 0.050 575 0.057 994 0.870 11
0/0 4 no yes 0.050 504 0.057 678 0.871 35
0/0 4 yes no 0.048 854 0.055 177 0.879 91
0/0 4 yes yes 0.048 153 0.054 39 0.883 85
1/1 6 yes yes 0.044 673 0.052 086 0.892 4
2/2 6 yes yes 0.040 411 0.045 895 0.916 32
3/3 7 yes yes 0.038 277 0.042 905 0.926 72
4/4 7 yes yes 0.036 746 0.040 275 0.935 42
5/5 10 yes yes 0.035 007 0.037 347 0.944 25
6/6 10 yes yes 0.034 179 0.036 939 0.945 02
7/7 12 yes yes 0.033 143 0.035 445 0.949 51
8/8 12 yes yes 0.032 658 0.034 555 0.951 96
9/9 14 yes yes 0.031 793 0.034 251 0.953 22
10/10 14 yes yes 0.031 223 0.033 571 0.954 77
11/11 16 yes yes 0.031 836 0.033 811 0.953 91
12/12 16 yes yes 0.031 482 0.033 437 0.955 04
25/25 24 yes yes 0.026 98 0.028 579 0.966 97

a The encoding column refers to the number of amino acid residues
defined in the beginning and end of each peptide. The hidden column
refers to the number of hidden nodes in the ANN model. rmse, root-
mean-square error.

Figure 3. Schematic representation of the artificial neural network architecture used in this study (1052 input nodes, 24 hidden nodes, 1
output node). The large circles represent 21 length vectors while the smaller circles represent single scalar inputs. The small black circles
(middle) are used to show continuance.
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Figure 3 shows a generic diagram of the new ANN architec-
ture, illustrating how peptides were encoded. The new architecture
contains 1052 input nodes, 24 hidden nodes, and 1 output node
(referred to as model 1052-24-1). Each amino acid residue is coded
as a 21-dimensional binary vector that consists of 20 zero values
and 1 one value that corresponds to the amino acid residue
occupying that position. The length and hydrophobic moment
were used as normalized scalar values. In other words, the
calculated values of length and hydrophobic moment were
normalized to [0-1] ranges and incorporated in the ANN as
numerical values.

The amino acid residues were positioned in the ANN, starting
from the N and C termini and working toward the center of the
vector. Using the 7-residue peptide SLTYAYR as an example, the
amino acid residues SLTY are positioned at the first 4 × 21 ANN
inputs, and the amino acid residues AYR are positioned at the
three last 3 × 21 ANN inputs, leaving the center filled with zero
values. Only peptides with 50 amino acid residues fill all of the
ANN inputs. Table 4 summarizes the number of times each amino
acid residue appeared in different ANN positions. The last column
of this table shows the total number of amino acid residues in
each position. From this column, readers can extrapolate statistics
with regard to the lengths of the peptides in our training/testing
database. Table 4 shows that, with the exception of some zero
values in the center, there are a significant number of residues
per position, even for low-abundant amino acid residues such as
Cys and Trp. The same holds true for the 50th position, despite
the obvious bias toward Lys and Arg as a result of trypsin, which
was used for protein digestion. Furthermore, it should be noted
that there are several peptides with Pro appearing as the first
amino acid residue, despite the difficulty of trypsin to cleave KP
or RP bonds.

The model was tested using 1303 (the highest confident
identifications) of the 345 914 peptides identified from more than
90 different LC-MS/MS experiments. The other 344 611 peptides
were used for training. Table 3 shows the improvements in peptide
retention time prediction due to implementation of increased
sequence information, hydrophobic moment, and length of the
peptide in the ANN model. Using the same training and testing
data sets with our previous ANN model43 (based solely on amino
acid composition), we achieved a correlation coefficient of 0.87.
The correlation increased to 0.967 when the full peptide sequence
was encoded, and the length and hydrophobic moment were
added. Most of the improvement was achieved when at least five
amino acid residues were encoded from each side of the peptide
(i.e., correlation coefficient increases to 0.944), after which the
rate of the improvement slowed. A number of hidden nodes were
tested for each residue encoded until an optimal number was
determined.

It should be noted that data acquired over ∼3 years was used
to provide sufficient peptide identifications to fully encode peptides
of up to 50 amino acid residues. We first introduced the idea of
using peptide sequence information in 2004 showing results for
a database of ∼98 000 peptides that allowed us to encode 12 amino
acids residues at each peptide terminus.44 We found that encoding
amino acid residues that were close to N and C termini provided
improved predictions compared to encoding amino acid residues
located in the middle of the peptide as shown in Table 5. We

performed a sensitivity analysis with the “perturb” method89 to
determine how much each residue position affected the elution
time. The method tests how much each input, if perturbed,
changes the output of the model, while the other inputs are fixed.
We used the testing set of peptides as the fixed inputs to the
model. Each input was tested for each peptide, and the sums of
these tests were averaged so that the sets of 21 consecutive inputs,
representing each residue position, gave us a relative strength of
that position. Sensitivity analysis shows that N and C terminus
amino acid encoding is more important than the encoding of
amino acid residues in the middle of the peptide. This may be
because the amino acid residues at the termini of the peptides
are more likely to interact with the stationary phase than amino
acid residues in the middle of the peptide. Finally, the sensitivity
analysis showed that the incorporation of the length and hydro-
phobic moment in the model is not as important as the incorpora-
tion of the peptide sequence.

To further improve the model, peptide conformational effects
were incorporated by adding predicted secondary peptide struc-
tural states (R-helix, â-sheet, and coil). However, the addition of
these predicted states76,77 to both the present and earlier versions
of the model did not improve the elution time prediction. A
possible explanation is that the approaches used to calculate the
peptide secondary structural states in this study failed to predict
values that adequately simulate the medium that the peptides are
dissolved in and their environment during the LC separation (i.e.,
water/acetonitrile/TFA/acetic acid, acidic pH, hydrophobic sta-
tionary phase). As a result, while these values might work for
other applications, they failed to improve upon the present model.

We also evaluated the incorporation of information on nearest
neighbors into the model. Several different approaches as de-
scribed in the Experimental Section were investigated. The 5 ×
5 dimensional nearest-neighbor list, which divided the amino acids
according to their side-chain properties, failed to provide any
improvement in our present model, as well as the earlier model.
When we incorporated the 21 × 21-dimensional nearest-neighbor
list into our earlier model, we observed a significant improvement;
i.e., the correlation between observed and predicted elution times
increased from 0.87 to 0.91. However, this model was still inferior
to the 1052-24-1 model that encodes only the peptide sequence.
Fusion of the two models into a single ANN architecture overfits
our training set (i.e., insufficient data for training) and would result
in poor predictions. The 21 × 21 × 21-dimensional array also

(89) Yao, J.; Teng, N.; Poh, H.-L.; Tan, C. L. J. Inf. Sci. Eng. 1998, 14, 843-862.

Table 5. Sensitivity Analysis89 of Different Variables
Used for the Peptide Elution Time Predictor

position
sensitivity
analysis

1 0.1375
2 0.1708
3 0.1107
middle average 0.0867
n - 2 0.1955
n - 1 0.1993
n 0.2562
length 0.00521
hydrophobic moment 0.00486
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overfit our data. Contrary to our expectations, incorporation of
the nearest-neighbor effect into our model did not further improve
the elution time predictability. We strongly suspect this is because
the 1052-24-1 ANN architecture has already implicitly captured
the nearest-neighbor information.

In addition to better elution time predictions, the new 1052-
24-1 ANN model is also able to more accurately predict isomeric
peptide elution times, a capability that no previously published
model has accomplished. Previously described predictors43,90 were
able to model separate LC elution times for isobaric peptides but
were unable to differentiate the elution times of isomeric peptides.
Table 6 shows several examples of accurate predictions among
isobaric/isomeric peptides. For example, the isobaric/isomeric
peptides NLISKR, VILASGR, and AVGILSR have identical MWs
of 714.4435 and are indistinguishable by accurate mass measure-
ments alone. However, because of their different elution times
and the ability of the model to accurately predict these elution
times, it is now possible to distinguish isobaric/isomeric peptides.

Finally, Table 7 shows the present work has provided a
significant improvement in the peptide elution time prediction
errors compared with those of our previous ANN model, regard-
less the length of the peptide. Longer peptides (i.e., 11-40 amino
acid residues) show a larger degree of improvement than do very
small peptides. This observation is reasonable as the longer the
peptide, the more it deviates from the simplistic assumption that
elution time depends on the peptide amino acid composition.
However, despite the improvements afforded by this study in

predicting the elution times of longer peptides, smaller peptides
are still predicted with higher precision. Continued population of
our database with longer peptides (31-50 residues) will further
improve their predicted NETs.

Comparison of Peptide Elution Time Prediction Models.
Several peptide elution time prediction models have been de-
scribed in the past. However, all of them have used different sets
of peptides to train their models and most of them did not use a
separate set of peptides to test their model (i.e., the model was
tested using the training set), making comparison difficult.
Furthermore, many of the models used synthetic peptides for
training and testing, while others used “real-world” data from
mainly proteomic applications, where the potential of false positive
identifications filtered through the training and testing set might
have negatively affected the reported prediction capability.

For comparison, we decided to train and test several previously
reported prediction models10,13,38,40,43 with the peptide data set used
in this study. Among the previously published peptide elution time

(90) Krokhin, O. V.; Craig, R.; Spicer, V.; Ens, W.; Standing, K. G.; Beavis, R.;
Wilkins, J. A. 52nd ASMS conference on Mass Spectrometry and Allied
Topics, Nashville, TN, 2004; poster.

Table 7. Average Mean Square Error (av MSE) of the
Peptide Elution Time Prediction in Relation to the
Peptide Length

peptide
length

peptides with
that length

av MSE
(Petritis et al.

2003)43

av MSE
present
study

5-10 107 0.000 72 0.000 27
11-20 684 0.002 40 0.000 53
21-30 403 0.005 03 0.001 21
31-40 104 0.005 92 0.001 70
41-50 5 0.004 47 0.002 26

Table 6. Predicted and Observed NET Values of Several Isobaric/Isomeric Peptides

NET

peptide MW predicted observed abs error

VMAELK 689.3829 0.137 673 0.131 735 0.005 938
MEVLAK 689.3829 0.141 518 0.142 36 0.000 842
NLISLR 714.4435 0.257 648 0.225 998 0.031 65
VILASGR 714.4435 0.131 71 0.142 392 0.010 682
AVGILSR 714.4435 0.184 029 0.179 694 0.004 335
IFEDVK 749.4006 0.165 442 0.164 227 0.001 215
IEFVDK 749.4006 0.182 281 0.173 211 0.009 07
FDVEIK 749.4006 0.202 775 0.191 268 0.011 508
ELMLER 789.4102 0.193 284 0.193 441 0.000 157
ELMELR 789.4102 0.208 153 0.208 77 0.000 617
AMGVDVAK 789.4102 0.127 098 0.118 302 0.008 796
LFQNDPTGR 1046.519 0.133 044 0.132 35 0.000 693
FDGNPQTLR 1046.519 0.152 405 0.154 723 0.002 319
IAFVSTESGNK 1151.587 0.176 421 0.169 248 0.007 173
STIEGFVNASK 1151.587 0.232 176 0.229 142 0.003 034
VLNESTILIFPK 1372.801 0.376 012 0.384 751 0.008 739
VNFLPEIITLSK 1372.801 0.426 017 0.458 545 0.032 528
TIGLGDAAVAEMIR 1415.749 0.361 089 0.390 157 0.029 068
GTGLIAAIEMVADR 1415.749 0.498 76 0.482 163 0.016 598
AGAPQSVDAPLGETVRK 1694.9 0.182 86 0.183 52 0.000 66
KAGAPQSVDAPLGETVR 1694.9 0.191 434 0.193 53 0.002 096
NAALPIFVSTILAPGLNEIR 2108.204 0.563 867 0.575 534 0.011 666
NAALPVFISTILAPGLNEIR 2108.204 0.591 099 0.589 784 0.001 315
IQALEDILDAEHPNWRER 2204.102 0.372 155 0.380 546 0.008 391
ERIQALEDILDAEHPNWR 2204.102 0.401 762 0.408 566 0.006 804
GNYAERVGAGAPVYMAAVLEYLTAEILELAGNAARDNKK 4108.109 0.747 845 0.750 595 0.002 75
KGNYAERVGAGAPVYMAAVLEYLTAEILELAGNAARDNK 4108.109 0.805 271 0.839 432 0.034 16
LKEISYIHAEAYAAGELKHGPLALIDADMPVIVVAPNNELLEK 4654.476 0.508 866 0.511 891 0.003 026
EISYIHAEAYAAGELKHGPLALIDADMPVIVVAPNNELLEKLK 4654.476 0.530 865 0.543 784 0.012 919
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predictors, we were unable to reproduce the study by Liu et al.,39

as it used software unavailable to us for calculating peptide
constitutional and topological descriptors. In addition, the study
by Kaliszan et al.40 used HyperChem software to calculate the
peptide hydrophobicity c log P and molecular volume VDWVol.
We generated these values by using alternative published algo-
rithms,91,92 and our calculated values were similar to the Kaliszan

values. The optimization for each model was accomplished by
using genetic algorithms, which continued to optimize the
variables in the algorithms to our data until the errors converged.
A comprehensive table of the observed and predicted elution times
obtained from the different predictors for the 1303 peptides of
the testing test are provided as Supporting Information.

Figure 4 shows the correlation coefficients between observed
and predicted NETs from five previously reported models and
the 1052-24-1 ANN model developed in this study. All previously

(91) Bondi, A. J. Phys. Chem. 1964, 68, 441-445.
(92) Tao, P.; Wang, R. X.; Lai, L. H. J. Mol. Model. 1999, 5, 189-195.

Figure 4. Comparison of peptide retention time prediction for 6 different models. The diagrams show the predicted vs observed normalized
elution time correlations of each method for the 1303 confident peptide identifications of the testing set.
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described peptide elution time predictors yielded inferior correla-
tions compared with the ANN-based elution time predictors. The
best model developed by other workers38,90 provides a correlation
coefficient of 0.8435. In general, all of these models performed
similarly, with correlation coefficients varying from 0.8156 to
0.8435. This similarity in performance can be expected as all the
models were based on the retention coefficient approach.10 The
Kaliszan et al.40 model provided only small improvements over
the Meek model;10 as in our case, the genetic algorithm under-
weighted the c log P and VDWVol parameters. As expected, all
models gave better correlations than the original Meek model.10

Figure 5 shows the prediction error distribution of all the
prediction models. Note that the current model has 50% of the
peptides within (1.52% error and performs ∼2-fold better than
both our previously described model and any other described
model. For all other models, 99% of the peptides were within
∼(20% of their predicted values, while for our current model, 99%
of the peptides were under (10% of their predicted values,
confirming the present model demonstrates a 2-fold improvement
over all previously published models. Figures 4 and 5 indicate
that this is the first major improvement in making more accurate
peptide elution time predictions since the original work by Meek.

It must be noted here that the disadvantage of the present
model over previously developed predictors is the large number
of peptide identifications needed to train it. The generation of such
a large training set is time-consuming and could limit its use from
other groups that would like to reproduce the present predictor
for different chromatographic conditions. However, to some extent
it is possible to adapt the present model to separations with modest
changes (e.g., gradient shape). We note that the development of
improved alignment algorithms for LC-MS data provides a likely
basis for effective alignment of data sets from different chromato-
graphic systems (e.g., using different gradient shapes). Prelimi-
nary results93 show that, by using a transformation function, it
should also be possible to transform peptide elution time predic-

tions from our current chromatographic system to other chro-
matographic systems without losing much predictive capability.
This development, if validated, will facilitate broader application
of the present model without the necessity of adopting all of the
present chromatographic conditions or acquiring the large data
sets of peptide identifications needed to develop the present
predictive capability.

CONCLUSIONS
In this study, an improved ANN-based peptide retention time

predictor was developed that provides an average error of 1.5%.
Most of the improvement arises from incorporation of peptide
sequence information into the model as opposed to simply amino
acid composition. Moreover, the peptide length and hydrophobic
moment provided additional small improvements in the model’s
prediction capability. Predictor encoding was limited to 50 amino
acid residues since most present MS/MS data are limited to this
regime. In addition to the 20 proteinogenic amino acids, the
present model was trained to predict the retention time of peptides
that contain alkylated cysteines. Unlike any of the previously
developed predictors, this model is now able to accurately predict
the retention times of both isobar and isomer peptides. Such
capability allows more confident identification of isomeric/isobaric
peptides otherwise indistinguishable by accurate mass measure-
ments.

The development of the present predictive capability was
enabled by the availability of large quantities of data accumulated
over the years, using identical chromatographic conditions, and
providing an extremely large set of confident peptide identifica-
tions. Approximately 346 000 peptides were used to train the ANN
predictor. In addition, the development of a new generation of
ion trap instruments from several manufacturers that offer faster
cycle times and better sensitivities helped in accumulating
sufficient training data. To the best of our knowledge, this is the
first time that such massive quantities of proteomic data have been
used for the development of a peptide retention time predictor.
Due to the large amount of data that needed to be normalized,
we revised the normalization procedure to an independent linear

(93) Jaitly, N.; Monroe, M. E.; Petyuk, V.; Clauss, T. R. W.; Adkins, J. N.; Smith,
R. D. Anal. Chem., in press.

Figure 5. Comparison of peptide retention time prediction for 6 different models. The diagram shows the prediction error distributions for 1303
confidently identified peptides. The method described in this study provides approximately 2-fold better predictions than previously described
methods. Key: (2) Present study, (-) Petritis et al. 2003,43 (+) Krokhin et al. 2004,38 (9) Mant et al. 1988,13 (b) Kaliszan et al. 2005,40 and ([)
Meek 1980.10
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regression for each analysis. In a comparison to previously
reported models, our model provided ∼2-fold improvement.

Finally, preliminary results indicate that it should also be
possible to transform peptide elution time predictions from the
current chromatographic system to other similar chromatographic
conditions without losing much predictive capability. This develop-
ment will facilitate broader application of the present model
without the necessity of adopting all of the present chromato-
graphic conditions or acquiring the large data sets of peptide
identifications needed to develop the present predictive capability.
We also plan to explore the use of ANNs for predicting the elution
times of peptides with posttranslational modifications. This capa-
bility would allow the implementation of targeted experiments;
that is, the expected mass of the modified peptide (if detected in
the predicted elution window) would be added to the inclusion
list of the masses to be selected for fragmentation. We further
plan to apply the ANN approach to predict the elution time of
peptides separated by ion-exchange chromatography for further
quality assurance. This will add another dimension of confidence
and will be especially useful for research groups that use on-line
(e.g., MudPIT) or off-line strong cation-exchange columns for
peptide separation/fractionation.
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