4. Database Administration

4.1	The Role of the Database Administrator (DBA)

The Database Administrator or DBA, is the individual or office responsible for the installation, configuration, update, maintenance, and overall performance and reliability of the SQL Server database. In general, the DBA is concerned with the availability of the server, the definition and management of resources allocated to the server, the definition and management of databases and objects resident on the server, and the relationship between the server and the operating system.

Each section in this chapter provides necessary background information, followed by step-by-step instructions and actual scripts where applicable.

4.2	Conventions, SQL Server Nomenclature, and Directory Structure

In all cases throughout this chapter, when actual examples are provided, those which reference UNIX commands will be preceded by a ì%î, and those that reference SQL statements will be preceded by a number and a ì>î (e.g. 1>sp_help tablename).

The terms described in the following table will be used throughout the rest of this chapter.

Table 4.2-1. SQL Server General Definitions

Term�
Definition�
�
client�
SYBASE Open Client software (version 11.1.0) located in the /tools/sybOCv11.1.0 directory�
�
Backup Server�
Similar to the dataserver, it uses a separate UNIX process to off load the cycles associated with DUMP and LOAD commands�
�
backups�
The set of UNIX files containing full database dumps, transaction log dumps, and dbcc output�
�
dbcc�
Database Consistency Checker - a utility program designed to check the logical and physical consistency of a database�
�
sybase root directory�
/usr/ecs/OPS/COTS/sybase, this is the home directory for all SYBASE software and related products and is reference both in UNIX and in the rest of this document as $SYBASE�
�
interfaces file�
Lists the names and access paths for all servers and backup servers. This file is located in the $SYBASE�
�
sa�
System Administrator login, this is the superuser of the SQL Server�
�
scripts�
UNIX script programs located in $SYBASE/scripts and related subdirectories�
�
showserver�
A utility invoked at the UNIX command prompt to display active server, located in $SYBASE/install.�
�
SQL scripts�
SQL and command statements located in $SYBASE/scripts and related subdirectories�
�
SQL�
Structured Query Language�
�
The sybase directory structure is described in the following table. Subdirectories under the scripts can contain template files with easy to modify examples of SQL and SQL command syntax.

Table 4.2-2. SYBASE Directory Structure

Directory�
Contains�
�
$SYBASE/bin�
Utilities necessary to load, run, and access the server�
�
$SYBASE /install�
Files used to start and initialize dataservers, backupserver and to record server messages (errorlogs)�
�
$SYBASE /lib�
db-lib, ct-lib, and xa-lib client library files used by applications to gain access to the server (local to server)

*Applications use automounted libraries. �
�
$SYBASE /scripts�
Root directory for all script files executed on the server�
�
$SYBASE /sybase_dumps �
Root directory that contains all backup subdirectories, it is recommended, but not required, that this directory be on a separate physical disk.

**Backups are stored on disk for two week periods. The week2 data is moved to tape. Week 1 becomes week2 data and the new data is stored in week1.�
�
backup subdirectories�
Created each evening by the RUN_sybcron job, they are named week1 and week2; and contain the following files:

dbname.dat.MMDDHHMM.Z - full database dumps

servername_dbname_tx.dat - transaction file dumps (where applicable)

dbname_backup.log.

dbname_dbcc.log�
�
**xxdmh02 serves as a remote Backup Server�
**xx are the 2 letter codes to identify a DAAC site

(i.e., g0 = Goodard)�
�

Naming Conventions

As one of the most important, yet least applied concepts, naming conventions are presented in this chapter by examples according to the following rules.

Rule1: Regardless of the length of the name, it should indicate the function and/or content of the object

Rule 2: Only easily understandable abbreviations should be used

Rule 3: Parts of names are separated by underscores ì_î, only one optional suffix is permitted (appended to the name by a . ì.î)

Rule 4: The full path of the object is considered to be part of the name

�
Notes and Examples:

The names of the databases and tables themselves may or may not follow the above rules, these rules are specifically for the DBA to work with SQL Server objects, and files in the UNIX environment.

All COTS software is installed in the /usr/ecs/OPS/COTS directory.

All SYBASE software is located in the sybase home directory ($SYBASE).

All backups are located in $SYBASE/sybase_dumps directory, which may or may not be on a separate physical disk.

The directories are kept for a period of 30 days and they are named as follows:

	dbname_dat_MMDDHHMM.Z

where MMDDHHMM is the ìsortableî eight digit month, day, hour, and minute. For example, on the date this chapter was written, a backup directory called backups_for_970423.

All sql script files have the extension .sql as a suffix. Their names reference the objects they create or functions they perform, and are all located either in $SYBASE/scripts or below.

4.3	SQL Server Installation

SYBASE SQL Server Version 11.1.0 has been installed and configured by the ECS Installation Staff. Shared memory and disk resources have been allocated and configured by the System Administrator, and both the client and server portions have been set up by the DBA prior to shipment. The following table describes many of the parameters used and options chosen during installation.

�
Table 4.3-1. SQL Server Parameters and Options

Item�
Brief Explanation�
�
Server Name�
 The name of the database server for a specific application

EX. - g0sps06_srvr - pdps application database server�
�
Port Numbers�
The port number to be utilized by the above listed servers. �
�
Release Directory�
$SYBASE�
�
Retry Count�
5�
�
Retry Delay�
5�
�
master device�
25 Mb raw partition�
�
sybsystemprocs�
$SYBASE/devices/sybprocs.dat, 12 Mb and on itís own device�
�
errorlog�
$SYBASE/install/node.errorlog (xxx indicates the application)�
�
Current default language�
us_english�
�
Current default character set�
iso_8859-1 (Latin-1)�
�
Current sort order �
Binary ordering, for the ISO 8859/1 or Latin-1

character set (iso_1).�
�
Internal auditing�
On�
�
sybsecurity database size�
175 Mb - Varies ñ depends on disk allocations�
�
sybsecurity device�
sybsecurity, positioned on a 175 Mb raw partition�
�

The script files are located in the $SYBASE/install directory. SQL Server installation is performed by an authorized user with the sybinit utility also located in the $SYBASE/install directory. See your UNIX System Administrator and the SYBASE SQL Server Installation Guide.

4.4	DBA Functions

The following subsections detail the most common functions that a DBA will perform.

4.4.1	Starting, Stopping, and Showing the Server(s)

Use shutdown to bring the server to a halt. This command can only be issued by the System Administrator (sa).

Syntax:	1> shutdown [with nowait]

		2> go

The ìwith nowaitî option shuts down the SQL Server immediately without waiting for currently executing statements to finish.

Use startserver to start an SQL Server and/or a Backup Server. This command can only be issued by the sybase user.

Syntax:	% startserver [-f runserverfile]

The ìrunserverfileî is contained in the $SYBASE/install directory.

Use showserver to determine whether the SQL Server(s) and/or Backup Server(s) are running.

Syntax:	% showserver

Example: UNIX processes running the various servers:

 UID PID PPID C STIME TTY TIME COMD

sybase 671 669 80 Apr 17 ? 80:05 /usr/ecs/OPS/COTS/sybase/bin/dataserver -d /dev/rdsk/c1t0d0s1 -g0sps06_srvr

sybase 665 663 80 Apr 17 ? 50:02 /usr/ecs/OPS/COTS/sybase/bin/backupserver -g0sps06_backup -e/usr/ecs/OPS

4.4.2	Creating Logical Devices

A logical device is created when the UNIX System Administrator determines that new disk space is available for use by SYBASE software, databases, transaction logs, and/or backups. Either raw disk partitions or UNIX filesystem partitions can be used to create a logical device. The creation of a logical device is a mapping of physical space to a logical name and virtual device number (vdevno) contained in the SQL Server master database. The disk init command is used to initialize this space. After the disk initialization is complete, the space described by the physical address is available to SQL Server for storage, and a row is added to the sysdevices table in the master database. To display the device created, execute:

Syntax:	1> sp_helpdevice

		2> go

Example of Creating a Logical Device

A raw partition on a RAID device has been made available to SQL Server by the UNIX System Administrator. Essentially, the actual name of the raw device c2t0d1s3 has had itís ownership changed to sybase and itís group changed to user.

1.	In $SYBASE/scripts/create.devices, DBA makes a script file from the template.

Syntax: % cd /usr/ecs/OPS/COTS/sybase/scripts/create.devices

 % cp template.sql data_dev1.sql

2.	Appropriate items are modified so that the script file resembles the following:

1> disk init

	2> name = ìdata_dev1î,

	3> physname = ì/dev/rdsk/c2t0d1s3î,

	4> vdevno = 3,

	5> size = 128000

6> go

7> sp_helpdevice data_dev1

8> go

3.	 DBA runs the script from the UNIX command prompt:

Syntax: 	% isql -Usa -Sservername -idata_dev1.sql -odata_dev1.out

4.	 DBA checks the data_dev1.out file for success

4.4.3	Creating and Altering Databases

A user database is created by the DBA with a script containing the create database command. A database is created on one or more physical devices. Specifying the device is optional - but highly recommended. When indicating the device, you use the logical name you specified as part of a disk init (described above). Unlike the disk init command, the size of the database data and log components is specified in MB instead of 2K pages.

Example of Creating a Database

The logical device data��_dev1 has been created (as above) along with another device called tx_log1 (for transaction logging).

1. 	In $SYBASE/scripts/create.databases directory, DBA makes a script file from the template.

Syntax: % cd /usr/ecs/OPS/COTS/sybase/scripts/create.databases

 		 % cp template.sql userdb.sql

2.	Appropriate items are modified so that the script file resembles the following:

1> create database UserDB on data_dev1 = 100 log on tx_log1 = 50 [with override]

	2> go

	3> sp_helpdb UserDB

	4> go

3	 DBA runs the script from the UNIX command prompt:

Syntax: 	%isql -Usa -Sservername -iuserdb.sql -ouserdb.out

4	 DBA checks the userdb.out file for success

Example of Altering a Database

The user database UserDB has run out of space and it has been determined that it should be increased by 50MB.

1	 In $SYBASE/scripts/create.databases, DBA creates a script file containing the ALTER DATABASE command (named alter_userdb.sql)

 Syntax: Alter database UserDB on data_dev3 = 50

2	 DBA runs the script from the UNIX command prompt:

Syntax: 	% isql -Usa -Sservername -ialter_userdb.sql -oalter_userdb.out

3	 DBA checks the alter_userdb.out file for success

4.4.4	Data Placement - Segmentation

Segments are named subsets of the database devices available to a particular SQL Server database. Segment names are used in create table and create index commands to place tables or indexes on specific database devices. Using segments allows the DBA to better control the size of database objects and may improve performance by spreading i/o more evenly across devices.

Once the database device exists and is available, the segment can be defined with the system stored procedure sp_addsegment.

	Syntax: sp_addsegment segname, dbname, devname

After the segment has been defined in the current database, the create table or create index commands use the optional clause ìon segment_nameî to place the object on a particular segment.

	Syntax: create table table_name (column_name datatype ...) [on segment_name]

 		 create [clustered | nonclustered] index index_name on table_name

Use sp_helpdb database_name to display the segments defined for that database.

Use sp_helpsegment segment_name to list the objects on the segment and show the mapped devices.

Example of Creating a Segment

The DBA receives a request to create a segment for the storage of the DATA_INFO table indexes in the pdps_db_ops database, on a separate physical disk. Two devices data_dev1 and data_dev2 have already been created and are located on different physical disks.

1.	 In $SYBASE/scripts/create.segments directory, DBA makes a script file from the template.

Syntax: % cd /usr/ecs/OPS/COTS/sybase/scripts/create.segments

 		 % cp template.sql segments_dev1.sql

2.	 The script file is modified so that it resembles the following:

	1> sp_addsegment seg1_dev1, pdps_db_ops, data_dev1

	2> sp_addsegment seg1_dev2, pdps_db_ops, data_dev2

	3> go

3.	 DBA runs the script from the UNIX command prompt:

Syntax: 	%isql -Usa -Sservername -ipdps_db_ops_segments.sql \

 -opdps_db_ops_segments.out

4.	 DBA checks the opdps_db_ops_segments.out file for success

5.	 When the table and indexes are created according to the instructions in section 4.4.6, the

	ìon seg1_dev1î must be appended to the DATA_INFO.sql create table statement,

	and the ìon seg1_dev2î must be appended to the DATA_INFO_indexes.sql CREATE

	INDEX statement.

Syntax: (example)

 create index DATA_INFO_IDX on DATA_INFO (DI_ID) on SEG1_DEV2

4.4.5	Monitoring Space Usage

4.4.5.1 Thresholds

Thresholds are defined on segments to provide a free space value at which a procedure is executed to provide a warning or to take remedial action.

Use sp_addthreshold to define your own thresholds:

sp_addthreshold database_name, segment_name, free_space, procedure_name

where free_space is the number of free pages at which the threshold procedure executes; procedure_name is the stored procedure which the threshold manager executes when the number of free pages falls below the free_space value. Please see the section on Auditing later in this chapter for an example of Thresholds.

4.4.6	Creating Database Objects

For special cases, creation (and modification) scripts are stored in $SYBASE/scripts/create.db_objects. There should be a template for each type of object to be created.

Example of Creating a User Table

The DBA has received a request to authorize create a new table in the pdps_db_ops database called PGE_Statistics which has three column, pge_id, pge_statistic_type, and pge_statistic.

1.	In the $SYBASE/scripts/create.db_objects directory, DBA creates a script file from the proper template.

 Syntax: % cd /usr/ecs/OPS/COTS/sybase/scripts/create.db_objects

 % cp table_template.sql PGE_Statistics_table.sql

2.	 Appropriate items are modified so that the script file resembles the following:

1> create table PGE_Statistics (

2> pge_id 			int,

3> pge_statistic_type 	int,

4> pge_statistic		float)

	5> go

	6> sp_help PGE_Statistic

	7> go

3.	 DBA runs the script from the UNIX command prompt:

Syntax: 	%isql -Usa -Sservername -iPGE_Statistics_table.sql \

 -oPGE_Statistics_table.out

4	 DBA checks the PGE_Statistics_table.out file for success

Other objects are created in like manner but are not included here due to space considerations.

4.4.7	Creating and Managing Users Logins

In order to connect to a SQL Server a login must be created by the System Administrator or a system security officer. Login details are stored in the syslogins table in the master database.

The system stored procedure sp_addlogin adds new login names to the server but does not grant access to any user database.

	Syntax: sp_addlogin login_name, password, [,default database ,language, fullname]

In order to gain access to a database, the System Administrator, system security officer, of the specific database owner must ìaddî the user with the sp_adduser system stored procedure.

	Syntax: 	1> sp_adduser jpublic, pdps_db_ops

			2> go

Example of Creating a Login and Granting Database Access

The DBA has received a request to authorize John Q. Public to the pdps_db_ops database. *It is a good practice to have a default_db, when you create a user account.

1.	In the $SYBASE/scripts/create.users directory, DBA creates a script file containing the sp_addlogin command (named public.sql)

Syntax: 	% cd /usr/ecs/OPS/COTS/sybase/scripts/create.users

		% cp template.sql public.sql

2.	DBA modifies appropriate fields so that the script resembles the following:

	1> sp_addlogin jpublic,jpublic, default_db

	2> go

	3> use pdps_db_ops

	4> go

	5> sp_adduser jpublic

	6> go

	7> sp_helpuser

	8> go

3.	DBA runs the script from the UNIX command prompt:

Syntax: 	% isql -Usa -Sservername - public.sql -opublic.out

4.	DBA checks the public.out file for success

4.4.8	Permissions

Permissions are used to control access within a database. The DBA uses the grant and revoke statements to accomplish this. There are two types of permissions within a database, Object	 and Command. In general, Object privileges control select, insert, update, delete, and execute permissions on tables, views, and stored procedures. Command permissions control access to the create statements for databases, defaults, procedures, rules, tables, and views.

The syntax for the grant and revoke statements are quite similar:

grant {all [privileges] | command_list }

 to { public | name_list | role_name }

revoke {all [privileges] | command_list }

 from { public | name_list | role_name }

Example of Granting Privileges to a Specific User

The DBA receives a request that John Q. Public should be able to read the DATA_INFO table and read and update the SUBSCRIPTION_NOTIFICATION TABLE.

	Syntax: 	1> grant select on DATA_INFO to jpublic

			2> grant all on SUBSCRIPTION_NOTIFICATION to jpublic

go

Note: It is recommended that the DBA store these command in a ì.sqlî file in the $SYBASE/scripts/create.db_objects directory, along with their results.

4.5	Backup and Recovery

Table 4.5-1. Backup and Recovery Definitions

Term�
Definition�
�
Backup Script Components�
Located in the $SYBASE directory, they include:

sybasedump, dmpdb_trns, copy_daily_dumps_to_week1, copy_daily_dumps_to_week2 �
�
Backup files�
Defined in Table 4.2-2, the location of these files has been determined during server setup�
�
Backup Statements�
Generated from the sql in sybasedump these include calls to dbcc, Dump Database, and Dump Transaction commands�
�
Backup Subdirectory�
The only directory level underneath of the Backup Directory, defined in Table 4.2-2.�
�
Backup Summary�
An extraction of the successful Dump messages along with any errors generated by the Backup Statements stored in the Backup Subdirectory.�
�
4.5.1	Automatic Backups

The following are the list of all procedures and scripts files that are currently being used for Sybase backups. There are cron jobs running at all sybase accounts OR servers that have SQL server installed. All dump files are currently written to LOCAL machine. The site DBA is responsible for configuring the backup dump to the REMOTE sybase directory.

To check if the crontab is up and running, enter:

> crontab -l

Example of the output:

012 * * 1,2,3,4,5,6 /usr/ecs/OPS/COTS/sybase/ dmpdb_trns

019 * * 1,2,3,4,5 /usr/ecs/OPS/COTS/sybase/sybasedump

021 * * 1,2,3,4,5 /usr/ecs/OPS/COTS/sybase/copy_daily_dumps_to_week1

07 * * 2,4,6 /usr/ecs/OPS/COTS/sybase/ copy_daily_dumps_to_week2

NOTE:

If the crontab is not running enter:

		> crontab /usr/ecs/OPS/COTS/sybase/run_sybcron	

		SCRIPTS			DESCRIPTIONS	

		dmpdb_trns			

This scripts runs everyday (Monday - Saturday at 12:00 noon). The purpose of this script is to recycle all committed transaction in SYSAUDIT table of all current databases. E-mail will be automatically sent to the DBA account and will show the status count of SYSLOG before/after result of transaction dump. Edit the sybasedump file, in order to get notified by e-mail. (WHERE TO EDIT)

		sybasedump	

Runs everyday (Monday - Friday at 7:00 p.m.). This is the actual database backup script that dump all the database to sybase_dumps directory. Once the dump is completed, it will send e-mail to DBA which notify him/her of the databases that were backup successfully. Backup files or Dump files are written in a compressed format. Use the uncompress command before restoring the database dump.

		copy_daily_dumps_to_week1

The purpose of this script is to move all daily dump files to week1 directory to ensure that these files will not be overwritten every time the backup is executed.

		copy_daily_dumps_to_week2

This script moves all the save week1 dump files to week2 directory every other day (Tuesday, Thursday, and Saturday) and delete the entire week1 directory after all files have been transferred to week2.

All these scripts reside in ì/usr/ecs/OPS/COTS/sybaseî directory. The assigned site DBA will be responsible for maintaining, modifying and applying necessary changes that are applicable to their site as for (security, and backup schedule).

SQL Server backups are performed nightly by a cron job which runs the run_sybcron program located in the $SYBASE/scripts/backups directory. The following table of definitions will be used throughout the rest of this section.

�
Table 4.5-2. Automatic Backup Components

Component Name�
Function(s)�
�
run_sybcron�
File added with the crontab -e command, contains the following:

00 19 * * 1-6 /data1/COTS/sybase/sybasedump�
�
sybasedump�
Controlling script that performs the following functions:

run isql to create the Backup Statements

run isql to execute the Backup Statements

record the results of the Backup Statements in Backup Files

copy the Backup Files to the Backup Subdirectory

create the Backup Summary�
�
run dbcc�
SQL statements that access the SQL Server master database and create the Backup Statements�
�
sp�
SQL Server password file�
�
what goes here �
UNIX shell script that ìgrepsî successful Dump statements along with any errors generated, sends e-mail to the DBA and writes them to the backup_summary file�
�

No intervention in the Automatic Backup Process is required by the DBA, though periodic checks of the Backup Subdirectories are recommended.

4.5.2	Manual Backups

Manual backups can be performed at any time by the System Administrator and are recommended for the following situations:

Any change to the master database - this includes new logins, devices, and databases

Any major change to user databases - a large ingest or deletion of data, definition of indexes

Other mission-critical activities - as defined by the DAAC Operations Controller

Both the dump database and dump transaction command processing are off-loaded to the backup server, and will not affect normal operations of the database. These commands are performed by the System Administrator on appropriate databases as follows:

Syntax:	

1> dump database master to ì/usr/ecs/OPS/COTS/sybase/sybase_dumps/dbname.dat.MMDDHHMM.Zî

go

After dumping the database, compress the dump file by executing:

	%compress usr/ecs/OPS/COTS/sybase/sybase_dumps/dbname.dat.MMDDHHMM.Z

dump transaction pdps_db_ops to ì/backup_directory/pdps_db_ops_tx.datî

go

4.5.3	Manual Recovery

Manual recovery of a user database is performed by the System Administrator by the use of the load database and load transaction commands. For issues concerning the master database, please consult your System Administratorís Guide for assistance. It is recommended that any user database to be recovered be dropped and created with the for load option. In section 4.4.3, the databasename.sql along with any alter.databasename.sql scripts were saved, these need to be combined into one script which will re-create the user database with the for load option. This will insure the success of the load database and load transaction commands. The following example illustrates these issues:

4.5.4	The BulkCopy Utility

The bcp utility is located in the $SYBASE/bin directory and is designed to copy data to and from SQL Server databases to operating system files.

4.5.4.1 Requirements for Using bcp

In general, you must supply the following information for transferring data to and from SQL Server:

Name of the database and table

Name of the operating system file

Direction of the transfer (in or out)

In order to use bcp, you must have a SQL Server account and the appropriate permissions on the database tables and operating system files that you will use. To copy data into a table, you must have insert permission on that table. To copy data out to an operating system file, you must have select permission on the following tables:

The table being copied

sysobjects

syscolumns

sysindexes

4.5.4.2 bcp Syntax

bcp [[database_name].owner.]table_name {in | out} datafile [-e errfile] [-n] [-c]

	[-t field_terminator] [-r row_terminator] [-U username] [-P password] [-S server]

4.5.4.3 bcp Scripts and Files

Example of User Database Recovery

The database UserDB was created using the following script excerpt: (stored in home/scripts/create.databases/userdb.sql)

create database UserDB on data_dev1 = 100 log on tx_log1 = 50 [with override]

and was modified using the following script excerpt: (home/scripts/create.databases/alteruserdb.sql)

Alter database UserDB on data_dev1=50

For the purposes of this example, the full database backup and transaction log dumps were successful and located in /usr/ecs/OPS/COTS/UserDB.dat and UserDB_tx.dat

1.	In the $SYBASE/scripts/create.databases directory, DBA makes a script file from the template.

Syntax: % cd /usr/ecs/OPS/COTS/sybase/scripts/create.databases

 		 % cp template.sql userdb_for_load.sql

2.	Appropriate items are modified so that the script file resembles the following:

1> create database UserDB on data_dev2=100 log on tx_log2=50 for load

2> go

3> alter database UserDB on data_dev3=50

4> go

3.	DBA saves the script in $SYBASE/scripts/create.databases/userdb_for_load.sql

4.	 DBA runs the script from the UNIX command prompt.

	Syntax: %isql -Usa -Sservername -iuserdb_for_load.sql -ouserdb_for_load.out

5.	 DBA checks the userdb_for_load.out file for success

6.	 DBA loads the database from the full backup.

	Syntax: 	1> load database UserDB from

ì/usr/ecs/OPS/COTS/sybase/sybase_dumps/week1/dbname.dat.MMDDHHMMî

go

7.	 DBA loads the transaction file from the transaction file dump.

	Syntax: 	1> load transaction UserDB from

ì/usr/ecs/OPS/COTS/sybase/sybase_dumps/week1/dbname.dat.MMDDHHMMî

3> go

4.6	Database Performance and Tuning

Once your application is up and running, the DBA monitors its performance, and may want to customize and fine-tune it. Use the following software tools provided by SQL Server:

Setting query processing options with the set command

Setting database options with sp_dboption

Monitoring SQL Server activity with sp_monitor

Using update statistics to ensure that SQL Server makes the best use of existing indexes

Changing system variables using sp_configure and the reconfigure command

Placing objects on segments to spread i/o, improve throughput, etc. as described in section 4.4.4

For a complete discussion of issues related to SQL Server performance and tuning, refer to your SYBASE SQL Server System Administration Guide.

4.7	Installation of the Applications

DBA should have physical devices configured before installing either autosys or remedy. Both applications use Sybase as their database.

4.7.1	Installation of the Application Database

The installation of the application databases has been automated using ECS Assistant. The application databases are created using the DbBuild script which can only be invoked through ECS Assistant. Other scripts that ECS Assistant invokes are:

 DbBuild - Create new empty database and loads with initial data

 DbPatch - Upgrade to new schema while retaining existing data.

4.7.2	The AUTOSYS Application and other Configuration Issues

The AUTOSYS application works in tandem with pdps (which one of the applications that comprise the ECS) to schedule the jobs that run on Science Processor. Autosys installation is performed in /usr/ecs/OPS/COTS by the auto install program located in the autosys/install directory. The results of the installation are stored in an autosys_install.scr file located in the AUTOSYS home directory (/use/ecs/OPS/COTS/autosys). For pdps to run properly with AUTOSYS, the following activities are completed:

A user is defined named autosys

autosys user is added to the pdps_db_ops database

The autosys server is added to the sysservers table with sp_addserver

The server is added to the sysservers table on the AUTOSYS server with sp_addserver

Further configuration and troubleshooting information is available from the ECS Staff at the Goddard Space Flight Center.

4.7.3 Spatial Query Server (SQS)

SQS is a multi-threaded, Sybase Open Query database engine, which is required by the Science Data Subsystem (SDSRV). This product allows definition of spatial datatypes, spatial operators, and spatial indexing. SQS communicates with Sybase SQL Server to process SDSRV requests to push and pull metadata. SDSRV database server resides on an SGI machine. SQS also, reside on the same machine as SDSRV Sybase SQL Server.

 Named X1acg01 - where X is the DAAC specific identifying character.

pathname - /usr/ecs/OPS/COTS/sqs222/bin/sqsserver

Should have one dedicated CPU per instance running. Defaults to one instance now, but may require additional instances later for performance reasons.

Requires one entry in the Sybase ìinterfacesî file per instance of the SQS server to be run.

Consult startup scripts in /etc/init.d/sybase and /etc/init.d/sqs_222

SQS requires a Sybase login with SA or sa_role and associated password to start. SQS environment variables requirements:

SYBASE 	= Location of the Sybase home directory. Example: /tools/sybOCv11.1.0

 PATH 		= Must include in this order - /usr/bin; /usr/sbin;$SYBASE/bin

DSQUERY 	= Name of SQL Server to which to connect. From the $SYBASE/intefaces file. Examples - g0acg01_sqs222_srvr

DSLISTEN 	= Name of SQS server to use. Example - g0acg01_sqs222_srvr

SQSUSER 	= Name of the user (SA or sa_role) for system connection.

SQSPASSWORD	= Password for the system connection login

The SQS startup script requires the following information:

SQSHOME = location of sqsserver binaries.

The following is a list of options that can be imbedded in the startup script, these options are beneficial, but they are not required.

�
STARTUP OPTIONS:

-e path of the SQS server logfile. Example /usr/ecs/OPS/COTS/sqs222/sqs/bin/sqs_222.log

-u number of concurrent SQS connections. Recommend minimum of 125. Example -u 125

Usually started with a delay, after the SQL Server is started. This delay be sufficient for the SQL server to recover and come-up.

$SQSHOME/bin/sqsserver -e $SQSHOME/sqs_222.log -u $USER &

SQS has dependencies on Sybase, such as:

Sybase must be running prior to starting SQS

SQS user id that starts SQS, which is different from the application user ID must have admin privileges

SQS opens a connection to Sybase's because it writes to the Sybase System tables

SQS server thread runs under the userid sa. In order to avoide confusion when monitoring this thread, it is best to:

create a separate login and userid specifically to monitor SQS

grant sa_role authority to the userid created to monitor SQS

EXAMPLE: 1> sp_adduser sqs_mon

grant sa_role to sqs_mon

 go

	4-�page �18�	611-CD-004-002

