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pecial Section — Marine Controlled-Source Electromagnetic Methods

Bayesian model for gas saturation estimation
sing marine seismic AVA and CSEM data
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ABSTRACT

We develop a Bayesian model to jointly invert marine seismic
amplitude versus angle �AVA� and controlled-source electro-
magnetic �CSEM� data for a layered reservoir model. We consid-
er the porosity and fluid saturation of each layer in the reservoir,
the bulk and shear moduli and density of each layer not in the res-
ervoir, and the electrical conductivity of the overburden and
bedrock as random variables. We also consider prestack seismic
AVA data in a selected time window as well as real and quad-
rature components of the recorded electrical field as data. Us-

ing Markov chain Monte Carlo �MCMC� sampling methods, we
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raw a large number of samples from the joint posterior distribu-
ion function. With these samples, we obtain not only the esti-

ates of each unknown variable, but also various types of uncer-
ainty information associated with the estimation. This method is
pplied to both synthetic and field data to investigate the com-
ined use of seismic AVA and CSEM data for gas saturation esti-
ation. Results show that the method is effective for joint inver-

ion; the incorporation of CSEM data reduces uncertainty in fluid
aturation estimation compared to inversion of seismic AVA
ata alone. The improvement in gas saturation estimation ob-
ained from joint inversion for field data is less significant than
or synthetic data because of the large number of unknown noise
ources inherent in the field data.
Seismic AVA and CSEM methods are sensitive to different phys-
INTRODUCTION

Estimating reservoir parameters for gas exploration from geo-
hysical data is challenging and subject to a large degree of uncer-
ainty. Seismic imaging techniques, such as seismic amplitude ver-
us angle �AVA� analysis, can provide good information about the
hysical location and porosity of potential gas-bearing sands but
annot discriminate between economical and uneconomical gas
oncentrations. This is because seismic velocity and density have
ow sensitivity to variations in gas saturation �Castagna and Backus,
993; Debski and Tarantola, 1995; Plessix and Bork, 2000�. Con-
rolled-source electromagnetic �CSEM� methods can discriminate
etween uneconomical and economical gas saturation because elec-
rical resistivity of reservoir materials is highly sensitive to water
aturation. However, estimating gas saturation using CSEM data
lone is impractical because CSEM data have low spatial resolution.

Manuscript received by the Editor April 4, 2006; revised manuscript receiv
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2University of California at Berkeley, Department of Civil and Env
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2007 Society of Exploration Geophysicists. All rights reserved.
cal properties of reservoir materials. Seismic AVA data are func-
ions of the seismic P- and S-wave velocity and density of reservoir

aterials. CSEM data are functions of the electrical resistivity of
eservoir materials, the overburden, and the bedrock. Because both
lastic and electrical properties of gas reservoirs are related physi-
ally to fluid saturation and porosity through rock-physics models
Archie, 1942; Gassmann, 1951; Mavko et al., 1998�, joint inversion
f seismic AVA and CSEM data has the potential to provide better
stimates of gas saturation and porosity than inversion of individual
ata sets.

We consider a 1D �or layered� reservoir model in this study, where
orward simulation of seismic AVA and CSEM data is quick. This is
simplified representation of a deepwater gas reservoir in the Gulf
f Mexico, where the spatial variability of fluid saturation and poros-
ty changes only along the vertical direction. We assume that rock-

ember 19, 2006; published online March 1, 2007.
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WA86 Chen et al.
hysics models for linking the elastic and electrical properties to flu-
d saturation and porosity are obtainable from the nearby borehole
ogs; therefore, we ignore the effects of uncertainty in rock-physics

odels at this stage.
A deterministic inverse method and a minimum relative entropy

MRE� method for estimating gas saturation according to the same
ayered reservoir model using seismic AVA and CSEM data are giv-
n by Hoversten et al. �2006� and Hou et al. �2006�, respectively. In
his paper, we focus on the development of a Bayesian model and use

arkov chain Monte Carlo �MCMC� methods to investigate the
ombined use of seismic AVA and CSEM data for fluid saturation
nd porosity estimation.

METHODOLOGY

ayesian model

The Bayesian model is developed for an offshore gas exploration
cenario, such as the Gulf of Mexico and the North Sea. As shown in
igure 1, we consider a layered reservoir model that may include
as, oil, and water. Seismic data are prestack common-midpoint
CMP� gathers containing several incident angles over a predefined
ime window that covers the reservoir. The time window is deter-

ined from check shots or sonic-log calculations of time-depth
airs. We estimate water and gas saturation and porosity within the
eservoir, where oil saturation can be calculated from the water and
as saturation. We also estimate elastic bulk and shear moduli and
ensity in the zones outside the reservoir because well logs neces-
ary for deriving rock-physics models to link fluid saturation and po-
osity to seismic AVA data are typically only available within the
eservoir.

Marine CSEM data are the real �in-phase� and quadrature �out-of-
hase� components of the recorded electrical field from various re-
eivers located on the seafloor for given sources with different fre-
uencies. Those data are the responses to the electrical conductivity
f the entire half-space, which includes the seawater, the overburden
bove the reservoir, the reservoir, and the bedrock beneath the reser-
oir. Because the electrical conductivities in the seawater and in the
verburden and bedrock often affect the estimates of fluid saturation
n the reservoir, we also consider them as unknown parameters in
his model.

We assume in this study that the rock-physics models for linking
eservoir fluid saturation and porosity to reservoir seismic velocity
nd density and the Archie’s law for linking reservoir water satura-
ion and porosity to reservoir electrical conductivity are given and
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igure 1. Schematic map of a layered reservoir model.
re exact. These assumptions can be relaxed to account for uncer-
ainty in rock-physics models and Archie’s law in other studies. Let
ectors Sw, Sg, and � denote reservoir water saturation, gas satura-
ion, and porosity, respectively, which can be used to calculate reser-
oir seismic P- and S-wave velocity and density. Let vectors K, �,
nd � denote the bulk modulus, shear modulus, and density above
nd beneath the gas reservoir, respectively, which can be trans-
ormed into seismic P- and S-wave velocity and density in the layers
utside the reservoir. Let matrix R represent seismic AVA data,
hich are explicit functions of seismic P- and S-wave velocity and
ensity within and outside the reservoir and are implicit functions of
eservoir parameters �Sw, Sg, and �� and elastic properties �K, �, and
� in the zones outside the reservoir.
Let vector � denote the electrical conductivity of the seawater, the

verburden, and the bedrock. Let matrix E represent CSEM data,
hich are explicit functions of electrical conductivity, � in the sea-
ater, the overburden, and the bedrock and indirect functions of res-

rvoir porosity � and water saturation Sw. Because seismic AVA and
SEM data are two different types of geophysical measurements,
e assume that they are independent of each other. Consequently,
e obtain the following Bayesian model:

f�Sw,Sg,�,�,K,�,��R,E�

� f�R�Sw,Sg,�,K,�,��

f�E�Sw,�,��f�Sw,Sg,�,�,K,�,�� . �1�

Equation 1 defines a joint posterior probability distribution func-
ion of all unknown parameters, which is known up to a normalizing
onstant. The first term on the right side of the equation is the likeli-
ood function of seismic AVA data, the second term on the right side
s the likelihood function of CSEM data, and the last term on the
ight side is the prior distribution of all unknown variables.

ikelihood model

We determine the likelihood functions of seismic AVA and
SEM data based on their error structures in data acquisition and
rocessing. Seismic AVA reflectivity is an explicit function of seis-
ic P- and S-wave velocity and density in the reservoir and in the

ones outside the reservoir. In our application, we use the Zoeppritz
quations �Aki and Richards, 1980� to model the reflectivity. Seis-
ic P- and S-wave velocity and density in the reservoir are calculat-

d from water and gas saturation and porosity �Sw, Sg, and �� using
ock-physics models. Seismic P- and S-wave velocity and density in
he zones outside the reservoir are calculated from bulk and shear

oduli and density �K, �, and ��. Let the seismic AVA data matrix
e R = �rij�, where i = 1,2, . . . , mt �mt is the number of time sam-
les� and j = 1,2, . . . , ma �ma is the number of incident angles�.
hus,

rij = Mij
a �Sw,Sg,�,K,�,�� + �ij

a , �2�

here Mij
a is the ijth component of the seismic AVA forward model

nd �ij
a is the corresponding measurement error. Let � = ��11

a ,
21
a , . . . , �mt1

a ,�12
a ,�22

a . . . , �mt2
a , . . . , �mtma

a �T be a vector representing all
easurement errors, where T is the transpose of the vector. Let n
mamt be the total number of seismic data in a given time window.

o consider correlation of those errors in time and across incident
ngles, we assume that they have the multivariate Gaussian distribu-
ion with zero mean and covariance matrix �, as used by Buland and
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Bayesian model for gas saturation estimation WA87
mre �2003a�. Consequently, we obtain the likelihood function for
he seismic data as follows:

f�R�Sw,Sg,�,K,�,�� =
1

��2��n���
exp�−

1

2
�T�−1�� , �3�

here ��� and �−1 denote the determinant and the inverse of the co-
ariance matrix, respectively. If the error structure is nonGaussian
nd can be modeled, other appropriate likelihood functions should
e used.

Determining the likelihood function of CSEM data is more diffi-
ult than determining the likelihood function of seismic AVA data
ecause the amplitudes of the recorded electrical field span several
rders of magnitude. The CSEM data used in this study include real
nd quadrature components of the recorded electrical fields at vari-
us offsets for different frequencies. Let the CSEM data matrix be
= �eijk�, where i = 1,2, . . . , nf represent different frequencies of

SEM sources, j = 1,2, . . . , n0 represent different offsets, and k =
,2 represent real and quadrature components of the recorded elec-
rical field. Thus,

eijk = Mijk
e �Sw,�,�� + �ijk

e , �4�

here Mijk
e is the ijkth component of the CSEM forward model and

ijk
e is the corresponding measurement error. Unlike the seismic
VA data, we only consider uncorrelated noise in this study. We as-

ume that the errors of CSEM data are proportional to their corre-
ponding measurements with a random ratio �ijk

r , i.e., �ijk
e = �ijk

r eijk.
e assume that the relative ratio �ijk

r has the Gaussian distribution
ith zero mean and standard deviation � j that is given and may de-
end on offsets, typically increasing from near to far offsets, for ex-
mple, from 5% to 10%. As a result, we obtain the following likeli-
ood function:

f�E�Sw,�,�� = 	
i=1

nf

	
j=1

no

	
k=1

2
1

�2�� j
2

exp
−
1

2� j
2

� eijk − Mijk
e �Sw,�,��
eijk

�2� . �5�

ike the seismic AVA data, we should use other appropriate likeli-
ood functions if the error structure of CSEM data is nonGaussian.

rior model

The prior distribution is determined from prior knowledge and
ther information about the unknown parameters �such as nearby
orehole data�, which may be subjective and site specific. In this
tudy, we assume that the unknown parameters in the reservoir �i.e.,
w, Sg, �� are independent of the variables in the layers outside the
eservoir �i.e., �, K, �, �� and water and gas saturation Sw, Sg are in-
ependent of porosity �. We also assume that the electrical conduc-
ivity � in the thick overburden and bedrock is independent of the
lastic bulk and shear moduli and density �K,�,�� in the thin layers
bove and beneath the reservoir, and the bulk and shear moduli and
ensity �K,�,�� are independent of each other. Consequently, we
implify the prior distribution function as

f�S ,S ,�,�,K,�,�� = f�S ,S �f���f���f�K�f���f��� . �6�
w g w g
The prior distribution functions of water and gas saturation are de-
ermined jointly because gas and water saturation are dependent. Let
a1,b1�, �a2,b2�, and �a3,b3� be the prior bounds of water, gas, and oil
aturation. As shown in Figure 2, the inversion domain of water and
as saturation is a joint set given by

D = ��Sw,Sg�:Sw � �a1,b1�,Sg � �a2,b2�,

So � �a3,b3�,Sw + Sg + So = 1� . �7�

e assume that the prior distribution of water and gas saturation is
niform on the domain D. For all other parameters, we assume that
heir prior distributions are uniform within their corresponding giv-
n ranges.

SAMPLING METHODS

We use sampling methods to estimate unknown parameters from
he joint posterior distribution function shown in equation 1. Ordi-
ary Monte Carlo methods are impracticable for this application be-
ause of the high dimensionality of unknown variables; therefore,
e use MCMC sampling methods. MCMC methods have been

hown to be useful for inverting complex geophysical data by Bosch
1999�, Malinverno �2002�, and Buland and Omre �2003b, c�.

Unlike ordinary Monte Carlo methods that draw independent ran-
om samples directly from the joint distribution, MCMC methods
raw samples by running elaborately constructed Markov chains for
long time �Gilks et al., 1996�. The constructed Markov chains are

tationary and have the joint posterior distribution as the limit distri-
ution. In addition, the chains are ergodic under weak conditions
i.e., irreducible and aperiodic�.

According to the ergodic theorem �Gelfand and Smith, 1990�, the
ample mean of any measurable function of those unknown vari-
bles asymptotically converges to its corresponding true expectation
s the number of runs is sufficiently large. The commonly used mea-
urable functions are the mean, variance, and mode of the unknown
ariables. An important function is the probability of any particular
vent concerning unknown variables. Indeed, a major strength of
CMC methods is the ability to focus directly on the estimates of

robabilities �such as marginal probabilities or probability density
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igure 2. Inversion domain of water and gas saturation defined by
iven water, gas, and oil saturation bounds �i.e., Sw � �a1,b1�, Sg �
a ,b �, and S � �a ,b ��.
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unctions of unknown variables�, in contrast to the more indirect cal-
ulation via moment approximations and asymptotic limit theorems
Besag, 2001�.

Many methods are available to construct Markov chains, for ex-
mple, Gibbs sampler �Geman and Geman, 1984�, Metropolis-Hast-
ngs methods �Metropolis et al., 1953; Hastings, 1970�, and slice
ampling methods �Neal, 2003�. In this study, we combine Metropo-
is-Hastings methods with slice sampling methods to obtain samples
f unknown parameters. For water and gas saturation, we use multi-
ariate Metropolis-Hastings methods; for all other unknowns ��, �,
, �, �� we use mixing sampling methods that include both Metrop-

lis-Hastings and slice sampling methods. In the following, we first
riefly outline the general steps of our MCMC sampling; the details
re given later.

We draw samples using MCMC methods by sequentially updat-
ng unknown vectors Sw, Sg, �, �, K, �, � with the following four
teps:

� Assign initial values to get Sw
�0�, Sg

�0�, ��0�, ��0�, K�0�, ��0�, ��0�, and
let t = 0.

� Update water and gas saturation �Sw, Sg� given �Sw
�t�, Sg

�t�, ��t�,
��t�, K�t�, ��t�, ��t�� using the multivariate Metropolis-Hastings
method to get �Sw

�t+1�, Sg
�t+1��.

� Update porosity �, conductivity �, bulk and shear moduli, and
density K, �, � given Sw

�t+1�, Sg
�t+1�, ��t�, ��t�, K�t�, ��t�, ��t�, using

mixing sampling methods that include Metropolis-Hastings
and slice sampling methods to get ���t+1�, ��t+1�, K�t+1�, ��t+1�,
��t+1��.

� Repeat steps 2 and 3 until the allowed maximum number of
runs is reached.

etropolis-Hastings sampling methods

Because of dependence between water and gas saturation, we use
multivariate Metropolis-Hastings method to draw samples of wa-

er and gas saturation �Sw, Sg�. We first derive the conditional distri-
ution of �Sw, Sg� given all other variables. For simplicity, we denote
t as f�Sw,Sg� · �, where the dot represents all other variables. This
onditional distribution function is proportional to the joint posterior
istribution function shown on the left side of equation 1. By retain-
ng only those terms that are related to water and gas saturation, we
btain the following conditional probability distribution function:

f�Sw,Sg� · � � f�R�Sw,Sg,�,K,�,��f�E�Sw,�,��f�Sw,Sg� .

�8�

s shown in equation 7 and Figure 2, we assume that the prior distri-
ution of water and gas saturation in each layer is uniform on the do-
ain D. Therefore, we can drop the prior distribution f�Sw,Sg� from

quation 8 to further simplify the conditional distribution function.
We can use various proposal distributions to draw candidate sam-

les of water and gas saturation. In this study, we use the uniform
istribution defined on D as the proposal distribution. In this case,
he probability � for accepting a candidate sample is equal to its like-
ihood ratio, as shown in equation 9. Suppose the current values of
ater and gas saturation are �Sw

�t�,Sg
�t��, which certainly is a vector in

as shown in Figure 2. We want to obtain a new vector of water and
as saturation �Sw

�t+1�,Sg
�t+1��.

There are four steps in the procedure. First, we generate a candi-
ate vector �Sw

* ,Sg
*� uniformly from D as shown in Figure 2. Second,

e calculate the probability for accepting the candidate vector:
= min

�1,
f�R�Sw

* ,Sg
*,��k�,K�t�,��t�,��t��

f�R�Sw
�t�,Sg

�t�,��t�,K�t�,��t�,��t��
·

f�E�Sw
* ,��t�,��t��

f�E�Sw
�t�,��t�,��t��� .

�9�

hird, we generate a random value u uniformly from interval �0,1�.
ourth, if u��, let Sw

�t+1� = Sw
* and Sg

�t+1� = Sg
*; otherwise, let Sw

�t+1�

Sw
�t� and Sg

�t+1� = Sg
�t�.

By repeating steps 1–4, we obtain many samples of water and gas
aturation ��Sw

�t�,Sg
�t��:t = 0,1,2, . . . �. From the procedure we see that

he vector �Sw
�t+1�,Sg

�t+1�� depends solely on the vector �Sw
�t�,Sg

�t��, not on
he vectors ��Sw

�r�,Sg
�r��:r� t − 1�.

lice sampling methods

We use slice sampling methods described by Neal �2003� and Me-
ropolis-Hastings methods to obtain samples of porosity �, overbur-
en and bedrock conductivity �, bulk modulus K, shear modulus �,
nd density � from the joint posterior distribution given in equation
. This is because sampling efficiency for the Metropolis-Hastings
ethods is very sensitive to the choice of tuning parameters, but

lice sampling methods are less so. In fact, for this application, we
re unable to set good values for Metropolis-Hastings methods to
enerate Markov chains that converge at a sufficient speed. Because
he slice sampling methods for obtaining samples of porosity, elec-
rical conductivity, bulk and shear moduli, and density are similar,
e briefly describe the single-variable slice sampling methods for
pdating porosity.

We first derive the conditional distribution function of porosity �
iven all other variables from equation 1. Similar to water and gas
aturation, by retaining only those terms that are related to porosity,
e obtain the following conditional:

f��� · � � f�R�Sw,Sg,�,K,�,��f�E�Sw,�,��f��� . �10�

et �i be the porosity in a given layer i. We assume that the prior dis-
ribution of the porosity is uniform on interval �c,d�, where c and d
enote the lower and upper bounds of the porosity. We work on the
ogarithmic porosity as used by Bosch �2004�. Let variable x be the
ransformation of porosity �i defined on �− 	 , + 	 � and given by x

log���i − c�/�d − �i��. The Jacobian of �i at x is given by J =
x/��d − c��1 + ex�2�. The conditional distribution of the trans-
ormed porosity given all other variables thus can be written as

f�x� · � = �J�f��i� · �

�
ex

�1 + ex�2 f�R�Sw,Sg,�,K,�,��f�E�Sw,�,��f��� .

�11�

otice that all bold symbols on the right side of equation 11 repre-
ent vectors, and the vector � includes component �i and therefore is
function of x. To simplify the description, we let ��x� = f�x� · �,
hich is a probability density function �PDF� of x. Our goal is to
raw samples from this PDF using slice sampling methods. Figure 3
hows an example of using the single-variable slice sampling meth-
d given by Neal �2003� to obtain a new value x1 from the current
alue x0. First, we draw a value y, which is uniformly distributed on
0,��x0��. The value y defines a horizontal slice, S = �x:y���x��,
hown as thick lines in Figure 3. Note that x is always within S. Sec-
0
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Bayesian model for gas saturation estimation WA89
nd, we find an interval, I = �L,R�, near the value x0 that contains all
r most of the slice, where L and R represent the lower and upper
ounds of the interval. Third, we draw a new value x1 from the part of
he slice within the interval.

Steps 2 and 3 can be implemented in several ways. In this study,
e use a stepping-out method to find the interval I and a shrinkage
ethod to draw a new value from the interval. We step out in both di-

ections from the value x0 with a given interval width for a given
aximum number of iterations until both ends are outside the slice.
e then uniformly pick a new value from the interval. If the value

icked is inside the slice, we consider it as the new value x1; other-
ise, we use the value to shrink the interval. Neal �2003� shows
ow this procedure guarantees that the obtained chains converge to
DF ��x�.

trategies for speeding convergence

The success of MCMC methods depends on the efficiency of the
ampling methods used. If a sampling method is inefficient, we may
eed to run a very long chain; thus, the computational effort is very
arge. Typically, the raw sampling methods �for both Metropolis-
astings and slice sampling methods� are not efficient. We need to

une the parameters that control chain movements. Unfortunately,
he efficiency of a sampling method is often problem specific.

In this study, we use a multivariate Metropolis-Hastings method
o obtain samples of water and gas saturation, but a mixing method to
btain samples of other variables. At each sampling step, we ran-
omly pick one of the following four methods: single-variable Me-
ropolis-Hastings methods, multivariate Metropolis-Hastings meth-
ds, single-variable slice sampling methods, or multivariate slice
ampling methods. This strategy has been shown to be efficient for
olving our joint inversion problems.

SYNTHETIC EXAMPLE

The following synthetic case study is designed to show the capa-
ility and flexibility of our joint inversion approach for integrating
ifferent types of information and to demonstrate the benefits of
oint inversion of marine seismic AVA and CSEM data for gas satu-
ation estimation.

ynthetic true model

The synthetic reservoir includes five layers with a thickness of
0 m and zero oil saturation. From the upper to the bottom layers,
he gas saturation of the reservoir is 0.05, 0.95, 0.4, 0.9, and 0.1, and
orosity is 0.15, 0.25, 0.15, 0.1, and 0.05, respectively. Above the
as reservoir is the overburden with a thickness of 1400 m and elec-
rical conductivity of 1.0 S/m. Above the overburden is 1000 m of
eawater with conductivity of 3.2 S/m. The bedrock beneath the res-
rvoir has electrical conductivity of 1.0 S/m. To account for uncer-
ainty in selecting a suitable time window for seismic AVA data in-
ersion, we add one 30-m-thick layer above the reservoir and one
0-m-thick layer below the reservoir, and we invert for elastic bulk
nd shear moduli and density in those layers.

ock-physics model

The rock-physics model used in the synthetic and field studies for
inking reservoir porosity and fluid saturation to seismic P- and
-wave velocity and density is described in detail by Dvorkin and
ur �1996� and Hoversten et al. �2003�. This model uses the Hertz-
indlin contact theory �Mindlin, 1949� for dry frame bulk and shear
oduli of a dense, random pack of spherical grains. The modified
ashin-Shtrikman lower bound �Hashin and Shtrikman, 1963� is
sed to calculate the effective moduli for porosity below the critical
orosity. The bulk modulus of fluid-saturated rock is calculated by
assmann’s equation �Gassmann, 1951�, and the bulk moduli and
ensity of brine, oil, and gas are computed using the relations from
atzle and Wang �1992�. The reservoir electrical conductivity is cal-
ulated using Archie’s law �Archie, 1942� from reservoir porosity
nd water saturation. Tables 1 and 2 list the specific parameters used
n this study that are obtained by fitting the rock-physics model and
rchie’s law to the well logs collected from the Troll site in North
ea by Hoversten et al. �2006�.

ynthetic data

The seismic AVA data are NMO-corrected angle gathers generat-
d by convolving a 28 Hz Ricker wavelet with the angle-dependent
eflectivity for each layer interface, sampled at 2 ms for six incident
ngles �5°, 10°, 15°, 20°, 25°, and 30°�. The seismic velocity and
ensity outside of the reservoir are calculated directly from bulk and
hear moduli and density. The seismic velocity and density in the
eservoir are calculated from porosity and fluid saturation using the
ock-physics model parameters given in Table 1. The Zoeppritz
quations �Aki and Richards, 1980� are used to calculate the angle-
ependent reflectivity. We assume that the synthetic seismic data in-
lude spatially correlated Gaussian random noise and the spatial cor-
elation is determined by the exponential variogram with an integral
ength of 6 ms. The variance of the Gaussian noise is angle depen-
ent and the signal-to-noise ratios are 10, 9, 8, 7, 6, and 5 from the
ear to the far offsets.

Synthetic EM data simulate commercial EM field data collected
sing CSEM techniques. The marine CSEM system consists of a
hip-towed electric dipole source and a number of seafloor-deployed
ecording instruments capable of recording orthogonal electric �and
ptionally magnetic� fields. A common configuration consists of an
lectric dipole transmitter, 100–300 m in length, towed in a neutral-
y buoyant configuration approximately 50 m off the seafloor to
void collision with stationary receiver systems �Ellingsrud et al.,
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002�. A square wave of electric current is sent into the transmitter at
variable fundamental frequency between 0.1 and 10 Hz. The earth

esponse, along with the primary field from the transmitter, is mea-
ured at the array of receivers. In this study, we use CSEM sources
ith five frequencies �0.10, 0.25, 0.50, 0.75, and 1.00 Hz� and eight

ource-receiver offsets �2, 3, 4, 5, 6, 7, 8, and 10 km�. The relation-
hip between reservoir electrical resistivity and reservoir porosity
nd water saturation is given by Archie’s law using coefficients list-
d in Table 2. We add 5%–10% relative Gaussian random noise to
he synthetic CSEM data from the near to the far offsets.

nversion using seismic AVA data alone

We first demonstrate the capability of the stochastic model to dis-
inguish high-gas-saturation layers from low-gas-saturation layers
sing seismic AVA data alone. We consider two levels of noise that
orrespond to S/N from 10 to 5 and from 20 to 10 from near to far off-
ets. We assume that oil saturation is zero in each layer, the unknown
arameters in equation 1 are porosity and gas saturation in the five
ayers, and the bulk and shear moduli and density outside of the res-
rvoir. We also assume that the prior distribution of gas saturation is
niform on �0, 1� and the prior distribution of porosity is uniform on
0, 0.35�.

Figure 4 shows the estimated PDFs of gas saturation and porosity
sing seismic AVA data only. The black and red curves are the mar-
inal PDFs of gas saturation and porosity in the five layers using the
eismic AVA data with S/N from 10 to 5 and from 20 to 10, respec-
ively; the blue straight lines are their corresponding true values. The
gure shows that the seismic data provide �1� good estimates of po-
osity in each layer, �2� good estimates of gas saturation in layers 1
nd 2, but �3� poor estimates of gas saturation in layers 3, 4, and 5.

ith the decrease of seismic noise, uncertainty in gas saturation and
orosity decreases. Table 3 shows the rms of the estimated values us-
ng seismic data with S/N from 10 to 5 and from 20 to 10. The com-
arison between the true values and the estimated means, medians,
nd modes shows that the improvement in accuracy for both gas sat-
ration and porosity is small even when the signal-to-noise ratios of
eismic data are increased by a factor of two.

nversion using both seismic AVA and CSEM data

We next demonstrate the benefits of joint inversion of seismic
VA and CSEM data for gas saturation estimation. We assume that

he synthetic CSEM data have relative errors linearly increasing
rom 5% at the nearest offset to 10% at the furthest offset. Figure 5
ompares the estimated PDFs of gas saturation and porosity using
nly seismic AVA data, with S/N from 10 to 5 �black�, and with the
stimates derived using both seismic AVA and CSEM data �red�.

able 3. The rms errors of the estimated values using
eismic AVA data with signal-to-noise ratios from 10 to 5
nd from 20 to 10.

Signal-to-noise
ratios

Estimated
mean

Estimated
median

Estimated
mode

10 to 5 0.2709 0.2689 0.1723

as saturation 20 to 10 0.2366 0.2180 0.0641

10 to 5 0.0037 0.0038 0.0039

orosity 20 to 10 0.0025 0.0025 0.0026
able 1. Rock-physics model parameters derived from data
ollected from well 31/2–1.

arameters Values

ritical porosity 0.38

umber of grain contacts 13.50

rain shear modulus �Gpa� 22.50

rain Poisson’s ratio 0.34

rain density �kg/m3� 2567.00

il API gravity 28.50

rine salinity 0.07

as gravity 0.59

emperature �°C� 65.00
able 2. Archie’s law coefficients obtained using data col-
ected from well 31/2–1.

arameters Fitted values

rchie’s law constant 0.78

ater saturation exponent −1.31

orosity exponent −0.14
Layer 1 Layer 1

15

10

5

0 0.2 0.4 0.6 0.8 1

D
en

si
ty

5
4
3
2
1

D
en

si
ty

D
en

si
ty

D
en

si
ty

D
en

si
ty

Layer 2 Layer 2

Layer 3 Layer 3

Layer 4 Layer 4

Layer 5 Layer 5

50
40
30
20
10

0.1 0.12 0.14 0.16 0.18 0.2

0 0.2 0.4 0.6 0.8 1

140
120
100

80
60
40
20

0.2 0.22 0.24 0.26 0.28 0.3

120
100
80
60
40
20

0.1 0.12 0.14 0.16 0.18 0.2

150

100

50

0.05 0.1 0.15

140
120
100
80
60
40
20

0 0.02 0.04 0.06 0.08 0.10 0.2 0.4 0.6 0.8 1

0 0.2 0.4 0.6 0.8 1

0 0.2 0.4 0.6 0.8 1

1.5

1

0.5

1.2
1
0.8
0.6
0.4
0.2

1.4
1.2
1
0.8
0.6
0.4
0.2

Gas saturation Porosity

igure 4. A comparison between the estimated PDFs of gas satura-
ion and porosity using seismic AVA data with signal-to-noise ratios
rom 10 to 5 �black� and from 20 to 10 �red�. The vertical straight
ines show the true values.
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oint inversion of seismic AVA and CSEM data reduces uncertainty
n gas saturation estimation, especially for layers 4 and 5. With the
oint inversion, we are able to identify two high-gas-concentration
ayers �2 and 4� and two low-gas-concentration layers �1 and 5� by
he major modes of their corresponding PDFs. Table 4 shows the rms
rrors of the estimated values using both seismic and electromagnet-
c �EM� data. The incorporation of CSEM data improves the esti-

ates of both gas saturation and porosity. The improvement in gas
aturation estimation is significant.

ffects of unknown overburden and
edrock electrical conductivity
We explore the effects of uncertainty in the overburden and bed-

ock electrical conductivity by assuming the overburden and bed-
ock conductivities are unknown and are uniformly distributed on
iven ranges. We consider uncertainty ranges of 10% and 30% about
heir true values. Figure 6 compares the estimated PDFs of gas satu-
ation and porosity by assuming the overburden and bedrock con-
uctivity is given �black�, has 10% uncertainty �red�, and has 30%
ncertainty �blue�. Uncertainty in the overburden and bedrock con-
uctivity has limited effects on the estimated PDFs of gas saturation
nd porosity. In each case, the major modes of the estimated PDFs
re close to their true values. The uncertainty associated with the es-
imation generally increases as the prior bounds of the overburden
nd bedrock conductivity increase, but the increase is not signifi-
ant. This is possibly because CSEM data in the synthetic model
an provide good information on the overburden and bedrock
onductivity.
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igure 5. A comparison between the estimated PDFs of gas satura-
ion and porosity obtained from inversion of seismic AVA data
lone �black� and from inversion of both seismic AVA and CSEM
ata �red�.
ffects of unknown oil concentration

In the preceding inversion, we assume that oil saturation in the
eservoir is zero. In reality, however, oil saturation in each layer may
e another parameter that needs to be estimated. To investigate the
ffects of our prior knowledge about the oil saturation on joint inver-
ion, we assume that oil saturation lies in the ranges of �0, 0.1� and �0,
.3�. Although the true oil saturation remains zero in all layers, we
llow oil saturation to take values between the above ranges when
e invert seismic AVA and CSEM data.
Figure 7 compares the estimated PDFs of gas saturation and po-

osity obtained from joint inversion by assuming that the oil satura-
ion is equal to zero �black�, uniformly distributed on �0, 0.1� �red�,
nd uniformly distributed on �0, 0.3� �blue�. The unknown oil satura-
ion has little effect on the estimates of porosity but has significant
ffect on estimates of gas saturation. For example, for layers 2 and 4
ith increasing uncertainty in the unknown oil concentration, the es-

imated PDFs of gas saturation are biased toward the lower values.

able 4. The rms errors of the estimated values using
eismic AVA data with signal-to-noise ratios from 10 to 5
nd CSEM data with relative errors from 5% to 10%.

Estimated
mean

Estimated
median

Estimated
mode

as saturation 0.0839 0.0373 0.0336

orosity 0.0019 0.0018 0.0017
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igure 6. A comparison between the estimated PDFs of gas satura-
ion and porosity obtained from joint inversion by assuming the
verburden and bedrock conductivity is given �black�, and has 10%
red� and 30% �blue� uncertainty around the true values.
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FIELD EXAMPLE

In this section, we apply the Bayesian model to field data obtained
rom the Troll site in the North Sea. We compare the estimates of gas
nd oil saturation with the measurements at a nearby borehole to
valuate the benefits of joint inversion of seismic AVA and CSEM
ata for estimating gas saturation under field conditions. In the fol-
owing, we first briefly describe seismic and CSEM data used in this
tudy and then compare the inversion results with the borehole logs.
etailed information on this site is given by Hoversten et al. �2006�.

eismic AVA data

Many types of geophysical surveys have been conducted over the
ast 30 years. For this study, we chose marine seismic AVA and
SEM data near well 31/2–1. Seismic AVA data were collected

rom common-depth-point �CDP� locations within 50 m of EM re-
eivers sitting on the seafloor. At each CMP location, there are six
ncident angles �7.2°, 13.5°, 19.8°, 25.6°, 31.1°, and 36.3°�. Figure 8
hows the prestack NMO-corrected data at CMP 1147, which is near
he marine CSEM receiver Rx16. From the figure, we see a strong re-
ector near 1500 ms that may correspond to the top of the gas reser-
oir. Similarly, we can determine approximately the bottom of the
eservoir, which is around 1800 ms. Consequently, we chose the
restacked data between 1418 and 1816 ms for seismic AVA data
nversion. Angle-dependent wavelets were also derived by match-
ng seismic data at a well 1.5 km away from this site.
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igure 7. A comparison between the estimated PDFs of gas satura-
ion and porosity using seismic AVA and CSEM data when oil con-
entrations are given �black�, uniformly distributed on �0,0.1� �red�,
nd uniformly distributed on �0,0.3� �blue�.
arine CSEM data

Marine CSEM surveys measure the EM responses of electrical re-
istivity in the entire half-space under the ocean surface that includes
eawater, overburden, gas reservoir, and bedrock. The recorded
SEM data are the in-phase and out-of-phase electrical fields col-

ected at three frequencies �0.25, 0.75, and 1.25 Hz�. To be consis-
ent with the seismic AVA data, we use the CSEM data obtained
rom receiver Rx16 for eight transmitters; source-receiver distances
re 775, 1700, 2500, 3300, 4100, 4900, 5700, and 6500 m, respec-
ively. The relative errors of those CSEM data are estimated to be
0%.

rior distribution

We use different methods to determine the prior distributions of
nknown parameters in the potential reservoir and in the zones out-
ide the reservoir. For the unknown parameters in the zones outside
f the reservoir �i.e., seismic bulk and shear moduli, density, and the
verburden and bedrock conductivity�, we assume they are distrib-
ted uniformly between 70% and 130% of their corresponding bore-
ole logs collected from well 31/2–1. For the unknown parameters
n the reservoir �i.e., fluid saturation and porosity�, we assume they
re distributed uniformly within given bounds.

We first determine reference values for water and gas saturation.
ccording to information obtained from the nearby borehole logs,

Observed seismic AVA data
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igure 8. Prestacked NMO corrected seismic AVA data at CMP
147 of the Troll Site.
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Bayesian model for gas saturation estimation WA93
e assume that the values for water saturation range from zero to one
nd the values for gas saturation range from one to zero from the top
o the base of the reservoir. The bounds for water and gas saturation
re the reference values ±0.3. The lower bounds of oil saturation are
ero for all the layers, and the upper bound is 0.1 for depths less than
544.5 m. Below 1544.5 m, the upper bounds of oil saturation lin-
arly decrease from 0.7 to 0.1 at the base of the reservoir to allow oil
here it was originally present.

nversion of seismic AVA data

For inversion of seismic data, we divide the potential reservoir
nto 16 layers with a thickness of 20 m and consider porosity, water
aturation, and gas saturation in each layer to be unknown parame-
ers. To account for uncertainty in the time-depth function that pro-
ides the time window for the seismic AVA data, we also include
ve 20-m-thick layers above the reservoir and one 20-m-thick layer
elow the reservoir.

Figure 9 compares the inversion results using seismic AVA data
ith the borehole logs collected from well 31/2–1. The seismic
VA data provide good estimates of water saturation for layers 1–6,
here water saturation is low. Because we only allow oil saturation

o vary between 0.0 and 0.1, we obtain good estimates of gas satura-
ion. However, for layers 7–13, inversion of seismic AVA data only
rovides poor estimates of water saturation. This is because seismic
ata have low sensitivity to variations in water saturation from
.3–0.8, as found by Hoversten et al. �2006�.

oint inversion of seismic AVA and CSEM data

To invert seismic AVA and CSEM data jointly, we need to ac-
ount for the effects of electrical conductivity of the overburden
bove the reservoir. In this study, we divide the overburden �includ-
ng seawater� into 13 layers according to the resistivity logs collect-
d from well 31/2–1 and consider the electrical conductivity in each
f those layers as an unknown parameter. Figure 10 shows the prior
ounds and initial values of the overburden electrical conductivity
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igure 9. Estimated �a� water, �b� gas, �c� oil saturation, and �d� po-
osity using seismic AVA data alone. From �a� to �c� red lines show
he modes of estimated marginal PDFs, the red dotted lines show the
5% predictive intervals, the black lines show borehole logs, and the
lue lines show the prior distribution of unknown parameters. In �d�
ed lines show the modes of estimated porosity PDFs, and the

traight black lines show the blocked average of porosity.
erived from well 31/2–1. We assume that the unknown overburden
onductivity parameters are distributed uniformly in the given
anges.

Figure 11 shows the inversion results using both seismic AVA
nd CSEM data. For layers 1–6, the joint inversion provides esti-
ates of water and gas saturation that are as close to borehole logs as

he previous inversion. For layers 7–13, the joint inversion provides
lightly better estimates of water saturation than those obtained from
nversion of seismic data alone, but uncertainty in both estimates is
arge. Figure 12 from the top to the bottom compares the estimated
DFs of water and gas saturation for layers 7–12 using seismic data
lone �black lines� and using both seismic and CSEM data �red
ines�. The blue lines show the results from the nearby borehole.
omparing the estimated modes with the borehole logs, we see that

he joint inversion is better. Table 5 shows the rms of the differences
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igure 10. Prior bounds of the overburden electrical conductivity de-
ived from borehole logs at well 31/2–1, where the solid lines show
he initial values and the dash lines show the lower and upper bounds
f the overburden conductivity.
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etween the averaged well-log values and the estimated values
modes� from the Troll data sets. The joint inversion is slightly
etter.

ata misfit

To show how the estimated model �modes� fits the data, we com-
are the seismic AVA and CSEM responses of the estimated model
ith the corresponding seismic AVA and CSEM data. Figure 13

ompares the in-phase and out-of-phase electrical fields of the esti-

able 5. The rms of the differences between the averaged
ell-log values and the estimated modes for Troll data sets.

Water
saturation

Gas
saturation

Oil
saturation Porosity

eismic AVA data
nly

0.1877 0.1760 0.0965 0.0431

eismic AVA and
arine CSEM data

0.1398 0.1650 0.1112 0.0442
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igure 12. Comparison between the estimated water and gas satura-
ion using seismic AVA data alone �black� and using both seismic
VA and CSEM data �red� from layers 7–12.
ated model with the CSEM data at three frequencies over eight off-
ets. The estimated model fits the electrical field at frequency
.25 Hz well. However, for high frequencies �0.75 and 1.25 Hz�, the
t is not good when offsets are larger than 3500 m. The misfit for

arge offsets at high frequencies could have many different causes.
ne possible reason for the misfit is the assumption of a layered res-

rvoir model. The higher-frequency CSEM data typically have high-
r resolution; therefore, the 3D localized features of the gas reservoir
ffect the CSEM data.

Figure 14 shows the seismic AVA data misfit for the models ob-
ained from the joint inversion of seismic and EM data. We see that
oint inversion fits the seismic data well.
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igure 13. Comparison between the observed �black� and the calcu-
ated �red� inphase �left� and out-of-phase �right� of the electrical
eld using the modes of the estimated PDFs obtained from joint in-
ersion of seismic AVA and CSEM data.
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CONCLUSIONS

We develop a Bayesian model to estimate gas saturation using
arine seismic AVA and CSEM, and we demonstrate the capability

f the model to solve nonlinear and nonunique inverse problems us-
ng a five-layer synthetic reservoir model. Unlike deterministic in-
erse methods that typically provide single value estimation and
ave difficulty in finding the global solutions, the stochastic methods
raw many samples of unknown parameters from the joint posterior
istribution function. The obtained samples allow us to evaluate the
eans, variances, modes, predictive intervals, and marginal PDFs of

nknown parameters, all of which are useful for quantifying the un-
ertainty associated with inversion.

We also demonstrate the advantages of joint inversion over indi-
idual inversion of seismic AVA and CSEM data for gas saturation
stimation using the five-layer model. Using seismic AVA data
lone, even with high resolution, it is difficult to distinguish high or
ow gas concentration in deep layers because seismic properties are
ot sensitive to variations in gas concentration. With the inclusion of
SEM data, uncertainty in gas saturation estimation decreases, and

he ability to identify high gas concentration in deep layers is en-
anced. The improvement is affected by uncertainty in the overbur-
en and bedrock electrical conductivity and by prior knowledge of
il concentration. The effects of uncertainty in the overburden and
edrock conductivity is less than those of prior knowledge on oil
oncentration. It is possible, if we increase incident angles of seismic
VA data �e.g., up to 40°�, prior knowledge about oil concentration
ay have less effect on gas saturation estimation. Other factors may

lso affect the joint inversion, such as uncertainty in the estimates of
eismic waveforms, rock-physics models, and approximations of
D reservoir models, which will be explored in later studies.

Finally, we apply the Bayesian model to a data set collected from
he Troll site. Although seismic waveforms and rock-physics mod-
ls are estimated from borehole logs with uncertainty and both seis-
ic AVA and CSEM data are 3D data, a comparison between the re-

ults using seismic AVA data alone and the results using both seis-
ic AVA and CSEM data shows that joint inversion of seismic and
SEM data provides better estimates of gas saturation. The benefits
f combining seismic AVA and CSEM data are more striking in syn-
hetic tests than in the field data example. Part of the difference is al-

ost certainly a result of the large number of unknown noise sources
nherent in the field data. These may include noise in the estimated
ngle-dependent wavelets and the possible presence of correlated
on-Gaussian noise in both seismic AVA and CSEM data sets. The
aturation and porosity logs, assumed to be ground truth, can also be
n error. In addition, the 1D model may not accurately represent the
ctual earth. This is more likely to be a problem for the CSEM data,
hich has a larger spatial footprint, than for the seismic AVA model-

ng, although the assumption that all multiples have been removed
nd that true relative amplitudes have been recovered in the seismic
ata may also not be strictly valid. In any case, we believe our syn-
hetic examples provide sufficient evidence of the improvements
ossible when seismic AVA and CSEM data are combined so as to
nduce others to improve on our efforts with field data.
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