

⁴⁰Ar/³⁹Ar Dating Studies of Minerals and Rocks in various areas in Mexico: USGS/CRM Scientific Collaboration (Part II)

by Alexander Iriondo^{1,2,3}, Michael J. Kunk¹, Jeffrey A. Winick¹, and CRM⁴

¹ U.S. Geological Survey, Denver, Colorado

² University of Colorado at Boulder, Boulder, Colorado

³ Universidad Nacional Autónoma de México, Centro de Geociencias, Querétaro, México

⁴ Consejo de Recursos Minerales, Pachuca, México

Open-File Report 04-1444

on-line edition

2004

This report is preliminary and has not been reviewed for comformity with U.S. Geological Survey editorial standards or with the North American Stratigraphic Code.

Any use of trade, firm, or product names is for descriptive purposes only and does not imply endorsement by the U.S. Government.

U.S. Department of the Interior U.S. Geological Survey

INTRODUCTION

This publication contains reduced ⁴⁰Ar/³⁹Ar geochronology data of 39 rocks (47 analyses) collected by geologists from Consejo de Recursos Minerales (CRM) in various areas in Mexico (fig.1–10). Also included in this report is information on rock type and the geographical location of the samples (table 1). Table 1 is in alphabetical order of the different regional offices of CRM in Mexico. These analyses were done under Annex 2 of the Memorandum of Understanding between the U.S. Geological Survey (USGS) and the CRM. This is the second report produced under this Annex; the first report was published in 2003 (Iriondo and others, 2003). The results presented here are intended only to be a preliminary publication of these geochronology studies, and the data are not interpreted in a geological context. Therefore, users unfamiliar with argon isotopic data should use these results carefully. This report is primarily a detailed source document for subsequent scientific publications and maps that will integrate this data into a geological context.

METHODS□

Sample Preparation

All of the rocks provided by CRM were crushed, ground, and sized using 250, 180, and 150μ m sieves (60, 80, and 100 mesh, respectively). We used the largest size fraction possible of the target mineral that is free of inclusions from other mineral phases. Mineral separates of hornblende, muscovite, biotite, and K-feldspar (including sanidine) were produced using magnetic separation, heavy liquids, and hand picking to achieve a purity of >99 percent. Basalt and basaltic andesite samples were processed through heavy liquids and(or) magnetic separation to remove phenocrysts from the volcanic matrix. The resulting volcanic matrix samples were leached with 10 percent cold HCl to remove any traces of secondary calcite. All samples were washed in acetone, alcohol, and deionized water (X3) in a Branson B-220 ultrasonic cleaner to remove dust and then resieved by hand.

Aliquots of sample were packaged in copper capsules (aluminum for sanidine) and sealed

under vacuum in quartz tubes. The samples then were irradiated for 20 hours (package KD29) in an aluminum container in the central thimble facility at the TRIGA reactor (GSTR) at the USGS in Denver. The monitor mineral used was Fish Canyon Tuff (FCT-3) sanidine with an age of 27.79 Ma (Kunk and others, 1985; Cebula and others, 1986) relative to Mmhb-1 with an age of 519.4 \pm 2.5 Ma (Alexander and others, 1978; Dalrymple and others, 1981). The type of container and the geometry of samples and standards are the ones described by Snee and others (1988).

Sample Analysis

The samples were analyzed at the USGS Thermochronology laboratory in Denver, by using a VG Isotopes Ltd., Model 1200B or a Map 216 mass spectrometer both fitted with an electron multiplier using the ⁴⁰Ar/³⁹Ar step-heating method of dating or ⁴⁰Ar/³⁹Ar laser fusion dating. The samples were heated for 10 minutes per step and followed a schedule of three to twenty one steps per sample. The number and temperature of heating steps were selected in an attempt to limit the percentage of gas released to less than 20 percent per step for most samples. Biotite aliquots also were melted in a single heating to produce total fusion ages.

Heating of samples was done in a small volume, molybdenum-lined low blank tantalum furnace similar to that described by Staudacher and others (1978). The temperature was monitored by a W_5 Re- W_{26} Re thermocouple and controlled by a proportional programmable controller. The furnace and the rear manifold of the extraction system were pumped between steps with a turbo molecular pump. Two isolated ion pumps evacuated the front manifold and the mass spectrometer tube between each incremental step. The gas to be analyzed was purified in the first manifold by a SAES ST707 Zr-V-Fe getter (VG 1200B) or a SAES ST101 Al-Zr getter (MAP 216) operated at room temperature and by an incandescent tungsten filament. Gas was equilibrated with the second manifold with an empty cold finger (VG 1200B only) in the first manifold at LN₂ temperature to trap water and other condensibles, then isolated and cleaned in the front manifold with a SAES ST101 Al-Zr getter operated at 400°C and with a Ti getter operated at 350°C.

Prior to the admission by expansion methods of the argon dominated gas to the mass

spectrometer, an activated charcoal finger (VG 1200B only) submerged in a constant boiling mixture of dry ice and acetone was used to remove gases with a molecular weight greater than 60 or 80 (primarily other noble gases). A second SAES ST101 active gas getter operated at room temperature further purified the argon-rich gas in the mass spectrometer. Argon isotopes with masses 40 through 36 and CO₂ (mass 44) were analyzed as a function of time in five to seven analyses cycles. ⁴⁰Ar, ³⁹Ar, ³⁸Ar, ³⁷Ar, and ³⁶Ar peaks and baselines were measured for five to fifteen one-second integrations in each of the five to seven cycles. After the analysis, the mass spectrometer was evacuated. All phases of the sample heating, cleanup, equilibration, and sample analysis were performed under computer control.

Seven sanidine samples were dated using the 40 Ar/ 39 Ar-laser fusion method with the MAP216 mass spectrometer. For each sample, 10 to 13 single grains of sanidine were individually fused using a Synrad model 48-5-28(w) 50-watt CO₂ laser. The laser chamber and manifold were pumped between analyses with a turbomolecular pump. An isolated ion pump was used to pump the mass spectrometer. Prior to mass spectrometer analysis, the gas was purified in the manifold by two SAES ST101 Al-Zr getters—one operated at room temperature and the other at 400°C, as well as a hot Re filament. The argon rich gas was further purified by a third SAES ST 101 getter operated at room temperature in the flight tube of the mass spectrometer.

Isotopic Data Reduction

All the argon isotopic data from the VG 1200B were reduced using an updated version of the computer program ArAr* (Haugerud and Kunk, 1988). The data from the MAP 216 were reduced using an updated version of the computer program Mass Spec (Deino, 2001). The decay constants used were those recommended by Steiger and Jäger (1977). The isotopic measurements made in the analysis had baseline values subtracted and then were regressed, to time zero by using standard linear regression techniques. These regressed values and associated statistical estimates of analytical

uncertainties of the time zero peak values were used in data reduction. Sample blanks measured before the analyses (or every fourth analysis for laser fusion data) were subtracted from the regressed results for ⁴⁰Ar, ³⁹Ar, ³⁷Ar and ³⁶Ar. Error estimates of the blanks were quadratically combined with the regression errors and propagated through the error equations.

Corrections for interfering reactor-produced argon isotopes from Ca, K, and Cl in the sample were made by using the production ratios given in Dalrymple and others (1981) and Roddick (1983). Errors in calculating ages or ratios include measurement errors in the analysis, decay factor uncertainties, measured atmospheric or calculated initial ⁴⁰Ar/³⁶Ar ratios, the irradiation parameter J, the production ratios of the various reactor induced argon producing reactions, the initial ³⁸Ar/³⁶Ar ratio, and the age of the monitor (Haugerud and Kunk, 1988; Deino, 2001).

The data tables and figures presented below include the identification of individual step ages, plateau ages, average ages, inverse isochron ages, total fusion ages, and total gas ages for step-heating results. Total gas ages represent the age calculated from the addition of all of the measured argon peaks for all steps in a single sample. The total gas ages are roughly equivalent to conventional K-Ar ages. No analytical precision is calculated for total gas ages. Plateau ages were determined using the definition of Fleck and others (1977) as modified by Haugerud and Kunk (1988). Average ages are calculated in the same manner as a plateau age but fail the definition of Fleck and others (1977). ⁴⁰Ar/³⁹Ar laser fusion data tables include individual laser fusion ages and mean ages. Inverse isotope correlation analysis of the analytical data (for multistep or multigrain samples) to assess if nonatmospheric argon components were trapped in any samples and to calculate an inverse isochron age was done using the method of York (1969). For additional information on the sample data reduction procedure, see Haugerud and Kunk (1988), and Deino (2001).

RESULTS

⁴⁰Ar/³⁹Ar Geochronology Data

The ⁴⁰Ar/³⁹Ar geochronology results in this report are presented in alphabetical order of the regional offices from CRM in Mexico. For each regional office the data are presented in as many as

four tables (tables 3–6). Table 3 contains the results of biotite total fusion analyses that were run on the VG 1200B. Table 4 contains the results of step-heating runs from the VG 1200B. Table 5 contains step-heating runs from the MAP 216, and table 6 contains results from laser total fusion runs from the MAP 216. In all of these tables, each sample starts with a line that gives the sample number, rock unit, the material analyzed, and the J-value used with its analytical uncertainty, the sample weight in milligrams (except for table 6 where the number of grains fused per analysis is listed), and the packet and package number from the irradiation. The tables include a step label for each analysis (except table 3), the temperature of the step, the percent of potassium derived $^{39}Ar_{K}$ for each step (the total for all steps in a single sample is 100 percent, except for table 6), the radiogenic yield (percentage of ⁴⁰Ar_R that is derived from the decay of potassium), moles of ³⁹Ar_K, a corrected ${}^{40}\text{Ar}_{R}/{}^{39}\text{Ar}_{K}$ ratio from which the age can be directly calculated, apparent K/Ca, and K/Cl ratios for each step, a calculated apparent age for the step (in millions of years), and an estimate of the precision of each age at the 1 sigma level. The sample precision includes estimates of the errors that are unique to a single sample and can be used only for comparisons with other steps of the same sample. This error estimate does not include the error in "J". The last line in the table represents the total gas results for the sample. Note that no analytical error is calculated for the age in this line. If the sample has a plateau age, the percentage of ${}^{39}\text{Ar}_{K}$ on the plateau, the steps on the plateau, and the plateau age and its precision are printed. The plateau, when present, is listed in the final line of the sample. In table 6, a weighted mean age for those laser fusion results that agree in age within the limits of analytical precision is the final line of the sample entry.

Locations of the samples presented on figures 2–10 and some of the data from tables 4, 5, and 6 also are presented graphically following the tabular data. The VG 1200 step-heating results are presented in age-spectra diagrams (fig. 11) that plot the cumulative percent ³⁹Ar_K of the steps against apparent age in millions of years. The precision estimate used to construct the error boxes of each step is at two-sigma. The upper, smaller graph plots the apparent K/Ca ratio of each step against cumulative ³⁹Ar_K released. Map 216 step-heating results are presented in much the same way on figure 12 but also include a plot of radiogenic yield and apparent K/Cl. The laser fusion data sets

(fig. 13) replace the age spectrum diagram with an age probability distribution diagram, frequently referred to as an ideogram and four smaller graphs. In the ideogram, a solid line represents the weighted mean age of the sample, while dashed lines represent the data with outliers included. Immediately above the ideogram are four smaller graphs—the lowest of these plots the age of sample ages with error bars, the two intermediate graphs are apparent K/Ca and K/Cl, and the upper graph is radiogenic yield. In these graphs, filled circles represent data that are included in the weighted mean age, while open circles are used for those that were excluded from the weighed mean age.

We have calculated isochron ages using inverse-isotope correlation diagrams that plot ³⁹Ar/⁴⁰Ar against ³⁶Ar/⁴⁰Ar. These plots are included on figures 11, 12, and 13 adjacent to the respective age spectrum diagram or ideogram. These diagrams include the isochron age of the sample (calculated from the inverse of the x-axis intercept), the calculated initial ⁴⁰Ar/³⁶Ar ratio of the sample (the inverse of the y-axis intercept), the MSWD of the data (a goodness of fit indicator), the number of points used in the age regression, and the percentage of gas included in the correlation (except for fig. 13). For additional information on the sample data sets see Haugerud and Kunk (1988) and Deino (2001).

ACKNOWLEDGMENTS

We would like to thank Seth Fetters, former University of Colorado at Boulder undergraduate student and volunteer at the USGS, for his assistance in preparing mineral separates. In addition, we are thankful to both USGS internal reviewers for their helpful comments about this publication.

REFERENCES

- Alexander, E.C., Jr., Mickelson, G.M., and Lanphere, M.A., 1978, Mmhb-1: a new ⁴⁰Ar/³⁹Ar dating standard, <u>in</u> Zartman, R.E., ed., Short papers of the fourth international conference, geochronology, cosmochronology, and isotope geology: U.S. Geological Survey Open-File Report 78–701, p. 6–8.
- Cebula, G.T., Kunk, M.J., Mehnert, H.H., Naeser, C.W., Obradovich, J.D., and Sutter, J.F., 1986, The Fish Canyon Tuff: A potential standard for the ⁴⁰Ar/³⁹Ar and fission track dating methods: Terra Cognita, v. 6, no. 2, p. 140.
- Dalrymple, G.B., Alexander, E.C., Lanphere, M.A., and Kraker, G.P., 1981, Irradiation of samples for ⁴⁰ Ar/³⁹Ar dating using the Geological Survey TRIGA reactor: U.S. Geological Survey Professional Paper 1176, 55 p.
- Deino, A.L., 2001, Users manual for Mass Spec v. 5.02: Berkeley Geochronology Center Special Publication 1a, 119 p.
- Fleck, R.J., Sutter, J.F., and Elliot, D.H., 1977, Interpretation of discordant ⁴⁰Ar/³⁹Ar age spectra of Mesozoic tholeiites from Antarctica: Geochimica et Cosmochimica Acta, v. 41, p. 15–32.
- Haugerud, R.A., and Kunk, M.J., 1988, ArAr*, a computer program for reduction of ⁴⁰Ar-³⁹Ar data:
 U.S. Geological Survey, Open-File Report 88–261, 68 p.
- Iriondo Alexander, Kunk, M.J., Winick, J.A., and Consejo de Recursos Minerales (CRM), 2003, ⁴⁰Ar/³⁹Ar dating studies of minerals and rocks in various areas in Mexico: USGS/CRM

scientific collaboration (Part I): U.S. Geological Survey, Open-File Report 03-020, 79 p.

- Kunk, M.J., Sutter, J.F., and Naeser, C.W., 1985, High-precision ⁴⁰Ar/³⁹Ar Ages of Sanidine, Biotite, Hornblende, and Plagioclase from the Fish Canyon Tuff, San Juan Volcanic Field, Southcentral Colorado: Geological Society of America Abstracts with Programs, v. 17, p. 636.
- Roddick, J.C., 1983, High precision calibration of ⁴⁰Ar-³⁹Ar standards: Earth and Planetary Science Letters, v. 47, p. 887–898.
- Snee, L.W., Sutter, J.F., and Kelly, W.C., 1988, Thermochronology of economic mineral deposits: Dating the stages of mineralization at Panasqueira, Portugal, by high precision ⁴⁰Ar/³⁹Ar age spectrum techniques on muscovite: Economic Geology, v. 83, p. 335–354.
- Staudacher, Th., Jessberger, E.K., Dorflinger, D., and Kiko, J., 1978, A refined ultrahigh-vacuum furnace for rare gas analysis: J. Phys. E: Sci. Instrum. v. 11, p. 781–784.
- Steiger, R.H., and Jäeger, E., 1977, Subcommission on geochronology: Convention on the use of decay constants in geo- and cosmo-chronology: Earth and Planetary Science Letters, v. 36, p. 359–363.
- York, Derek, 1969, Least squares fitting of a straight line with correlated errors: Earth and Planetary Science Letters, v.5, p. 320–324.

Sample	Type of rock	Geograph	ic Location	CRM Geologic Man
Sample	Type of lock	Lat.	Long.	1:50.000
Oficing Passions	1 Chibu abu a	2.40	Dongi	1100,000
		200 54 6271	1049 04 421	Damas
POD-1 POD 2	rnyolite	28° 54.037' 28° 49.602'	104° 04.431' 104° 08 430'	Pozos
DUD-2		20 49.002	104 00.450	10203
DHP-12	orthogneiss	28° 57.155'	105° 12.947'	Chorreras
DHP-14	granodiorite	28° 51.889' 28° 52 160'	105° 15.096' 105° 14 145'	Chorreras
DHF-15	granouorne	28 52.100	105 14.145	Chorreras
FDRA-001	rhyolite tuff	28° 38.092'	105° 09.493'	El Jateado
FDRA-002	rhyolite	28° 35.538'	105° 17.712	El Jateado
FVDA-1	dacite	28° 27.849'	104° 44.081'	La Coyota
FVDA-2	rhyolite tuff	28° 22.596'	104° 43.920'	La Coyota
AMDT-01	rhyolite	30° 14.023'	105° 59.946'	San Antonio El Bravo
Oficina Regiona	l Chilpancingo			
VH-134	gabbro	18° 01' 54.8"	100° 08' 57.5"	Villa Hidalgo
Oficina Regiona	l Culiacan			
TA-35	granodiorite	26° 47.597'	108° 12.991'	Tasajeras
TA-36	tonalite	26° 48.483'	108° 09.779'	Tasajeras
TA-37	granodiorite	26° 48.752'	108° 15.737'	Tasajeras
YE-25	granodiorite	26° 28.070'	108° 04.267'	Yecorato
YE-27	rhyolite	26° 25.304'	108° 13.916'	Yecorato
Oficina Regiona	l Durango			
BO-1012	andesite? vitrophere	23° 45' 21.4"	105° 44' 55.9"	Borbollones
IR-585	andesite? vitrophere	24° 33' 46.3"	104° 01' 57.2"	Ignacio Ramirez
SP-405	basalt	25° 01' 55.4"	105° 24' 17.7"	Santiago Papasquiaro
Oficina Regiona	l Hermosillo			
FA-4	rhyolite tuff	30° 16' 53.6"	110° 06' 53.08"	Arizpe
FA-5	microdiorite	30° 24' 22.1"	110° 00' 27"	Arizpe
2D-04	andesite porphyry	30° 25' 52"	110° 15' 55.2"	Bacanuchi
DATA-3	rhyolite tuff	30° 32' 58"	110° 21' 03"	Santa Teresa
Oficina Regiona	l Morelia			
PL-272	gabbro	18° 27.151'	102° 20.587'	Playitas
RA-104	diorite	18° 38 440'	103° 26 096'	Colola
RA-162	granodiorite	18° 30.914'	103° 24.828'	Colola
Oficina Regiona	l Oaxaca			
PO-04	granodiorite	16° 55' 13.0"	96° 01' 41.4"	San Pedro Ouiatoni
PQ-06	rhyolite tuff	16° 52' 59.0"	96° 15' 01.2"	San Pedro Quiatoni
MR-001	andesite porphyry	16° 44' 49 4"	96° 01' 04.8"	Totolapan
MR-003	andesite	16° 38' 48.3"	96° 18' 57.2"	Totolapan
Oficina Regiona	l Saltillo			
LED-1	basalt	27° 36.225'	101° 27.289'	Nueva Rosita
CA-CI79	diorite	29° 03 094'	101° 39 473'	CD Acuña
CA-CI85	monzonite?	29° 16.079'	101° 49.433'	CD. Acuña

Table 1. Summary of rock type and sample geog	graphical location for dated rocks
---	------------------------------------

Sample	Type of rock	Geographic	c Location	CRM Geologic Map
		Lat.	Long.	1:50,000
Oficina Regiona	ul Saltillo (cont.)			
MB-99	gabbro-diorite	29° 11.912'	103° 47.555'	Manuel Benavides
MB-114	sienite	29° 14.088'	102° 10.256'	Manuel Benavides
SMD-01	granite porphyry	28° 16.103'	103° 23.754'	San Miguel
SMD-02	basalt	28° 43.299'	102° 32.334'	San Miguel
SMD-03	sienite	28° 39.996'	102° 48.746'	San Miguel
Oficina Regiona	al San Luis Potosi			
PV-003	trachyte porphyry	23° 22.269'	98° 09.830'	Ciudad Victoria

Table 1. Summary of rock type and sample geographical location for dated rocks.-Continued

Sample	Rock type	Laboratory number	Mineral	Type of age	Age (Ma)	Error (Ma)	Comments
Oficina Reg	gional Chihuahua						
POD-1	rhyolite	#139KD29	sanidine	total fusion	32.82	± 0.04	_
POD-2	andesite	#125KD29	plagioclase	plateau	32.35 =	± 0.05	—
DUD 10		#135KD29	volcanic matrix	average	33.07 :	± 0.05	_
DHP-12 DHP-14	orthogneiss	#148KD29 #127KD29	hornblende K-feldspar	average plateau	954.70 ±	± 4.14 + 0.10	_
DHP-15	granodiorite	#163KD29	biotite	total fusion	33.13	± 0.02	_
FDR-001	rhyolite tuff	#140KD29	sanidine	total fusion	32.34	± 0.07	_
FDR-002	rhyolite	#159KD29	biotite	total fusion	41.88 :	± 0.03	—
FVDA-1	dacite	#142KD29	sanidine	total fusion	33.32	± 0.05	
FVDA-2	rhyolite tuff	#136KD29	sanidine	total fusion	32.77 :	± 0.05	_
AMDT-01	rhyolite	#138KD29	sanidine	total fusion	37.64	± 0.05	_
Oficina Reg	gional Chilpancingo						
VH-134	gabbro	#181KD29	hornblende	isochron	94.08	± 4.38	_
Oficina Reg	gional Culiacan						
TA-35	granodiorite	#147KD29	hornblende	isochron	56.13 :	± 0.45	_
TA 26	· 1.	#175KD29	biotite	total fusion	58.12 :	± 0.06	—
IA-30	tonante	#145KD29 #167KD29	biotite	total fusion	59.38 -	± 0.31 + 0.05	_
TA-37	granodiorite	#146KD29	hornblende	average	57.24	± 0.31	_
		#179KD29	biotite	total fusion	58.50 :	± 0.03	_
YE-25	granodiorite	#149KD29	hornblende	average	86.07	± 0.47	—
VE 27	rhvalita	#173KD29	biotite	total fusion	78.79 :	± 0.03	—
112-27	Inyonte	#141KD29	samune	total fusion	55.00	£ 0.30	—
Oficina Reg	gional Durango						
BO-1012	andesite? vitrophere	#124KD29	plagioclase	plateau	23.54 :	± 0.05	_
IR-585	andesite? vitrophere	#121KD29	plagioclase	average	31.06	± 0.05	
SP-405	basalt	#133KD29	volcanic matrix	average	10.95	± 0.02	—
Oficina Reg	gional Hermosillo						
FA-4	, rhyolite tuff	#137KD29	sanidine	total fusion	24.53	± 0.05	_
	5	#171KD29	biotite	total fusion	24.62	± 0.09	—
FA-5	microdiorite	#161KD29	biotite	total fusion	27.47	± 0.05	—
Oficina Reg	gional Hermosillo (co	nt.)					
2D-04	andesite porphyry	#122KD29	plagioclase	plateau	26.89	± 0.06	—
DATA-3	rhyolite tuff	#150KD29	biotite	total fusion	25.59	± 0.04	_
Oficina Reg	gional Morelia						
PL-272	gabbro	#180KD29	hornblende	average	215.28	± 1.13	_
RA-104	diorite	#153KD29	biotite	total fusion	61.24	± 0.03	_
RA-162	granodiorite	#143KD29	hornblende	average age	57.03 :	± 0.31	_
Oficina Reg	gional Oaxaca						
PQ-04	granodiorite	#144KD29	hornblende	total gas	~16		Bad sample, bad analysis
PQ-06	rhyolite tuff	#177KD29	biotite	total fusion	15.48	± 0.02	
MR-001	andesite porphyry	#131KD29	volcanic matrix	average	17.51 :	± 0.05	_

Table 2. Summary table for dated rocks from USGS/CRM Collaboration Part II.

Table 2.	Summary	table for	dated rocks	s from	USGS/CRM	Collaboration	part II.–Continued
							1

Sample	Rock type	Laboratory	Mineral	Type of age	Age	Error	Comments
		number			(Ma)	(Ma)	
Oficina Reg	gional Oaxaca (cont.)					
MR-001	andesite porphyry	#123KD29	plagioclase	isochron	17.09 =	± 0.06	_
MR-003	andesite	#134KD29	volcanic matrix	average	22.31 ±	± 0.03	
Oficina Reg	gional Saltillo						
LED-1	basalt	#132KD29	volcanic matrix	isochron	2.05 =	± 0.03	—
CA-CI79	diorite	#157KD29	biotite	total fusion	42.51 =	± 0.02	_
CA-CI85	monzonite?	#169KD29	biotite	total fusion	41.13 =	± 0.05	—
MB-99	gabbro-diorite	#120KD29	plagioclase	plateau	32.56 ±	± 0.08	_
MB-114	sienite	#165KD29	biotite	total fusion	30.07 =	± 0.02	—
SMD-01	granite porphyry	#187KD29	white mica	plateau	32.71 ±	± 0.05	_
		#185KD29	K-feldspar	plateau	32.70 ±	± 0.06	
SMD-02	basalt	#130KD29	volcanic matrix	average	46.45 =	± 0.07	
SMD-03	sienite	#155KD29	biotite	total fusion	44.59 =	± 0.05	—
Oficina Reg	gional San Luis Poto	si					
PV-003	trachyte porphyry	#129KD29	K-feldspar	total gas	~33		Bad sample, bad analysis

Figure 1. Geologic map of Mexico showing areas under study for USGS/CRM Scientific Collaboration in ⁴⁰Ar/³⁹Ar geochronology. Background geologic map corresponds to Carta Geologica de la Republica Mexicana (1:2,000,000).

Figure 2. Sample location for samples collected by geologists from the Oficina Regional Chihuahua. Background geologic map corresponds to Carta Geologica de la Republica Mexicana (1:2,000,000). Abbreviations: san (sanidine); horn (hornblende); K-spar (K-feldspar); bio (biotite); plag (plagioclase).

Figure 3. Sample location for samples collected by geologists from the Oficina Regional Chilpangingo. Background geologic map corresponds to Carta Geologica de la Republica Mexicana (1:2,000,000). Abbreviation: horn (hornblende).

Figure 4. Sample location for samples collected by geologists from the Oficina Regional Culiacan. Background geologic map corresponds to Carta Geologica de la Republica Mexicana (1:2,000,000). Abbreviations: san (sanidine); horn (hornblende).

Figure 5. Sample location for samples collected by geologists from the Oficina Regional Durango. Background geologic map corresponds to Carta Geologica de la Republica Mexicana (1:2,000,000). Abbreviations: plag (plagioclase); vm (volcanic matrix).

Figure 6. Sample location for samples collected by geologists from the Oficina Regional Hermosillo. Background geologic map corresponds to Carta Geologica de la Republica Mexicana (1:2,000,000). Abbreviations: san (sanidine); bio (biotite); plag (plagioclase).

Figure 7. Sample location for samples collected by geologists from the Oficina Regional Morelia. Background geologic map corresponds to Carta Geologica de la Republica Mexicana (1:2,000,000). Abbreviations: horn (hornblende); bio (biotite).

Figure 8. Sample location for samples collected by geologists from the Oficina Regional Oaxaca. Background geologic map corresponds to Carta Geologica de la Republica Mexicana (1:2,000,000). Abbreviations: horn (hornblende); bio (biotite); plag (plagioclase); vm (volcanic matrix).

Figure 9. Sample location for samples collected by geologists from the Oficina Regional Saltillo. Background geologic map corresponds to Carta Geologica de la Republica Mexicana (1:2,000,000). Abbreviations: bio (biotite); plag (plagioclase); vm (volcanic matrix); wm (white mica).

Figure 10. Sample location for samples collected by geologists from the Oficina Regional SL Potosi. Background geologic map corresponds to Carta Geologica de la Republica Mexicana (1:2,000,000). Abbreviation: K-spar (K-feldspar).

Temp.	% ³⁹ Ar	Radiogenic	³⁹ Ar _k	⁴⁰ <u>Ar*</u>	Apparent	Apparent	Apparent	Error
Oficina R	of total	Y ield (%)	(Moles x 10 ⁻²)	³⁹ Ar _k	K/Ca	K/Cl	Age (Ma)	(Ma)
DHP-15	granodioi	rite biotite I	TF J = 0.005	$5197 \pm 0.50^{\circ}$	% wt = 6.4 m	g #163KD2	9	
1450	100	90.4	0.375431	3.566	32.6	25	33.13	± 0.02
FDR-002	rhvolite	hiotite TF	$I = 0.00520^{2}$	3 + 0 50%	wt = 6.3 mg	#159KD29		
1450	100	92.9	0.414443	4.514	344.1	73	41.88	± 0.03
Oficing P	anional Culi	10.07						
<i>ТА-35</i>	egionai Cuita granodioriti	ıcan e biotite TF	J = 0.0051	73 + 0.50%	wt = 5.7 mg	#175KD29		
1450	100	96.1	0.193665	6.329	6.7	181	58.12	± 0.06
TA 36	tonalita	hiotite TF	I = 0.005202	0.50%	xt = 10 ma #	1678020		
1450	100	94 2	$J = 0.003202 \pm 0.003202$	6.30 % w	n = 4.0 mg = 4	37	59 38	+ 0.05
1450	100	74.2	0.224037	0.+35	17.4		57.00	± 0.05
TA-37	granodiorit	e biotite TF	J = 0.0051	29 ± 0.50%	wt = 6.1 mg	#179KD29	-0 -0	. 0.02
1450	100	96.6	0.352050	6.426	17.7	51	58.50	± 0.03
YE-25	granodiorit	e biotite TF	J = 0.0051	$75 \pm 0.50\%$	wt = 5.4 mg	#173KD29		
1450	100	99.3	0.319902	8.627	31.3	134	78.79	± 0.03
Oficina R	egional Hern	nosillo						
FA-4	rhyolite tuff	biotite TF	J = 0.005197	$2 \pm 0.50\%$	wt = 2.3 mg	#171KD29		
1450	100	78.9	0.128676	2.644	46.3	91	24.62	± 0.09
FA-5	microdiorite	biotite TF	J = 0.00520	$1 \pm 0.50\%$	wt = 5.6 mg	#161KD29		
1450	100	92.7	0.261125	2.950	4.3	55	27.47	± 0.05
DATA-3	rhyolite ti	uff biotite T	F = 0.005	203 ± 0.50%	wt = 4.5 mg	g #150KD29)	
1450	100	89.0	0.264577	2.745	50.6	144	25.59	± 0.04
Oficina R	egional More	lia						
RA-104	diorite	biotite TF	$J = 0.005200 \pm$	0.50% v	vt = 4.0 mg #	153KD29		
1450	100	96.5	0.219440	6.640	22.0	22	61.24	± 0.03
Oficina R	egional Oaxa	ica						
<i>PO-06</i>	rhyolite tuff	f biotite TF	J = 0.00513	$0 \pm 0.50\%$	wt = 6.0 mg	#177KD29		
~ 1450	100	64.7	0.313195	1.680	99.5	76	15.48	± 0.02
Oficina R	egional Salti	llo						
CA-CI-79	diorite	biotite TF	J = 0.005204	± 0.50%	wt = 6.5 mg	#157KD29		
1450	100	96.4	0.411054	4.582	20.4	203	42.51	± 0.02
CA-CI-85	monzon	ite? hiotite'	TF I = 0.00	5200 + 0 50	% wt = 61 n	na #160KD2	20	
1450	100	80.3	0.253222	4.435	91.2	138	41.13	± 0.05
MD 114		Lista TE	L 0.005202	0.500		+165VD20		
мв-114 1450	sienite	70.0	$J = 0.005203 \pm$	2 0.50% 1	wi = 3.1 mg + 54.5	103KD29	30.07	+ 0.02
1430	100	19.0	0.100303	5.251	54.5	171	50.07	± 0.04
SMD-03	sienite	biotite TF	$J = 0.005198 \pm$	0.50%	wt = 5.3 mg	#155KD29		
1450	100	86.5	0.266389	4.815	15.6	38	44.59	± 0.05

Table 3. $^{\scriptscriptstyle 40}\text{Ar}/^{\scriptscriptstyle 39}\text{Ar}$ biotite total fusion data obtained using the VG 1200 spectrometer.

Ages calculated assuming an initial ${}^{\scriptscriptstyle 40}{\rm Ar}/{}^{\scriptscriptstyle 36}{\rm Ar}$ = 295.5± 0.

All precision estimates are at the one sigma level of precision.

	1		6	-					
Step	Temp.	% ³⁹ Ar	Radiogenic	³⁹ Ar _k	⁴⁰ <u>Ar*</u>	Apparent	Apparent	Apparent	Error
	°C	of total	Yield (%)	(Moles x 10^{-12})	$^{39}Ar_{k}$	K/Ca	K/Cl	Age (Ma)	(Ma)
Oficina l	Regional Chih	uahua							
DHP-12	orthogneis	ss hornble	nde $J = 0$	0.005099 ± 0.50	0% wt = 248.	0 mg #14	8KD29		
А	1100	18.2	97.6	0.095233	52.889	0.09	19	430.73	± 0.40
В	1125	16.2	98.6	0.084824	92.634	0.06	18	697.88	± 0.62
С	1150	32.7	98.9	0.170670	135.530	0.04	24	947.75	± 1.02
D	1250	19.0	99.2	0.099280	132.522	0.04	19	931.32	+ 1.03
Ē	1450	13.8	99.1	0.072300	140.043	0.04	19	972.13	+ 0.73
Total Ga	s	100.0	98.7	0.522307	113.549	0.05	21	824.03	_ 01/0
	65.5% of gas	on plateau-lik	e in 1150 thro	ough 1450 steps	5	A	verage Age =	954.70	± 4.14
Oficing	Pagional Chile	-							
	kegionai Chiip	oancingo							
VH-134	grabbro	hornblende	J = 0.00	$5096 \pm 0.50\%$	$wt = 218.0 m_{\odot}$	g #181KL)29		
А	1000	4.2	52.7	0.040099	9.239	0.30	152	82.99	± 0.34
В	1100	10.5	80.0	0.099434	11.073	0.04	71	99.03	± 0.22
С	1125	4.2	77.5	0.039427	10.707	0.06	39	95.84	± 0.55
D	1150	6.9	89.1	0.065663	11.292	0.06	29	100.93	± 0.36
Е	1175	12.7	90.1	0.120716	11.922	0.07	29	106.41	± 0.17
F	1200	11.8	93.2	0.112037	11.730	0.07	38	104.74	± 0.18
G	1250	18.1	92.7	0.171483	11.933	0.07	36	106.50	± 0.16
Н	1450	31.5	89.9	0.298368	12.588	0.06	30	112.16	± 0.16
Total Ga	s	100.0	87.6	0.947227	11.814	0.07	42	105.47	
	No Plataau A	7 0							
	No Flateau A	ge							
Oficina I	Regional Culia	acan							
TA-35	granodiorite	e hornblen	J = 0.	005100 ± 0.509	% wt = 252.9	mg #147	KD29		
А	1100	10.8	69.8	0.066388	5.652	0.04	16	51.27	± 0.24
В	1125	31.2	86.6	0.191543	6.107	0.04	11	55.33	+ 0.08
С	1150	32.5	92.8	0.199185	6.157	0.05	10	55.77	+ 0.10
D	1250	25.4	93.2	0.155959	6.149	0.04	11	55.71	+ 0.09
Total Ga	s	100.0	88.5	0.613075	6.085	0.05	11	55.13	
	No Plateau A	ge							
TA 36	tonalita	homblanda	I = 0.0051	55 + 0 50%	wt = 240.2 mg	#1/5802	0		
1A-30	ionaitie	nornvienue	J = 0.0051	55 ± 0.50 %	$w_l = 240.2 mg$	#1 4 JKD2			
А	1100	18.6	63.0	0.092512	6.052	0.03	3	55.42	± 0.68
В	1125	27.6	86.2	0.137557	6.393	0.04	4	58.49	± 0.23
С	1150	21.3	92.9	0.105963	6.336	0.04	3	57.98	± 0.12
D	1250	17.2	91.3	0.085450	6.301	0.03	3	57.67	± 0.17
Е	1450	15.3	84.8	0.076126	6.269	0.03	3	57.38	± 0.41
Total Ga	S	100.0	84.0	0.497608	6.283	0.04	3	57.50	
	53.8% of gas	on plateau in	1150 through	1450 steps		P	Plateau Age =	57.85	± 0.31
TA-37	granodiorite	e hornblen	J = 0.	005157 ± 0.509	% wt = 248.3	mg #146	KD29		
А	1100	6.6	64.6	0.062433	6.056	0.05	6	55.48	+ 0.20
B	1125	19.1	85.2	0.179368	6.270	0.06	5	57 41	+ 0.11
C	1150	42.3	94 3	0 397725	6.414	0.06	5	58 71	+ 0.08
D D	1175	9.2	93.5	0.086003	6.083	0.00	5	55 70	± 0.00
Б Б	1250	9.5 12 4	93.5 03.4	0.000993	6 224	0.00	5	57.00	± 0.10
E	1450	12.4	93.4 87.0	0.1100/3	6 244	0.00	5	57.08	± 0.12
Г Total Ca	1430	10.5	07.U 80.6	0.09/1/9	0.244	0.03	5 5	5761	± 0.13
Total Ga	5	100.0	09.0	0.939//1	0.292	0.00	2	37.01	
	100% of gas of	on plateau-like	e in 1100 thro	ugh 1450 steps		A	verage Age =	57.24	± 0.31

Table 4. ⁴⁰Ar/³⁹Ar step-heating data obtained using the VG 1200 spectrometer.

Step	Temp.	% ³⁹ Ar	Radiogenic	³⁹ Ar _k	⁴⁰ <u>Ar*</u>	Apparent	Apparent	Apparent		Error
-	°C	of total	Yield (%)	(Moles x 10 ⁻¹²)	${}^{39}Ar_k$	K/Ca	K/Cl	Age (Ma)		(Ma)
Oficina R	egional Culia	can (cont.)								
YE-25	granodiorite	hornblend	$de \qquad J=0.$	005101 ± 0.50%	wt = 246.9	mg #149	KD29			
А	900	45.9	93.9	0.654103	9.832	0.09	9	88.28	±	0.10
В	1000	27.7	97.3	0.394367	9.604	0.09	9	86.29	±	0.04
С	1100	10.5	96.8	0.149163	9.429	0.09	9	84.74	±	0.13
D	1250	5.6	95.9	0.079456	9.150	0.09	9	82.30	±	0.14
Е	1450	10.4	95.5	0.148627	9.610	0.09	9	86.33	±	0.16
Total Gas		100.0	95.5	1.425716	9.666	0.09	9	86.82		
	100% of gas o	n plateau-like	in 900 throu	gh 1450 steps		A	verage Age =	86.07	±	0.47
Oficina R	egional Morel	lia								
PL-272	grabbro	hornblende	J = 0.005	5092 ± 0.50%	wt = 217.0 mg	#180KD	29			
А	900	45.3	69.1	0.046767	24.291	0.01	13	210.38	±	1.92
В	1250	18.6	71.4	0.019208	22.901	0.01	16	198.98	±	1.06
С	1450	36.1	76.4	0.037295	26.232	0.01	15	226.17	±	0.81
Total Gas		100.0	72.2	0.103270	24.733	0.01	14	213.99		
	100% of gas o	n plateau-like	in 900 throu	gh 1450 steps		A	verage Age =	215.28	±	1.13
RA-162	granodiorite	e hornblei	nde J=	$0.005153 \pm 0.50^{\circ}$	% wt = 247.	1 mg #14	3KD29			
	1100	2.0	02.1	0.027000	5 (50	0.09	24	51.70		0.24
A D	1100	2.8	85.1 05.5	0.037229	5.052	0.08	24	57.79	±	0.24
Б С	1150	36.0	95.5	0.423400	6.235	0.08	18	57.25	±	0.10
D	1250	13.0	90.1 07 3	0.491709	6.140	0.08	17	56.20	т т	0.08
E E	1200	14.6	97.5	0.105247	6 106	0.08	18	55.80	- -	0.19
Total Gas	1500	100.0	95.9 96.4	1.333504	6.194	0.08	17	56.68	Ŧ	0.54
-	07.00	1.4	· 1150 d	1 1200				57.02		0.21
	97.2% of gas c	on plateau-like	in 1150 thro	ough 1300 steps		A	verage Age =	57.03	±	0.31
Oficina R	egional Oaxa	ca								
PQ-04	granodiorite	hornblen	$de \qquad J=0.$	$.005103 \pm 0.50\%$	wt = 115.5	mg #144	KD29			
А	1125	21.3	100.0	0.083221	2.018	0.05	8	18.48	±	8.32
В	1150	33.5	87.2	0.130537	1.852	0.06	2	16.97	±	0.02
С	1175	19.2	86.4	0.074868	1.542	0.07	6	14.14	±	0.18
D	1200	6.6	73.9	0.025845	0.998	0.07	7	9.16	±	0.55
Е	1250	19.4	75.9	0.075533	1.628	0.06	7	14.93	±	0.34
Total Gas		100.0	86.7	0.390004	1.721	0.06	5	15.77		
	No Plateau Ag	ge								

Table 4. ⁴⁰Ar/³⁹Ar step-heating data obtained using the VG 1200 spectrometer.-Continued

Ages calculated assuming an initial 40 Ar/ 36 Ar = 295.5± 0.

All precision estimates are at the one sigma level of precision.

Ages of individual steps do not include error in the irradiation parameter J.

No error is calculated for the total gas age.

Figure 11. ⁴⁰Ar/³⁹Ar age spectra and inverse-isotope correlation diagrams for samples collected by CRM geologists from different areas in Mexico. These data were produced using the VG 1200 spectrometer at the USGS Thermochronology laboratory in Denver, Colorado.

Figure 11. ⁴⁰Ar/³⁹Ar age spectra and inverse-isotope correlation diagrams for samples collected by CRM geologists from different areas in Mexico. These data were produced using the VG 1200 spectrometer at the USGS Thermochronology laboratory in Denver, Colorado.–Continued

Figure 11.⁴⁰Ar/³⁹Ar age spectra and inverse-isotope correlation diagrams for samples collected by CRM geologists from different areas in Mexico. These data were produced using the VG 1200 spectrometer at the USGS Thermochronology laboratory in Denver, Colorado.–Continued

Step	Temp.	% ³⁹ Ar	Radiogenic	${}^{39}\mathrm{Ar}_{\mathrm{k}}$	⁴⁰ <u>Ar*</u>	Apparent	Apparent	Apparent Error
00	°C	of total	Yield (%)	(Moles)	³⁹ Ar _k	K/Ca	K/Cl	Age (Ma) (Ma)
Oficina	Regional Chi	huahua						
POD-02	andesite	plagioc	lase $J = 0.0$	$05160 \pm 0.50\%$	wt = 51.0	mg #125KD2	29	
А	650	0.0	0.8	2.59E-16	8.096	0.12	1	73.82 ± 49.85
В	750	0.8	25.7	5.05E-15	3.332	0.26	8	30.75 ± 1.30
С	850	1.7	77.8	1.07E-14	3.558	0.15	95	32.82 ± 0.54
D	950	5.7	90.9	3.65E-14	3.576	0.12	170	32.98 ± 0.17
Е	1050	11.6	95.0	7.40E-14	3.504	0.11	200	32.32 ± 0.10
F	1150	20.6	96.2	1.31E-13	3.503	0.11	200	32.32 ± 0.07
G	1250	23.0	97.4	1.47E-13	3.513	0.11	157	32.41 ± 0.07
Н	1350	17.7	94.9	1.13E-13	3.506	0.10	150	32.34 ± 0.08
I	1450	9.4	91.4	5.99E-14	3.502	0.11	120	32.31 ± 0.12
J	1550	6.9	86.9	4.40E-14	3.473	0.10	82	32.04 ± 0.15
K	1650	2.6	68.2	1.64E-14	3.381	0.09	67	31.20 ± 0.39
Total Ga	S							32.34
8	2.3% of gas o	n plateau in	n 1050 through 1	450 steps		I	Plateau Age =	32.35 ± 0.05
POD-02	andesite	volcani	c matrix J =	0.005153 ± 0.5	0% wt =	59.6 mg #135	KD29	
А	550	0.3	0.9	5.76E-15	2.589	0.58	8	23.91 ± 11.65
В	650	1.9	8.7	4.26E-14	2.042	2.14	25	18.88 ± 0.92
С	750	2.5	38.4	5.48E-14	3.070	2.38	42	28.31 ± 0.28
D	850	7.8	79.5	1.72E-13	3.976	1.92	79	36.58 ± 0.09
Е	950	21.7	93.7	4.77E-13	3.758	1.48	120	34.60 ± 0.05
F	1050	25.0	97.2	5.50E-13	3.600	1.66	117	33.16 ± 0.04
G	1150	19.9	95.8	4.38E-13	3.572	2.88	68	32.90 ± 0.05
Н	1250	14.6	88.0	3.22E-13	3.570	3.03	34	32.88 ± 0.06
Ι	1350	3.8	73.0	8.39E-14	3.567	0.56	25	32.85 ± 0.13
J	1450	1.9	53.3	4.10E-14	3.597	0.12	16	33.13 ± 0.26
Κ	1550	0.5	41.5	1.09E-14	3.617	0.21	9	33.31 ± 0.74
L	1650	0.1	31.7	2.27E-15	3.524	0.22	18	32.46 ± 3.20
Total Ga	S							33.22
6	5.2% of gas o	n plateau in	n 1050 through 1	450 steps		А	verage Age =	33.07 ± 0.05
DHP-14	granodio	rite K-f	feldspar J =	0.005200 ± 0.50	0% wt = 4	4.9 mg #127K	D29	
Δ	550	0.7	11	3 3/F 15	6 920	0.47	1	63.77 + 23.89
R	600	0.7	0.7	1.22E 16	0.720	1.03	3	4.08 ± 59.86
C	650	0.0	16.8	2.43E-16	5 094	-8.92	3	47.16 + 29.72
D	700	0.0	21.0	4.03E-16	4 080	1 47	3	37.88 + 17.77
E	750	0.2	21.7	7.63E-16	2.819	1.95	4	26.25 + 9.48
F	800	0.3	36.4	1.70E-15	3.094	4.50	6	28.79 ± 4.26
G	850	0.6	46.9	3.22E-15	3.429	4.38	11	31.89 ± 2.27
Н	900	1.3	51.4	6.55E-15	3.472	16.08	23	32.28 ± 1.14
Ι	950	2.2	59.4	1.12E-14	3.436	8.03	43	31.94 ± 0.67
J	1000	3.3	56.5	1.68E-14	3.417	13.81	44	31.77 ± 0.47
Κ	1025	3.0	74.8	1.51E-14	3.458	7.54	86	32.15 ± 0.49
L	1050	2.8	75.6	1.43E-14	3.481	11.93	125	32.37 ± 0.51
М	1075	3.8	60.0	1.94E-14	3.459	14.46	73	32.16 ± 0.41
Ν	1100	2.6	87.5	1.31E-14	3.510	20.42	211	32.63 ± 0.56
0	1150	4.7	56.4	2.37E-14	3.527	20.40	78	32.79 ± 0.35
Р	1200	6.8	58.1	3.43E-14	3.526	24.17	94	32.78 ± 0.26
Q	1250	4.4	62.2	2.24E-14	3.555	19.76	162	33.05 ± 0.36
R	1350	16.3	64.7	8.29E-14	3.516	23.97	54	32.68 ± 0.15
S	1450	20.0	59.8	1.02E-13	3.522	20.04	33	32.74 ± 0.16
Т	1650	26.9	49.4	1.36E-13	3.591	17.39	32	$33.38 ~\pm~ 0.20$
Total Ga	S							32.99
6	4.4% of gas o	n plateau in	n 1025 through 1	450 steps		I	Plateau Age =	32.69 ± 0.10

Table 5. 40 Ar/ 39 Ar step-heating data obtained using the MAP 216 spectrometer.

Step	Temp.	% ³⁹ Ar	Radiogenic	$^{39}Ar_{k}$	⁴⁰ <u>Ar*</u>	Apparent	Apparent	Apparent	Error
-	°C	of total	Yield (%)	(Moles)	${}^{39}Ar_k$	K/Ca	K/Cl	Age (Ma)	(Ma)
Oficina I	Regional Di	urango							
BO-1012	andesi	te? vitrophere	plagioclase	J = 0.00510	$64 \pm 0.50\%$	wt = 58.0 mg	#124KD29		
А	650	0.3	0.9	1.55E-15	3.218	0.43	1	29.74	± 15.23
В	750	0.8	25.3	5.02E-15	2.347	0.64	2	21.73	± 1.23
С	850	1.2	55.1	7.27E-15	2.420	0.32	7	22.41	± 0.82
D	950	3.3	76.6	1.96E-14	2.523	0.18	44	23.35	± 0.31
Е	1050	7.2	87.7	4.32E-14	2.546	0.15	130	23.57	± 0.14
F	1150	11.9	91.3	7.13E-14	2.537	0.14	212	23.48	± 0.10
G	1250	17.2	94.5	1.03E-13	2.545	0.14	204	23.55	± 0.07
Н	1350	22.9	92.7	1.37E-13	2.548	0.15	193	23.58	± 0.06
Ι	1450	20.0	91.1	1.20E-13	2.581	0.16	170	23.89	± 0.07
J	1550	10.4	84.8	6.22E-14	2.619	0.15	135	24.23	± 0.11
Κ	1650	4.8	64.7	2.85E-14	2.637	0.13	128	24.40	± 0.23
Total Gas	s							23.71	
64	4.8% of gas	on plateau in (650 through 135	0 steps		F	Plateau Age =	23.54 :	± 0.05
IR-585	andesite	? vitrophere	plagioclase	J = 0.005163	$\pm 0.50\%$	wt = 52.0 mg	#121KD29		
А	650	1.1	11.0	7.64E-15	4.896	1.41	4	45.03	± 1.99
В	750	3.0	63.4	2.17E-14	4.710	1.18	6	43.35	± 0.36
С	850	3.3	67.0	2.37E-14	3.140	0.44	28	29.02	± 0.32
D	950	6.5	79.1	4.65E-14	3.212	0.22	84	29.67	± 0.17
Е	1050	8.8	91.3	6.38E-14	3.431	0.17	161	31.68	± 0.12
F	1150	14.2	95.3	1.02E-13	3.443	0.16	207	31.79	± 0.09
G	1250	21.7	95.7	1.57E-13	3.355	0.16	202	30.98	+ 0.07
Ĥ	1350	22.4	93.4	1.62E-13	3.320	0.16	193	30.66	+ 0.07
I	1450	13.2	91.8	9.50E-14	3.326	0.16	196	30.72	+ 0.09
J	1550	4.6	80.4	3.30E-14	3.339	0.16	133	30.84	+ 0.23
ĸ	1650	1.2	42.5	8.86E-15	3.423	0.14	96	31.61	+ 0.84
Total Gas	s		1210	01002 10	01120			31.43	_ 0.01
80	0.3% of gas	on plateau-lik	e in 1050 throug	h 1450 steps		A	verage Age =	31.06 :	± 0.05
SP-405	basalt	volcanic ma	triv I = 0.0	05153 + 0 50%	wt = 57	6 та #133КГ	179		
		, oreanice ma				0 mg #155RE			
A	550	0.4	1.4	6.99E-15	1.572	0.52	2	14.55 :	± 4.88
В	650	2.6	20.0	4.92E-14	1.244	1.01	8	11.53 :	± 0.31
C	750	3.9	52.8	7.35E-14	1.278	1.52	10	11.84 :	± 0.15
D	850	9.7	86.1	1.85E-13	1.285	2.20	15	11.90 :	± 0.06
E	950	30.3	94.8	5.76E-13	1.211	2.91	45	11.23 =	± 0.02
F	1050	12.2	90.8	2.32E-13	1.171	1.19	52	10.86	± 0.05
G	1150	7.2	93.9	1.37E-13	1.158	0.82	31	10.73	± 0.07
H	1250	18.6	91.6	3.54E-13	1.140	0.59	23	10.57	± 0.03
1	1350	14.2	83.4	2.71E-13	1.130	0.13	8	10.48	± 0.05
J	1450	0.7	62.2	1.37E-14	1.165	0.13	12	10.80	± 0.70
K	1550	0.2	32.0	2.93E-15	1.156	0.11	14	10.71	± 3.25
L	1650	0.0	8.2	9.11E-16	1.386	0.10	19	12.84	± 10.49
Total Gas	S							11.02	
82	2.5% of gas	on plateau-lik	e in 950 through	1350 steps		A	verage Age =	10.95 :	± 0.02

Table 5. 40 Ar/39 Ar step-heating data obtained using the MAP 216 spectrometer.-Continued

Step	Temp.	% ³⁹ Ar	Radiogenic	³⁹ Ar _k	40 <u>Ar*</u>	Apparent	Apparent	Apparent	Error
	°C	of total	Yield (%)	(Moles)	${}^{39}Ar_k$	K/Ca	K/Cl	Age (Ma)	(Ma)
Oficina	Regional H	Iermosillo							
2D-04	andesite	porphyry	plagioclase	J = 0.005167 =	± 0.50%	wt = 58.2 mg	#122KD29		
А	650	0.2	0.8	6.20E-16	4.516	0.15	1	41.61	± 25.08
В	750	2.1	13.4	7.79E-15	3.741	0.17	7	34.54	± 1.24
С	850	6.0	49.4	2.21E-14	2.952	0.14	96	27.31	± 0.25
D	950	13.8	79.6	5.15E-14	2.921	0.10	214	27.02	± 0.11
Е	1050	19.2	86.9	7.17E-14	2.897	0.08	204	26.80	± 0.08
F	1150	14.5	86.5	5.42E-14	2.898	0.07	202	26.81	± 0.10
G	1250	7.3	78.6	2.71E-14	2.914	0.08	135	26.96	± 0.16
Н	1350	7.8	45.2	2.91E-14	2.902	0.09	103	26.85	± 0.24
Ι	1450	16.9	14.2	6.30E-14	2.955	0.06	51	27.34	± 0.77
J	1550	9.4	17.0	3.52E-14	3.186	0.06	47	29.46	± 0.70
Κ	1650	2.8	19.5	1.05E-14	3.467	0.06	47	32.03	± 0.78
Total Ga	as							27.55	
8	35.5% of ga	s on plateau	in 850 through 1	450 steps			Plateau Age =	26.89	± 0.06
Oficina	Regional O	axaca							
MR-001	andesi	te porphyry	volcanic ma	trix $J = 0.00$	05185 ± 0.5	0% wt = 61.0	mg #131KD29		
А	550	0.3	0.5	1.08E-15	3.036	0.17	4	28.18	± 25.82
В	650	1.4	4.8	5.22E-15	2.551	0.23	9	23.71	± 2.33
С	750	3.1	26.3	1.17E-14	2.115	0.25	37	19.67	± 0.39
D	850	9.1	39.0	3.46E-14	1.712	0.25	44	15.95	± 0.17
Е	950	17.1	57.0	6.47E-14	1.946	0.34	210	18.11	± 0.10
F	1050	13.5	72.0	5.11E-14	1.881	0.34	261	17.51	± 0.08
G	1150	8.5	69.9	3.23E-14	1.881	0.33	174	17.51	± 0.09
Н	1250	17.6	62.7	6.69E-14	1.837	0.31	138	17.10	± 0.09
Ι	1350	17.5	33.7	6.64E-14	1.861	0.09	57	17.32	± 0.19
J	1450	9.8	19.2	3.72E-14	1.961	0.07	43	18.25	± 0.41
К	1550	1.5	13.6	5.56E-15	2.164	0.08	30	20.13	± 0.79
L	1650	0.7	13.8	2.79E-15	2.623	0.09	34	24.37	± 1.27
Total Ga	as							17.71	
7	74.2% of ga	s on plateau-	like in 950 throu	igh 1350 steps			Average Age =	17.51	± 0.05
MR-001	andesi	te porphyry	plagioclase	J = 0.00516	5 ± 0.50%	wt = 49.0 mg	#123KD29		
А	650	0.0	-0.9	8.71E-17	-6.999	0.67	3	-66.42	+ 57.92
B	750	0.7	7.1	5.86E-15	2 471	0.30	20	22.88	+ 1 56
Ċ	850	24	31.8	2.02E-14	1 805	0.34	95	16 74	+ 0.26
Ď	950	5.0	53.0	4.13E-14	1 814	0.32	180	16.82	+ 0.13
E	1050	9.0	63.3	7.51E-14	1.848	0.24	231	17.14	+ 0.09
F	1150	10.2	72.4	8 49E-14	1 839	0.21	228	17.05	+ 0.07
G	1250	9.6	75.5	7.96F-14	1.039	0.20	225	17.05	+ 0.07
н	1350	9.0 11 Q	62.6	9.87F_1/	1.040	0.29	164	16.90	+ 0.08
T	1/150	24.4	33.2	2.07E-14	1.022	0.50	96	17.09	+ 0.08
T	1650	24.4 26.7	55.2 24.6	2.02E-13 2.22E-13	1.042	0.29	55	10.00	+ 0.10
J Total Ga	as	20.7	24.0	2.22E-13	2.074	0.09	55	19.22	± 0.27
		1.	11 . 050 .1	1 1450				1-02	
7	2.5% of ga	s on plateau-	like in 850 throu	ign 1450 steps			Average Age =	17.03	± 0.04

Table 5. 40 Ar/39 Ar step-heating data obtained using the MAP 216 spectrometer.-Continued

Step	Temp.	% ³⁹ Ar	Radiogenic	$^{39}Ar_{k}$	40 <u>Ar*</u>	Apparent	Apparent	Apparent	Erro
	°C	of total	Yield (%)	(Moles)	³⁹ Ar _k	K/Ca	K/Cl	Age (Ma)	(Ma)
Oficina R	Regional Oax	caca (cont.)							
AR-003	andesite	volcanic n	natrix J =	$= 0.005148 \pm 0.50$	0% wt = 4	5.5 mg #13	4KD29		
А	550	0.9	3.3	1.55E-14	1.746	0.99	12	16.15	± 2.20
В	650	1.4	34.1	2.47E-14	1.477	1.16	33	13.66	± 0.21
С	750	1.4	68.9	2.48E-14	1.907	0.99	39	17.62	± 0.12
D	850	5.6	89.2	9.66E-14	2.455	0.80	99	22.65	± 0.05
Е	950	23.3	96.4	3.99E-13	2.506	0.68	232	23.13	+ 0.03
F	1050	28.2	98.1	4.84E-13	2.409	0.86	234	22.24	+ 0.03
G	1150	21.1	96.8	3.61E-13	2.384	1.20	138	22.01	+ 0.03
н	1250	11.6	92.7	1 99E-13	2 346	1.04	41	21.66	+ 0.04
T	1350	4 1	82.5	7.00E-14	2.310	0.54	23	19.80	+ 0.06
T	1450	1.1	66.8	2 57E-14	1 975	0.40	25	18.25	± 0.00 + 0.12
J K	1550	0.5	50.0	2.57E-14 8 50E 15	1.975	0.40	21	18.30	± 0.12 ± 0.32
к I	1650	0.5	30.5	A A2E 15	2.045	0.41	24	10.00	± 0.52
L Total Gas	1050	0.5	59.5	4.42E-15	2.045	0.58	24	21.92	± 0.00
89 89	9% of gas o	n plateau-like	in 850 throus	rh 1250 stens		Δ	verage Age =	22.31	+ 0.03
0,		n plateau line	in oso throug	5n 1250 steps		1	i ei uge rige –	22.01	- 0.00
)ficina R	Regional Salt	illo							
ED-1	basalt	volcanic mati	J = 0.0	$005185 \pm 0.50\%$	wt = 49.5	mg #132KL	029		
А	550	0.0	0.3	1.26E-17	5.659	-0.20	1	52.17	± 295.4
В	650	0.5	0.6	2.64E-15	0.177	0.27	2	1.66	± 2.09
С	750	1.1	12.7	5.82E-15	0.378	0.38	4	3.53	± 0.57
D	850	2.8	24.3	1.55E-14	0.259	0.34	8	2.42	± 0.22
Е	950	19.0	51.9	1.05E-13	0.238	0.42	22	2.22	± 0.04
F	1050	40.8	62.8	2.24E-13	0.226	0.45	47	2.11	± 0.02
G	1150	12.1	47.0	6.65E-14	0.242	0.25	27	2.26	± 0.06
Н	1250	11.0	39.6	6.06E-14	0.231	0.18	19	2.16	± 0.07
Ι	1350	11.8	9.4	6.62E-14	0.139	0.02	16	1.30	± 0.18
J	1450	0.7	11.9	3.93E-15	0.360	0.03	14	3.36	± 0.84
K	1550	0.2	6.0	8.42E-16	0.576	0.04	15	5.38	± 3.87
L	1650	0.1	7.0	6.19E-16	1.793	0.07	32	16.70	+ 5.62
Total Gas	1000	011		011712 10	11750	0107		2.11	_ 0.02
85	.7% of gas o	n plateau-like	in 850 throug	gh 1250 steps		Α	verage Age =	2.15	± 0.02
AB-99	gabbro-die	orite plagi	oclase J	$= 0.005186 \pm 0.5$	0% wt = 4	46.2 mg #12	0KD29		
А	650	0.0	0.5	1.25E-16	18.129	0.05	0	162.09	± 158.5
В	750	0.7	6.3	2.89E-15	2.997	0.19	4	27.83	± 3.06
С	850	1.7	38.1	7.03E-15	3.430	0.11	17	31.80	± 0.94
D	950	5.2	66.0	2.15E-14	3.538	0.07	43	32.80	± 0.32
Е	1050	10.6	86.7	4.39E-14	3.506	0.06	117	32.51	± 0.17
F	1150	16.7	90.6	6.88E-14	3.520	0.06	142	32.63	± 0.12
G	1250	15.8	88.2	6.53E-14	3.505	0.08	107	32.49	± 0.12
н	1350	23.7	78.0	9.73E-14	3,362	0.17	46	31.18	+ 0.10
T	1450	17.1	72.9	7.05E-14	3 372	0.13	28	31.13	+ 0.13
T	1550	59	60.5	2 43F-14	3.626	0.05	15	33.61	+ 0.13
у К	1650	2.5	28.0	1.05E 14	3 750	0.03	15	24 75	+ 0.79
15	1050	2.5	20.7	1.0.51-14	5.150	0.05	15	54.75	÷ 0.70
'otal Gas								32.13	

Table 5.	40Ar/39Ar s	step-heating	data obtained	using the N	AAP 216 s	spectrometer	Continued
				<i>u</i>			

Step	Temp.	% ³⁹ Ar	Radiogenic	$^{39}Ar_{\rm k}$	40Ar*	Apparent	Apparent	Apparent	Error
·· 1	°C	of total	Yield (%)	(Moles)	³⁹ Ar ₁	K/Ca	K/Cl	Age (Ma)	(Ma)
Oficina R	legional S	altillo (cont.)			ĸ				
SMD-01	granit	e porphyry	white mica	<i>J</i> = 0.005130	$\pm 0.50\%$	wt = 6.2 mg	#187KD29		
А	550	0.1	3.1	1.25E-15	2.852	7	2	26.20 ±	7.21
В	650	0.2	18.0	2.27E-15	3.415	16	4	31.33 ±	2.87
С	750	0.6	50.1	5.99E-15	3.888	26	50	35.63 ±	0.69
D	800	0.9	65.8	8.21E-15	3.797	26	95	34.80 ±	0.46
E	850	1.7	81.2	1.62E-14	3.658	41	110	33.54 ±	0.32
F	900	3.3	91.3	3.18E-14	3.623	72	107	33.23 ±	0.12
G	950	5.0	94.7	4.84E-14	3.610	148	137	33.10 ±	0.12
Н	1000	4.5	91.5	4.36E-14	3.598	167	121	32.99 ±	0.11
Ι	1025	2.9	87.5	2.79E-14	3.580	264	142	32.84 ±	0.14
J	1050	3.5	82.7	3.36E-14	3.577	123	126	32.81 ±	0.15
K	1100	40.8	91.2	3.92E-13	3.561	110	125	32.66 ±	0.06
L	1150	28.8	95.1	2.77E-13	3.567	79	104	32.71 ±	0.05
М	1200	3.1	93.9	2.95E-14	3.664	5	29	33.60 ±	0.15
Ν	1250	4.4	91.3	4.20E-14	3.592	65	91	32.94 ±	0.12
0	1300	0.1	39.5	4.99E-16	4.789	1	8	43.79 ±	6.86
Р	1350	0.0	29.2	3.04E-16	4.999	2	13	45.68 ±	9.09
Q	1450	0.0	6.5	1.65E-16	1.379	2	8	12.71 ±	18.31
R	1650	0.0	20.5	2.52E-16	3.817	1	9	34.98 ±	13.77
Total Gas								32.83	
76	.0% of ga	s on plateau ir	n 1025 through	1150 steps			Plateau Age =	32.71 ±	0.05
SMD-01	granit	e porphyry	K-feldspar	J = 0.005141	± 0.50%	wt = 3.9 mg	#185KD29		
А	500	0.1	3.2	2.84E-16	6.201	5	1	56.62 ±	22.97
В	550	0.2	9.0	8.83E-16	4.408	11	2	40.43 ±	6.71
С	600	0.4	36.7	2.00E-15	3.113	64	6	28.64 ±	2.74
D	650	0.9	71.6	4.78E-15	3.464	90	24	31.85 ±	1.19
E	700	2.0	89.0	1.05E-14	3.633	81	128	33.38 ±	0.48
F	750	3.6	92.6	1.91E-14	3.562	128	168	32.74 ±	0.30
G	800	5.7	95.5	3.00E-14	3.545	70	158	32.59 ±	0.20
Н	850	7.2	96.3	3.80E-14	3.562	68	176	32.74 ±	0.18
Ι	900	7.2	96.7	3.79E-14	3.558	80	174	32.71 ±	0.15
J	950	6.8	96.6	3.58E-14	3.551	87	186	32.64 ±	0.20
Κ	1000	6.2	97.0	3.24E-14	3.557	75	177	32.69 ±	0.17
L	1050	5.4	97.5	2.85E-14	3.553	15	79	32.66 ±	0.20
Μ	1100	5.1	95.8	2.67E-14	3.549	43	160	32.62 ±	0.20
Ν	1150	4.6	90.9	2.39E-14	3.560	32	130	32.72 ±	0.23
0	1200	4.9	88.7	2.60E-14	3.597	7	49	33.06 ±	0.21
Р	1250	5.7	78.7	2.98E-14	3.575	21	105	32.86 ±	0.22
Q	1300	11.1	81.3	5.84E-14	3.546	38	109	32.59 ±	0.13
R	1350	15.4	78.2	8.10E-14	3.553	95	118	32.66 ±	0.13
S	1400	5.7	69.7	2.97E-14	3.606	80	122	33.14 ±	0.22
Т	1550	1.7	47.9	9.11E-15	3.686	21	97	33.87 ±	0.89
U	1650	0.2	35.1	9.88E-16	3.435	8	81	31.59 ±	5.78
Total Gas								32.76	

Table 5. 40 Ar/39 Ar step-heating data obtained using the MAP 216 spectrometer.-Continued

92.4% of gas on plateau in 500 through 1350 steps

Plateau Age = 32.70 ± 0.06

Step	Temp.	% ³⁹ Ar	Radiogenic	³⁹ Ar _k	40 <u>Ar*</u>	Apparen	t Apparent	Apparent	Error	
	°C	of total	Yield (%)	(Moles)	${}^{39}Ar_k$	K/Ca	K/Cl	Age (Ma)	(Ma)	
Oficina I	Oficina Regional Saltillo (cont.)									
SMD-02	basalt	volcanic	matrix J =	$0.005161 \pm 0.50\%$	wt =	52.1 mg #1.	30KD29			
А	550	1.0	1.3	9.50E-15	1.322	0.14	6	12.27	± 4.17	
В	650	1.5	21.1	1.47E-14	3.104	0.17	16	28.67	± 0.64	
С	750	1.7	53.1	1.61E-14	4.995	0.34	44	45.92	± 0.39	
D	850	4.3	82.9	4.17E-14	5.218	0.42	141	47.94	± 0.15	
Е	950	16.3	88.5	1.58E-13	5.089	0.46	208	46.77	± 0.09	
F	1050	19.0	93.1	1.84E-13	5.060	0.65	207	46.51	± 0.07	
G	1150	8.2	89.2	7.95E-14	5.127	0.58	153	47.12	± 0.10	
Н	1250	17.5	93.0	1.70E-13	5.054	0.58	126	46.45	± 0.07	
Ι	1350	27.7	91.6	2.69E-13	4.927	0.08	66	45.30	± 0.08	
J	1450	2.3	89.0	2.21E-14	4.947	0.11	61	45.48	± 0.21	
Κ	1550	0.3	47.4	3.06E-15	4.363	0.10	78	40.18	± 1.42	
L	1650	0.3	20.7	2.85E-15	3.481	0.10	91	32.12	± 1.71	
Total Gas	S							45.62		
97	7.0% of gas	on plateau-l	ike in 750 throu	gh 1450 steps			Average Age =	46.45 :	± 0.07	
Oficina I	Regional Sa	n Luis Potos	si							
PV-003	trachyte	porphyry	K-feldspar	$J = 0.005197 \pm 0.005197$	0.50%	wt = 5.7 mg	#129KD29			
А	1050	4.6	0.3	3.71E-16	1.335	0.46	0.58	12.47	± 23.87	
В	1075	3.9	0.6	3.12E-16	2.586	1.08	0.60	24.08	± 23.29	
С	1100	3.6	1.9	2.89E-16	6.291	0.50	0.78	58.03	± 22.70	
D	1150	3.7	4.8	2.98E-16	12.594	0.42	0.90	114.36	± 18.86	
Е	1200	3.6	0.2	2.89E-16	0.302	3.15	1.56	2.83	± 17.18	
F	1250	7.2	2.2	5.77E-16	2.707	1.76	1.08	25.20	± 9.83	
G	1350	8.3	5.0	6.65E-16	3.995	0.97	1.84	37.07	± 7.43	
Н	1450	13.5	6.5	1.08E-15	3.408	8.77	2.20	31.67	± 4.73	
Ι	1650	51.5	14.1	4.13E-15	2.593	3.98	5.83	24.15	± 1.29	
Total Gas	S							33.00		
84	4.1% of gas	on plateau ii	Plateau Age =	24.60 :	± 1.20					

Table 5. $^{\scriptscriptstyle 40}\text{Ar}/^{\scriptscriptstyle 59}\text{Ar}$ step-heating data obtained using the MAP 216 spectrometer.–Continued

Ages calculated assuming an initial ${}^{40}\text{Ar}/{}^{36}\text{Ar} = 295.5 \pm 0$.

All precision estimates are at the one sigma level of precision.

Ages of individual steps do not include error in the irradiation parameter J.

No error is calculated for the total gas age.

Figure 12. ⁴⁰Ar/³⁹Ar age spectra and inverse-isotope correlation diagrams for samples collected by CRM geologists from different areas in Mexico. These data were produced using the MAP 216 spectrometer at the USGS Thermochronology laboratory in Denver, Colorado.

Figure 12. ⁴⁰Ar/³⁹Ar age spectra and inverse-isotope correlation diagrams for samples collected by CRM geologists from different areas in Mexico. These data were produced using the MAP 216 spectrometer at the USGS Thermochronology laboratory in Denver, Colorado.–Continued

Figure 12. ⁴⁰Ar/³⁹Ar age spectra and inverse-isotope correlation diagrams for samples collected by CRM geologists from different areas in Mexico. These data were produced using the MAP 216 spectrometer at the USGS Thermochronology laboratory in Denver, Colorado.–Continued

Figure 12. ⁴⁰Ar/³⁹Ar age spectra and inverse-isotope correlation diagrams for samples collected by CRM geologists from different areas in Mexico. These data were produced using the MAP 216 spectrometer at the USGS Thermochronology laboratory in Denver, Colorado.–Continued

Figure 12. ⁴⁰Ar/³⁹Ar age spectra and inverse-isotope correlation diagrams for samples collected by CRM geologists from different areas in Mexico. These data were produced using the MAP 216 spectrometer at the USGS Thermochronology laboratory in Denver, Colorado.–Continued

Figure 12. ⁴⁰Ar/³⁹Ar age spectra and inverse-isotope correlation diagrams for samples collected by CRM geologists from different areas in Mexico. These data were produced using the MAP 216 spectrometer at the USGS Thermochronology laboratory in Denver, Colorado.–Continued

			<i>c</i> ,		e	1
Hole	³⁹ Ar _k	Radiogenic	⁴⁰ <u>Ar*</u>	K/Ca	K/Cl	Age Error
number Oficina Res	(Moles)	Yield (%)	³⁹ Ar _k			(Ma) (Ma)
POD-01	rhyolite s	sanidine J =	= 0.005117 ± 0.5	0% #13	9KD29	
11	1 48E 14	94.0	3 572	18.2	69	32.68 ± 0.12
10	3.87F_14	99.3	3.572	8.2	186	32.08 ± 0.12 32.72 ± 0.06
1	5.67E-14	98.7	3 582	13.4	116	32.72 ± 0.00 32.77 ± 0.05
2	4.82E 14	98.7	3.584	20.4	57	32.77 ± 0.05 32.78 ± 0.06
2	4.02E-14	96.5	3 585	20. 4 7 7	40	32.78 ± 0.00
0	2.03E-14	90.1	2.505	1.7	40	32.80 ± 0.08
3	3.63E-14 2.17E-14	90.0	2.585	10.4	93 60	32.80 ± 0.00
4	3.17E-14	90.0	2.500	60	110	32.80 ± 0.07
5	3.32E-14	99.3	2 502	6.0	01	32.85 ± 0.07
5	2.39E-14	96.9	2 504	6.0	91 60	32.83 ± 0.08
9	2.40E-14	93.7	2.594	0.0 5.6	00	32.87 ± 0.09
0	3.19E-14	99.0	3.020	J.O Weighted	91 Maan A aa -	33.11 ± 0.07
				weighted	viean Age =	32.82 ± 0.04
FDR-001	rhyolite tuff	sanidine	J = 0.005078	$\pm 0.50\%$	#140KD29	
11	1.42E-14	49.9	3.508	5.3	170	31.85 ± 0.29
10	8.87E-15	67.8	3.522	4.6	172	31.99 ± 0.25
12	2.33E-14	72.3	3.547	4.5	166	32.21 ± 0.13
1	2.25E-14	79.8	3.551	20.6	200	32.24 ± 0.12
13	1.12E-14	75.9	3.557	3.1	152	32.30 ± 0.19
3	1.03E-14	69.1	3.576	7.2	207	32.47 ± 0.22
9	1.76E-14	68.5	3.581	5.8	225	32.52 ± 0.16
7	1.78E-14	84.6	3.592	7.3	168	32.61 ± 0.13
6	3.11E-14	77.1	3.606	6.9	197	32.74 ± 0.11
5	1.25E-14	71.6	3.614	26.5	230	32.81 ± 0.17
2	3.18E-14	84.1	3.616	16.1	196	32.83 ± 0.10
8	1.48E-14	49.5	3.626	79.4	158	32.91 + 0.27
4	8.65E-15	80.0	3.650	3.4	200	33.13 ± 0.24
				Weighted	Mean Age =	32.34 ± 0.07
FVDA-01	dacite s	sanidine J =	= 0.005119 ± 0.5	0% #142	2KD29	
9	2 82F-14	97 4	3 636	67	154	33.19 ± 0.06
1	2.02E-14 2.70E-14	97.4	3.634	15.3	76	33.26 ± 0.07
	2.70E-14	96.8	3 5 5 8	3.6	155	33.20 ± 0.07
10	2.09E-14	90.8	3.627	12.6	195	33.28 ± 0.08
3	3 20E 14	90.9	3.641	6.0	102	33.32 ± 0.07
2	3.29E-14	97.9	3.644	7.6	102	33.32 ± 0.07
12	3.73E-14	08.3	2.641	7.0 8.6	109	33.34 ± 0.07
12	3.77E-14	96.5	2.649	0.0 10.0	120	33.33 ± 0.00
5	3.49E-14	97.0	3.046	10.0	107	33.38 ± 0.00
0	2.48E-14 4 57E-14	98.7 89.0	3.652	8.9	107	33.40 ± 0.08 33.41 ± 0.08
1	1.57 1 11	07.0	5.052	Weighted	Mean Age =	33.32 ± 0.05
	1 1	.,.	0.005004	5001 #10	8-	
r VDA-02	rnyolite tuff	sanidine J	$= 0.005204 \pm 0$.30% #130 8.2	28 28	22.11 . 0.11
لے ۸	2 50E 14	01.4 00 Z	2 5 1 1	0.2	20 92	32.11 ± 0.11 32.67 ± 0.00
4	2.39E-14	00.0 06.0	2.511	5.5	03 142	32.07 ± 0.09
3 7	2.35E-14	90.0	5.515	9.1	143	32.09 ± 0.09
/	4.20E-14	87.3	3.517	5.8	8/	32.72 ± 0.08
l	3.17E-14	90.5	3.519	7.2	/8	52.74 ± 0.09
8	3.35E-14	93.5	3.527	11.5	38	32.81 ± 0.08
6	4.89E-14	86.6	3.533	5.5	123	32.87 ± 0.08
9	1.72E-14	80.0	3.550	4.3	74	33.03 ± 0.15
5	2.54E-14	78.0	3.554	3.6	96	33.06 ± 0.12
11	3.60E-14	93.5	3.555	5.0	121	33.07 ± 0.07
10	2.61E-14	91.8	3.630	5.0	107	33.76 ± 0.10

Table 6. ⁴⁰Ar/³⁹Ar laser total fusion data of single-crystal sanidine obtained using the MAP 216 spectrometer.

Hole	${}^{39}\mathrm{Ar_{k}}$	Radiogenic	⁴⁰ <u>Ar*</u>	K/Ca	K/Cl	Age Error
number	(Moles)	Yield (%)	$^{39}Ar_{k}$			(Ma) (Ma)
FVDA-02	(cont.) rhyolin	te tuff sanidine	J = 0.0052	$204 \pm 0.50\%$	#136KD29	
13	3.28E-14	84.6	3.658	11.5	118	34.02 ± 0.10
12	2.88E-14	91.6	3.663	10.5	117	34.06 ± 0.09
				Weighted M	lean Age =	32.77 ± 0.05
AMDT-01	rhvolite	sanidine I –	0 005204 + 0	50% #13	8KD29	
5	2 07E 14	07.1	4.020	.50% 1150	102	27.52 . 0.09
5	3.07E-14	97.1	4.039	5.2	195	37.52 ± 0.08
6	2.76E-14 2.14E-14	90.9	4.042	3.2 8.4	201	37.50 ± 0.08 37.60 ± 0.10
12	2.14E-14 1.22E-14	95.9	4.047	0.4 4 0	185	37.60 ± 0.10
8	2 10F 14	93.7	4.048	4.9 552 5	105	37.61 ± 0.14 37.62 ± 0.09
0	2.10E-14	98.5	4.049	37.0	177	37.62 ± 0.09
7	1.15E-14 1.00E 14	99.1	4.053	92	100	37.65 ± 0.14
3	3.88E 14	97.6	4.054	63	170	37.60 ± 0.10
12	1 28E 14	99.1	4.054	2.7	242	37.67 ± 0.07
2	2 38E 14	93.5	4.057	15.5	181	37.69 ± 0.09
10	2.58E-14	95.5	4.057	78.7	162	37.09 ± 0.09
10	3 36E 14	98.5	4.059	10.7	162	37.70 ± 0.12 37.71 ± 0.07
11	1.72E-14	97.5	4.061	10.5	164	37.73 ± 0.12
		2710		Weighted M	fean Age =	37.64 ± 0.05
				, eighted in		
Oficina Re	egional Culiacan	ı				
YE-27	rhyolite sa	<i>nidine</i> $J = 0.00$	$5086 \pm 0.50\%$	% #141KD	29	
6	3.26E-16	15.7	1.768195	2.0	5.7	16.15 ± 5.03
5	1.88E-16	36.4	3.3956789	0.3	8.6	30.89 ± 8.62
1	1.82E-15	58.8	3.4854468	3.5	25.8	31.70 ± 0.93
8	1.03E-15	20.5	3.5621535	0.2	2.0	32.39 ± 2.10
3	1.65E-15	82.9	3.6625415	6.8	7.5	33.30 ± 0.96
2	8.69E-16	33.9	3.6783932	0.8	4.9	33.44 ± 2.04
11	1.17E-15	42.8	3.7382216	1.6	5.1	33.98 ± 1.69
7	2.00E-15	85.0	3.8667884	1.5	31.5	35.13 ± 0.86
10	7.57E-16	39.4	4.1508013	0.2	4.4	37.69 ± 2.53
9	9.46E-16	32.9	4.7609672	0.6	4.5	43.16 ± 2.07
4	8.20E-17	55.4	5.7476304	0.1	2.0	51.98 ± 19.31
				Weighted M	lean Age =	33.60 ± 0.50
Oficina Re	egional Hermosi	llo				
FA-4	rhyolite tuff	sanidine $J = 0$	$.005204 \pm 0.3$	50% #137	KD29	
9	4.87E-14	78.1	2.594	15.9	191	24.19 ± 0.08
12	3.33E-14	97.2	2.622	5.9	203	24.45 ± 0.06
11	2.71E-14	88.5	2.630	5.9	179	24.52 ± 0.09
1	5.26E-14	91.9	2.635	3.9	182	24.57 ± 0.06
13	1.58E-14	97.2	2.638	4.2	198	24.60 ± 0.10
10	1.62E-14	96.5	2.679	5.5	126	24.97 ± 0.11
7	4.39E-14	92.7	2.763	8.3	156	25.76 ± 0.06
8	6.39E-14	96.0	2.791	10.8	172	26.01 ± 0.05
4	2.88E-14	84.2	2.869	4.1	180	26.73 ± 0.10
6	1.16E-14	91.8	3.192	25.1	165	29.72 ± 0.16
5	1.24E-14	94.9	3.318	1.9	150	30.88 ± 0.15
3	1.67E-14	91.5	3.486	2.7	174	32.43 ± 0.12
2	1.76E-14	69.0	3.843	1.0	184	35.72 ± 0.19
				Weighted M	lean Age =	24.53 ± 0.05

Table 6. 40 Ar/59 Ar laser total fusion data of single-crystal sanidine obtained using the MAP 216 spectrometerCon	ntinued

Analyses in gray italics are not used to calculate the weighted mean age

Figure 13. ⁴⁰Ar/³⁹Ar probability diagrams (ideograms) and inverse-isotope correlation diagrams for samples collected by CRM geologists from different areas in Mexico. These data were produced using the MAP 216 spectrometer (laser technique) at the USGS Thermochronology lab in Denver.

Figure 13. ⁴⁰Ar/³⁹Ar probability diagrams (ideograms) and inverse-isotope correlation diagrams for samples collected by CRM geologists from different areas in Mexico. These data were produced using the MAP 216 spectrometer (laser technique) at the USGS Thermochronology lab in Denver.–Continued

Figure 13. ⁴⁰Ar/³⁹Ar probability diagrams (ideograms) and inverse-isotope correlation diagrams for samples collected by CRM geologists from different areas in Mexico. These data were produced using the MAP 216 spectrometer (laser technique) at the USGS Thermochronology lab in Denver.–Continued