

Observatory Configuration Backup Charts

TRW

- Teldix Statistical Disturbance Model
 - Radial Force: h(1) ~ 0.25e-3 N/rps2; h(.58) ~ .04e-3 N/rps2
 - Axial Force: h(4.86)~ 0.13e-3 N/rps2; h(7.12) ~ .6e-3 N/rps2

- 18 panels, 6" thick sandwich, 48 mil facesheets, 15 kg/m2, very stiff latches
- Active damping on SMSS support struts, 0.25% damping elsewhere
- Passive isolation
- Response due to random laser disturbance 0.5-50 Hz
- Disturbance is primarily a flat PSD applied on the S/C bus:
 - 66 N radial, 38 N axial: average in 3 directions = 57 Newton rms
- Found that mass scales as 1/Diameter⁴ and frequency as 1/Diameter²

		Figure Error	Spot Error	LOS Error
Case	Configuration	n-m/N	n-Rad/N	n-Rad/N
Α	3 PM struts 2m below, 1Hz iso	77	54	218
В	6 PM struts 2m below, 1Hz iso	24	21	193
D	24 PM struts 2m below, 1Hz iso	8.4	5.4	186
Е	24 PM struts 4m below, 1Hz iso	3.2	2.5	188
F	24 PM struts 4m below,	2.1	1.7	663
	0.5 Hz rocking, 1Hz bounce iso			

Performance Metrics for SBL subjected to Random Disturbance at S/C

- Will document metrics for different delivery philosophies
 - Single launch
 - Multiple launches
 - On orbit assembly
- TRW has participated in defining performance characteristics of new vehicles for 40 years to best support our customers
 - Are on top of launch capabilities for 2011 timeframe

Launch Capability Estimates Terrestrial Planet Finder Enable Proper Delivery Cost/Plan

TRW

- Plume interactions trade [on formation flyers]
 - Estimate inter-vehicle coupling
 - Thermal, dynamic (control loops etc), contamination...
 - Evaluate thruster options
 - Thruster orientation and fuel loading
 - Thruster/fuel types (electric, solid-state...)
 - Evaluate/develop control loop concepts
 - JPL's AFF sensor, TRW's work on NASA's Orbital Maneuvering Vehicle

Sample TPF Flow Field