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Abstract

Itisdiscussedthatthe metricinducedon thequantum evolution

submanifoldoftheprojectiveHilbertspacedescribestheuncertainties

and correlationsoftheoperatorsgeneratingthe quantum-stateevolu-

tion,and exhibitstheinherently-quantizedgeometry.

1 Introduction

Berry's phase and its extensions [1-6] are the striking phenomena that show

how the law of quantum-state evolution is geometric. It is determined by
the evolution curve in the projective HUbert space P, and is independent of

a specific choice of the Hamiltonian as long as it gives that projected curve

in P.

The phase difference due to the 1-parameter (A) evolution is seen in the

first-order term of dA in the transition amplitude (_(A)[_b(A + dA)). On

the other hand, geometry of the evolution curve C in P is characterized by

the Fubini-Study metric [7,8] induced on C: ds 2 - 1 - [(_b(A)[tb(A + dA))[ 2.

(Here and hereafter, the state vectors are assumed to be normalized.)

Recently, Anandan and Aharonov [9,10] have obtained a remarkable re-

sult that if the 1-parameter evolution is generated by a Hermitian ope-

rator A, then the relation ds - AAdA holds, where AA is the variance

(AA) 2 = (_IA2I_) - (¢IAI_) 2. This means that the "velocity" of evolution

along C is just equal to the uncertainty of the generator of that evolution.
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The purpose ofthispaper isto reportbrieflythe furtherresultsrecently

obtained in the study of geometric aspectsof quantum evolution. More

detaileddiscussionswillbe found in Ref. [11].

2 Geometry of Uncertainty and Correlation

There are a variety of 1-parameter evolutions for a generic quantum state.

Each evolution gives each curve in the projective Hilbert space P. It is

preferable to consider the multi-dimensional submanifold A/"of 9, in which

various evolution curves are embedded. A/"is properly called here the quan-

tum evolution submanifold. If a given state is parametrized by a set of n

real numbers a = (a 1, a2,..., an), then a local coordinate of A/"is identified

with a. In this case, the metric induced on A/"is given by

d_2= 1- l(_(a)l_(_+ d_)>l2 (1)

If the evolution of the state [_b(a)) is assumed to be generated by n inde-

pendent Hermitian operators {Ai(a)}i=l,2 .....n, that is,

- iOi[_(a)) = Ai(_)l_,(a)) (i = 1, 2,..., n), (2)

then Eq.(1) has the form d82 = glj(a)daida j, where

|

gij(a) = _(_b(_)lAi(a)Aj(a ) + Aj(a)Ai(a)l_b(a))

-(_(ct)[Ai(a)[_(_))(_(ct)[Aj(a)[_(ot)), (3)

provided that 0i - 81Oa i and the summation convention is understood for
the repeated upper and lower indices. Thus, one can see that the diago-

nal g, and off-diagonal glj (i _ j) components are respectively equal to

the uncertainties and correlations of the operators generating the evolution

[11,12].

The metric (3) definesthe Riemannian structureof .N'. The metric-

compatible connectioncan be expressedas a simple quantum expectation

value [11]:

1

r_,,j = 4<¢I[O_Bj+ a,B, - i(BiBj + BiBi)]Bk

+Bk[i:giBj + OjB_ + i(BiBj + B_B,)]I¢), (4)
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where the operators Bi are given by Bi(a) = Ai(a) - (_(a)lA_(a)[¢(_)).

With this expression, it is straightforward to ascertain the Riemannian par-

allelism: _TkgO = Okgij - Fhikghj -- Fhj_gih = 0.

Geometric aspects of the uncertainties and correlations can be seen best

in the squeezed state example. The single-mode two-photon squeezed state

[13] is given by lz)_ - D(z)S(_)I0/= exp(za t - z=a)exP[½(_a t2 -_'a2)]10) •
a t and a are the usual bosonic creation and annihilation operators. [0) is

the vacuum state annihilated by a. D(z) and S(_) are called Glauber's

displacement operator and the squeeze operator, respectively. The displa-

cement operator gives a correspondence relation between relevant operators

and their classical counterparts in the phase space (x,p) with the parame-

trization z = (z + ip)/x/_, z and p are respectively equal to the expectation

values of the position X = (a + at)Iv/2 and momentum P -- (a - at)/iv/2

operators in the squeezed state.

Consider the translational evolution: Iz(x, p))_ ----* I(z + dz)(x + dx, p +

dp))¢, where the squeeze parameter is fixed. From the transition amplitude,
the metric da 2 = 1- [_ (z[z + dz)_[ 2 is directly calculated as

1 1
ds 2 = _(cosh 2r - sinh 2r cos 2¢)dx 2 + _(cosh 2r + sinh 2r cos 2¢)dp 2

1
+2 × _ sinh 2r sin 2¢dxdp, (5)

provided the parametrization _ = re -2i_ (0 _< r, 0 _< _ < 2_r) has been
used. This is the Euclidean metric in a non-Cartesian coordinate. On the

other hand, the above translational evolution is generated by the following

operators:

Az - -P + p (6a)

_[ z (6b)- i z)_ = Avlz)¢, Av = X - 2"

The uncertainties and correlations in the squeezed state are the familiar

ones:
1

(AAz) 2 = (AP) 2 = _(cosh 2r - sinh 2r cos 2_b),

1

(AAp) 2 = (AX) 2 = _(cosh 2r + sinh 2rcos2_b),

1

C(A_:, Av) = -C(X, P) = _ sinh 2r sin 2_b,

(7a)

(7b)

(7c)
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whereC(A, B) = C(B, A) = ½(_blAB + BAI_b) - (_b[A[_,)(_PIBI¢,). These

quantities in fact give the components of the metric (5).

The effects of squeezing as the expansion, contraction, and rotation in

the phase space has been explored geometrically by the methods of phase-

space representations of quantum theory in the literature [14,15]. The metric

(5) describes those effects in a peculiar representation-free manner.

Since the metric is given in terms of a reference state, it carries some of

quantum numbers characterizing that state. Accordingly, At"possesses the

quantized structure, in general. In what follows, such examples are given.

The first example is the displaced number state [16]: lz),_ - D(z)[n),

where In) = (n!)-l/2(at)n[0) (n = 0, 1,2,...). Consider the translational

evolution [ z(x,p)),, ---_[ z(x + dx,p+ dp))n. The metric is calculated as

= (n +  )(dz + ap2). (8)
1

ds 2

Therefore, the phase space locally identified with At"associated with the evo-

htion of the displaced number state has a Euclidean metric with a quantized
conformnl factor.

Another example is the squeezed number state [17]: I _)n = S(_) I

n) (n = 0,1,2,...).The squeezeparameter isagain parametrized as _ =

re-2i_.Consider the evolutionI_(r,_b))n"'_I(_+ d_)(r+ dr,_b+ d_b))n.A/"

islocallylabelledby (r,_b).The metricisthen found to be

= _(n 2 + n + 1)(dr 2 + sinh 2 2rd_p_). (9)d8 2

This is the metric of the Lobachevsky space [18] with a quantized conformal

factor. Its Gaussian curvature [18] is also quantized as K = -8/(n 2 + n + 1).

It is interesting to see that the curvature vanishes in the "classical limit"

rt --* OO.

3 Conclusions

Ithas been demonstrated thatthe Fubini-Studymetricinduced on the quan-

tum evolutionsubmanifoldAt"iscompletelygiven by the uncertaintiesand

correlationsof the operatorsgeneratingvariousevolutions,and A/"admits

the quantizedRiemannian structure.

In the above simpleexamples,only the conformal factorsof the metrics

are quantized. This may be partiallydue to the mathematical fact[18]

thatalltwo-dimensionalspacesare conformallyequivalentto the Euclidean

space.In general,each component of the metricisindividuallyquantized.
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